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The e8'ect of smoothly varying transverse gain and refraction profiles on x-ray laser coherence is ana-

lyzed by modally expanding the laser electric field within the paraxial approximation. Comparison with

a square transverse profile reveals that smoothly varying profiles generally lead to a greatly reduced
number of guided modes and a consequent improvement in transverse coherence length. However, the
refractive defocusing responsible for enhanced coherence can also significantly degrade the coherent
power of plasma x-ray lasers based on amplified spontaneous emission. A critical value of the Fresnel
number is indicated, below which the coherent power rapidly decreases as refractive defocusing is in-

creased. A parameter study of transverse coherence for current or planned x-ray laser experiments is

provided. Comparison with ray-optics scaling laws for transverse coherence length and coherent power
is made. An optimal coherent energy output of nearly 0.5 mJ in 100 psec is determined in Ni-like Ta at a

0

wavelength of 45 A for a saturated single-stage x-ray laser. A favorable comparison with coherent ener-

gy requirements for holographic imaging of biological samples is indicated.

PACS number(s): 42.50.Ar, 42.55.Vc, 42.60.Da, 52.25.Nr

I. INTRODUCTION

Current x-ray laser (XRL) designs rely on amplifying
spontaneous emission in a high-temperature plasma [1].
An important issue in the study of XRLs is the degree of
transverse spatial coherence necessary for holographic
applications [2]. Longitudinal coherence appears to be
satisfactory, but transverse coherence remains problemat-
ic and requires further optimization study.

Recently, London, Strauss, and Rosen have undertak-
en a study of transverse coherence based on a modal
decomposition of the electric fields in an axnplifying
medium [3]. With this ansatz for the fields, the paraxial
wave equation is transformed into two equations which
separately govern the longitudinal and transverse
behavior. The longitudinal equation describes the usual

arnplification from a distributed noise source, whereas the
transverse equation describes the spectrum of eigenmodes
which determines the possible transverse profiles of inten-
sity and coherence.

The above mathematical characterization for the fields
has formed the basis in the literature for the predicted
phenomenon of "excess noise" in an amplifying medium

[4]. In particular, the inherent non-self-adjoint property
of the transverse equation in a general amplifying medi-
um presumably allows for the possibility that loosely
guided or bound transverse eigenrnodes may dominate
the profiles at large transverse distances from the lasing
medium. Such a prospect has serious implications since
the predicted coherence and intensity profiles will be
overly sensitive to the precise gain profile used, which we

argue cannot be physical.
Originally the modal approach to understanding XRL

phenomena was confined to the bound mode or discrete

portion of the transverse eigenmode spectrum. For
sufficiently large values of gain-length product this re-
stricted analysis can obtain accurate transverse profiles of
intensity and coherence. Unfortunately, most gain-length
products achieved in the present generation of amplified-
spontaneous-emission XRL experiments are not
sufficiently large to justify use of this truncated approach.

More recently, we have reexamined the modal ap-
proach by appending the continuum or free modes to the
bound-mode portion of the transverse spectrum for the
particular example of transverse square gain and density
profiles [5]. The primary motivation for including the
continuum is that by virtue of the nonorthogonality and
assumed completeness of the eigenmodes, sufficient can-
cellation from cross terms in the expression for the modal
intensity may occur and possibly eliminate to a large ex-
tent the excess-noise phenomenon. It was found that for
small and moderately large gain-length products the
anomalously large intensities associated with loosely
bound transverse modes are significantly reduced by the
inclusion of neighboring free eigenmodes. This feature
has the twofold effect of greatly reducing the level of ex-
cess noise and of removing the source of undue sensitivity
of previous modal modeling to the exact value of the gain
parameter adopted.

Although we have previously addressed some funda-
mental problems arising in a general XRL environment,
the degree of transverse coherence has not been
sufficiently characterized. In particular, the square gain
and density profiles explored in that analysis were intend-
ed primarily for analytic ease and conceptual clarity.
What remains to be shown is whether the modal intensity
cancellation persists as effectively for rounded profiles
which presumably provide for increased transverse
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coherence through refractive defocusing e6'ects. In this
paper we continue our analysis of modal XRL coherence
by considering some consequences of rounded gain and
density profiles. The large degree of excess noise arising
from the few bound modes for a rounded transverse
profile requires the inclusion of free modes in the
analysis. We compare our transverse coherence profiles
with those produced by square profiles and show that re-
fractive defocusing greatly enhances the coherence length
as expected. However, the on-axis intensity may be seri-
ously compromised by strong refraction. We find that
there is a critical value of the Fresnel number below
which the coherent power decreases as refraction is in-
creased. Below this critical value the coherence length
continues to improve with refraction, but the coherent
power falls rapidly and increased refraction becomes no
longer beneficial. This suggests that we always operate
slightly above this critical Fresnel number. However, the
output power of such a small Fresnel number laser is lim-
ited by gain saturation. We consider saturation efI'ects in
the vicinity of this critical value of the Fresnel number
and show that the optimum coherent energy output in
Ni-like Ta at 45 A in 100 psec is nearly 0.5 mJ. For holo-
graphic imaging of live biological structures at a useful
resolution of nearly 300 A, this optimum output com-
pares with calculated requirements for coherent energy
generation [2]. However, possible nonoptimal perfor-
mance of single-stage x-ray lasers in holographic studies
may reinforce consideration of multipass or multi-stage
amplifiers with spatial filtering.

The paper is organized as follows. Section II intro-
duces notation and summarizes the modal approach; Sec.
III investigates transverse coherence in a finite geometry
starting from the eigenmodes of a square profile; Sec. IV
analyzes coherence in an unbounded geometry as a means
of avoiding any possible sensitivity of our results on
boundary phenomena; in Sec. V scaling laws for trans-
verse coherence length and power based on ray optics are
developed and compared with the modal predictions; and
finally in Sec. VI a summary of our results is presented.

axis) wave vector, h =co„,(x)/kc, co„, is the electron
plasma frequency, g(x) is the atomic gain of the medium,
and P, is the random (in x and z) spontaneous atomic
polarization. After writing E„(x,z)=g„c„(z)u„(x) we
find a transverse mode equation

[8„F,—[gh(x) —ig(x)] Iu„(x)= E„—u„(x),
and a longitudinal transfer equation

I
u „8,c„— E„c—„u„= iP,—n 2 n n n sp

where I', =kgpa is an efT'ective Fresnel number, a is a
lasing medium (horizontal) transverse scale length, E„ is
the eigenvalue, x ~xa, z~zka, P, ~P, /2'(ka ),
q =h p /gp is a normalized density parameter, and
h ~A /h p and g ~g /gp are normalized transverse
profiles. Since Eq. (2) is non-self-adjoint, the eigenvalues
are generally nonreal and the eigenfunctions are biortho-
normal: f u„u dx =5„(Af u„u*dx ). This feature
specifically gives rise to the problem of excess noise,
where loosely bound modes may dominate the electric-
field intensity c( ~E

~
)/Sm. at large transverse distance

(x ))1). We have previously shown for hard-edged
square gain and density profiles that free modes
(lim„~u„) 0) contained in the spectrum of Eq. (2)
tend to compensate for excess noise arising from bound
modes (lim„u„=0) which are marginally bound [5].
However, the case of a hard-edged profile is not a realis-
tic feature of plasma XRL's. We consider an example of
a more realistic smooth profile below.

Using Eq. (3) and assuming that the spontaneous emis-
sion is 5-function correlated in space [3,5], we may write
for the electric-field correlation function

(E (r, )E*(r,)) = y (c„(z)c*(z))u„(x,)u*(x, )
n, m

II. MODAL PRELIMINARIES
n, m

XB„u„(x
&

)u *(x2), (4)

Our starting point for the modal analysis is the paraxi-
al equation in one transverse dimension for the slowly
varying wave electric-field amplitude E„with frequency
component co [3,5]:

2id, —h(x—)+ig(x) E (x,z)

4vrkP, „(x,z), —

where k is the free-space longitudinal (or parallel to z

where B„=f u„u *dx is the overlap integral,
C, =2(tr/1n2)' (N2/DN)fikbcoD/(ab ) [6], N2 is the
upper-level population with degeneracy gz, and the
fractional population inversion factor AX/N2
=[1 g2N, /g, N2] is —assumed constant. Additionally, c
is the speed of light, A~D is the full width at half max-
imum atomic linewidth for a Doppler profile, and b is a
lasing medium (vertical) transverse scale length. We
define the coherence function as the absolute value of the
complex coherence factor [7]

p(x, , x~;z) = (E (x, ,z)E*(x~,z))
[(E (x„z)E„*(x„z))]'~[(E (x2,z)E*(x2,z))]'~2 (5)
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For example, p equals the fringe visibility in a two slit in-
terferometer with equal slit intensity, i.e.,
(E (x, ,z)E*(x, ,z)) =(E (x~,z)E*(x~,z)).

For partially coherent sources the coherence function
is near unity for very small transverse separations
~xz —x& ~

and drops to zero for large separations. A
coherence length x, is defined as the value of ~x2

—x, ~
at

which p has dropped from unity to some characteristic
value. To be more precise, we choose this characteristic
value of p based on the conventional example of an in-
coherent disk radiator. For a one-dimensional incoherent
source of half-width a the coherence function at a dis-
tance I. has been calculated from the van Cittert-Zernike
theorem [7—9]: @=sin(p)/p, where p=ka ~xz —xi ~/L
According to the usual convention, we define a (normal-
ized) coherence length (x, /a ~x, ) as the distance
~xz

—xi ~

over which p drops from unity (at x =0) to
sin(1) =0.8415. In the case of the incoherent disk source
x, =I./ka —= 1/F, where F„ is the Fresnel number in
the x direction.

The choice of a one-dimensional transverse scale length
a requires further elaboration. We associate a with the
scale length of the (horizontally) exploding foil plasma at
the peak of the ionizing laser pulse (or near peak gain) for
the following reason. In the horizontal direction the elec-
tron density appears to be well approximated by a
sech (x ) profile, but the profile in the vertical transverse
direction (or across the line focus) more closely resembles
a square profile. By comparing square and smooth
profiles, we expect that refractive defocusing should
greatly improve transverse coherence for the latter class
of profile. An important question that arises is when does
the horizontal transverse dimension predominantly deter-
mine the degree of horizontal coherence which appears to
benefit most from refractive defocusing. Certainly, this
occurs before the foil plasma has expanded appreciably
since the resulting coherence pattern must resemble the
coherent output from a thin (vertical) slit which varies
only with slit thickness. Later in time as the plasma con-
tinues to expand horizontally, the vertical transverse di-
mension will begin to have an important effect on hor-
izontal coherence, and a two-dimensional transverse
treatment is preferred. Here, we continue with a one-
dimensional transverse analysis for simplicity, bearing in
mind the possible importance of vertical effects on hor-
izontal coherence at later times.

III. MODAL STUDY WITH REFRACTION:
FINITE GEOMETRY

n=0, 1,2, . . . ,

while the associated transverse eigenfunctions take the
form of conAuent hypergeometric functions as 2 ~~.

The general requirement for a bound mode is that
lim& Im(E„) (0, leading to only several bound modes
at most for current XRL experimental parameters (see
Table I). By contrast, the number of modes ng in a hard-
edged (square profile) laser scales as [3]
2F, /Imln[F, /(1+ii)]], giving typically several hundred
bound modes. Clearly, the coherence length would be far
greater for a smooth profile than for a square profile, if
we were to consider only the bound-mode contribution.
The key question becomes to what extent does the in-
clusion of free modes [limz Im(E„)=0] affect this
conclusion.

To consider this question, we first show how the free
modes compensate for anomalous intensities arising from
loosely bound modes as previously shown for the square
profile case [5]. The bound and free modes are obtained
by numerically relaxing the eigenmodes of Eq. (2) for a
square profile into the corresponding modes of the
sech (x ) profile and by using a refiecting boundary condi-
tion at x = A. A useful method to this end is to first relax
the square profile into a sech (x ) profile as follows:
h(x), g(x)~(1 E)f(x,e)+e—sech (x), where @~1and

0, ~x~)1+@

f(x, F. )= sin z ~( x —1 —e)
1 —e ( ~x

~
( I+ e (7)

In Fig. 1 we display several examples of the transforma-
tion function f(x, e) as e is varied from zero (square
profile) to unity (smooth profile). We then solve (by the
shooting method) the transverse eigenvalue Eq. (2) at
each incremental step in e using the eigenvalue for the

centrate on a sech (x) profile instead of the parabolic
profile considered in detail in Ref. [3] because it possesses
both the physically realistic properties of going to zero
smoothly as ~x ~

~ ~ and of being rounded near x =0. In
addition, this profile is mathematically convenient be-
cause (i) the bound-mode eigenvalues are analytically
known in the case of an unbounded geometry, and (ii) the
integrated area under g(x) coincides with the square
profile. The eigenvalues are simply [10]

E„=—p [1+4iF, ( 1+i il ) ]
' (—n + —,

'
) ]

In our previous study with square transverse profiles,
we concluded that the inclusion of free modes (or stand-
ing waves) was essential to reliably model coherence and
intensity for moderate values of gain-length product
(goL ( 10). To introduce and define the free modes used
in the analysis, we imposed refiecting boundaries at
x =+A and chose A substantially larger than a laser
transverse dimension in order to minimize the depen-
dence of our results on the actual location of the bound-
ary. In this section we follow this same procedure for a
smoothly varying transverse profile. We choose to con-

A, (A) n, (cm ') a [pm} F, goL

Ne-like Se
Ni-like Ta

206
45

3 5X10~o
2.0X10 '

200
75

4880 101
2356 168

16

TABLE I. XRL parameters for current coherence experi-
ments at Lawrence Livermore National Laboratory. For Ne-
like Se the quoted gain-length product is the saturation value
[27], which is less than the maximum measured value of
g()L =26.
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Re(E„)] free modes and the one marginally bound mode.
For larger gain-length product the intensity compensa-
tion from free modes is reduced to the point that the total
intensity becomes dominated by the bound-mode intensi-
ty. In this case, the excess noise is not further reduced by
cross correlations but persists as previously predicted
[4,5].

In Fig. 4 we compare coherence profiles for the square
2and sech (x) profiles. The improved coherence for the

sech (x) profile is due mainly to the fewer nuinber of
bound modes in the system. This trend can be under-
stood from either a geometrical optics or modal
viewpoint. In the former, the loss of modes is due to re-
fractive defocusing, which bends rays away from the las-
ing medium, whereas the latter attributes the improved

0.8

0.6

0.4

0.2

~ ~ ~

H

~ ~ ~ ) ~ ~ ~
$ ~ ~ ~ I ~ ~ ~

1.2 ~ ~ ~ ~ $ ~ ~ I ~ ( ~ ~ ~ ~
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0 ~ ~ E ~ I ~ ~

0 04 0.8 1.2 1.6

0.8

IG. 4. Shown are the coherence functions vs normalized
transverse position x for the square (dotted-dash line) and
sech (x) (solid line) profiles for two values of gain-length prod-
uct goL with I', =100, g=10, and 3 =5.5.

0.6
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0
-25 -15
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(b)

15

~ ~ ~ ( ~ ~ ~ ~ ) ~ ~ ~ ~

sech (x) profile2

25

coherence to an effectively reduced region of maximum
gain which limits the number of high-gain transverse
modes possible. In general, refraction contributes
significantly in discarding many of the bound modes re-
sponsible for degraded transverse coherence [3].

Our strategy of numerically evolving each square
profile mode (bound and free) directly into an eigenmode
of the sech (x) profile is time consuming and not well
suited for a parameter study of coherence in current
XRL experiments. Moreover, our finite-boundary pro-
cedure will bear some dependence on both the position
and nature of the boundary which we seek to avoid. In
the next section we develop a method for simplifying the
role of the continuum on XRL coherence and eliminating
any possible boundary effects in our analysis.

0.8

~ W
Ch

0.6
W

0 4 c

0.2

-25 -15 15 25

FIG. 3. Shown are the compensated (heavy solid line) and
uncompensated (solid line) normalized intensity profiles for the
square (a) and sech (x) (b) profiles. In both figures, I', =0.5,
g=0, goL =0.1, and 3 =25.

IV. MODAL STUDY WITH REFRACTION:
UNBOUNDED GEOMETRY

A. Algorithm for A —+ 00

Rather than deriving detailed features of the free-mode
portion of the spectrum which are associated with a
bounded geometry ( A ( ~ ), we aim in this section to ex-
tract only those necessary features of the continuum
which have a bearing on transverse coherence. Our start-
ing point is Eq. (2), where the refiecting boundary is
moved to infinity ( A ~ ~ ). Bear in mind that our modal
formulation with a refIecting boundary condition is
identified with standing waves and not traveling waves
emanating from a localized source region. Both descrip-
tions are mathematically equivalent as 3 ~~ for a com-
plete set of basis functions. We assume that a complete
set consisting of bound modes and standing waves is at
hand in the modal formulation for a refracting medium
(see Ref. [5] for a detailed discussion of spectral com-
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DE=
—i (/E A,.

i (/E A,.
e

u~( A;)
uE(A, ) —i

E

u~( A;)
u~( A, )+i

E (9b)

Thus, uz(x) is determined for all x provided uz(x) is
known for x ~ 2, .

A dispersion relation follows from Eqs. (8), (9a), and
(9b) by imposing a refiecting boundary condition on the
transverse field, i.e., uE( A ) =0,

pleteness for a squarelike gain medium). We define an in-
termediate boundary at x = A, such that both g(x) and
h(x) are much less than unity beyond A;. We assume
that the continuum solutions can be obtained numerically
in the central region (x ~ A;) by treating the eigenvalue
E„as a continuous variable E. In this way, uz( A,. ) and
(d/dx)uE(A;) are readily gotten by integrating Eq. (2)
from x =0. In the outer region (x ) A, ) the plane-wave
solutions to Eq. (2) are used:

uF(x) =DFe' +H~e (8)

From the continuity requirement on uE and uE =duE/dx
atx=A;, wefind

uE(A;)
uz( A; )+ — tan[ V'E ( A —A; ) ]=0 .

E
In the limit as 3 —+ ~, it is straightforward to show from
Eq. (10) for the case of free modes not in resonance with a
bound mode that Re(E'~ ) = mn.—/A and
Im(E'~ ) =F, /A, where m is a large integer and
Im(E'~ '((Re(E' ) is used [11]. Thus, the free-mode
dispersion relation simplifies to the usual form for a free-
space wave in a large box when the "energy" far exceeds
the "potential" barrier.

The normalization of the free states is determined by
the requirement

A

VE X dX —1
0

where vE =NEuE and NE is the normalization constant.
Using Eq. (8) and taking A very large yields
NE=(2DzHz A ) '~, which has the familiar form of a
box normalization for standing waves. The normaliza-
tion for the bound modes N„ is defined similarly, al-
though a numerical evaluation is required.

Having described the essential features of the continu-
um, we now proceed to evaluate Eq. (4) for the electric-
field correlation function:

(E (x),z)E (X2 z)) Cl ' g B, u (x()u (X2)(e —1)+ g BE,E'uE(xl )uE'(x2)(e
n, m E E'

iz(E„—E*)/2 iz(E —E )/2+ g B„~u„(x,)ug(X2)(e " —1)+ g B@„uF(x()u„*(x2)(e " —1) . ,
n, E E, n

where the first expression on the right-hand side is the bound-bound (b b) contributio-n, the second term is the free-free
(f-f) portion, and the last two terms are the bound-free (b f) and free-boun-d (f b) components, -respectively. Upon
defining Pz =E' and using

1 ~ 1 fo (12)

in the limit as A ~ oo, cf. Eq. (10), we may rewrite Eq. (11)as follows:

(E„( xz)E*( Xz2)) =C, . g F„N„N u„(x, )u*(x2)
n, m i(E„E*)—

o o (eiz(P P' )l2 1)
— up(x) )u p (x2)+

2 dladP'Fp p2' Prnax Pmax
' i (P P ) DF(p)Hg(p)(D g(p )Hg(p ) )

iz(P —P )/2

+—g N„ f df3Fp „
n

iz(P —P ) /2

DE(p)~E( p)
(13)
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where

F = f dx g(x)u (x)u, (x), a, a'=n or /3 .
0

(14)

Two important features stand out in Eq. (13). First,
the free state normalization factor 1/(D&~ziII@zi ) is seen
from Eqs. (9a) and (9b) to have a pole near the bound-
mode dispersion relation v„( A; ) = iv„'( A; )/P„, which is
obtained from Eq. (10) by assuming (by definition of a
bound mode) that Im(E„)(0 in the limit as A~oo.
This resonance phenomenon becomes particularly prob-
lematic for high effective Fresnel numbers F, where the
resonance is quite sharp and thus difficult to treat numer-
ically. The evaluation of Eq. (13) proceeds by first solving
Eq. (2) for the eigenfunctions up to x = A,. and then per-
forming the P integrations with sufficiently small grid
spacing in order to satisfactorily resolve the continuum
resonances. An additional caveat is that A; must be tak-
en sufficiently large so that spurious structure on each
continuum resonance can be avoided. This additional
structure closely resembles near-field Fresnel diffraction
ripples and results from effectively truncating the gain
and refraction profiles for too small a choice of A, This
phenomenon generally occurs for effective Fresnel num-
bers exceeding several hundred and is ameliorated by in-
creased density parameter q or choosing larger A;.

B. Spectral cuto6'

To choose a value of /l, „ it is helpful to bear in mind
that for large /3, the free modes approximate standing
plane waves with transverse wave numbers also equal to
/3. Thus, their propagation angle relative to the laser axis
is characterized by tan '(/3/k). The natural choice of
P,„ is that at which the propagation angle of the wave
becomes large ( = —,

' rad). Such a choice naturally leads to
a complete description of all radiation consistent with the
paraxial approximation made at the beginning of the
analysis. However, such a large choice for /3, „makes
the numerical evaluation of Eq. (13) difficult.

There are two practical considerations which could
lead to a choice of a more manageable (or smaller) value
of /3, „. The first is based on the experimental setup for
viewing or utilizing the laser. Instruments such as spec-
trometers, beam pattern cameras, or interferometers
viewing a laser usually have a small acceptance angle,
typically 1 —50 mrad. To calculate what such an instru-
ment would measure, we need to keep only eigenfunc-
tions whose corresponding propagation angles are less
than the instrument acceptance angle. Another more
general choice for P,. „ is to consider the expected angu-
lar width of the radiation pattern emitted by the laser.
For example, a constant gain and density XRL with large
Fresnel number produces a beam of characteristic angu-
lar width equal to the laser width over its length
( =2a /L ). For the more realistic case of strong refrac-
tion, the width of the radiation pattern is characterized
by a refraction angle Pz =co, /co= (F,i))'~ /(ka ) I12].

The refraction angle Pz is a key quantity in optical
waveguide theory and in geometrical optics treatments of
XRL propagation; it is defined as the exit angle of a re-

C. Weakly bound modes and excess noise

The modal resonances become particularly sharp as a
new bound mode is formed which occurs when either F,
is increased or r/ is reduced. From Eq. (6) we can specify
precisely when this occurs (F„r/» 1):

F, =(2n+1) i), n =0, 1,2, . . . . (15)

For F, less than g, no bound modes are present so that

fracting ray which starts out along the axis of symmetry
of a long XRL with infinitesimally small angle relative to
the z axis. In fact, we have determined by analyzing the
modal wave spectrum through Fig. 2(b) that the continu-
um resonance coincident with the bound modes occurs
very close to the transverse wave number corresponding
to a refraction angle. This strong correspondence be-
tween refraction angle and modal resonance suggests that
we identify the maximum transverse wave number with
the exit angle P,„(times k) of the single ray that
traverses the refracting medium from corner (x = 1, z =0)
to corner (x = 1, z =L) as shown in Fig. 5, thereby assur-
ing that the resonances occurring in Eq. (13) are always
contained within the range of the /3 integration. In more
physical terms, we choose to retain only those wave func-
tions corresponding to rays which principally traverse
the region of gain guiding along the entire length of the
laser, taking into account their refractive properties
through Pz. This prescription is well suited for our pur-
poses at hand: a strongly refracting environment with a
moderate to large gain-length product in which the angu-
lar distribution indeed sharply decreases beyond a refrac-
tion angle. For the special case of a nonrefr acting
(geometric) medium or a refracting medium with small
gain length, extended tails on the angular distribution
may give a large contribution to the radiation intensity in
the near field, i.e., near the end of the laser. For such
cases it would be desirable to impose instead a cutoff
based on the angular acceptance of the detector.

Because the sech (x ) profile goes to zero only when
x ~ ~, the above prescription requires modification to
ensure that the modal resonance is always contained
within the range of /3 integration in Eq. (13). For exam-
ple, a ray which starts out along the axis of symmetry
with an infinitesimally small opening angle "exits" the
medium at x =xo with angle less than Pz by the factor
tanh(xo). As mentioned above, we choose to include in
practice only those eigenfunctions that correspond to
rays which are contained within xo =+1 along the whole
length of the laser. For the cases of strong refraction we
have in mind, P,„ turns out to be only slightly larger
than Pz tanh( 1), which means that our adopted cutoff' for
/3 as graphically illustrated in Fig. 5 will fall well short of
the modal resonance at /3=(F, r/)' /a. To circumvent
this occurrence we choose to make the replacement

,„/tanh( 1 ), which effectively increases the
range of /3 integration in Eq. (13). We emphasize that
this feature is only an artifact of the infinite transverse ex-
tent of the sech (x) profile unlike the case of a truncated
or localized profile considered previously, i.e., a hard-
edged square profile [5].
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/ bound mode and its underlying free-mode resonance, cf.
Fig. 2(b), this efFect translates into large overlap integrals
for the free modes and a correspondingly large f fin-ten-
sity. We find that a very significant degree of cancella-
tion among the various intensity components, i.e., b-b,
f f, b-f, an-d f b, o-ccurs. For example, Figs. 6(a) and
6(b) display a total intensity profile and its various com-
ponents, showing just how extreme the cancellation is in
a refracting medium. Obviously, the modal approach in
this case falls far short in providing a desired one-to-one
correspondence between a physically intuitive laserlike
mode and a particular mode of Eq. (2), owing to the
strong cross correlation between modes. In this sense,

410 i ~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ s ~ I ~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ s

2 3

z/LR~OZ(q/Fe)
lx 10

FIG. 5. Shown are the minimal (solid line) and maximal
(dotted-dash line) ray trajectories and indicated respective open-
ing angles p;„and p,„, in a sech~(x) refracting medium with
I', /g =4 and goL = 10. The intermediate trajectory (heavy solid
line) defines the path of a ray which exits the medium with angle

PR tanh(1), where PR
.=—co~, /co is the refraction angle.

0

-1x 10

~ H

-2x 10

-3x 104.
a b f

the intensity and coherence profiles are determined com-
pletely by the free modes. As F, is increased or g de-
creased, successively new bound modes are born from the
continuum. We have encountered difficulty in calculat-
ing the correlation function for parameters, i.e., F, and g,
in a small neighborhood of the condition described by Eq.
(15). For example, the required high degree of cancella-
tion between bound-mode and free-mode contributions to
Eq. (13) is not obtained and the resulting correlation
functions appear unphysical [13]. Possible explanations
include insufficient numerical grid resolution and inap-
propriate use of Eq. (12) in employing the continuum lim-
it near a free-mode resonance. Regardless of the exact
nature of this problem, the parameter space in which
such difficulties arise is comparatively small and straight-
forwardly avoided in practice. In cases where we care to
examine the correlation function for such problematic
parameters and avoid these difficulties, we can resort to
the finite geometry method of Sec. III, which by design
follows exactly each mode, bound or free, for any value of
F, and q.

The phenomenon of excess noise has a somewhat
diA'erent manifestation for a smoothly varying profile
compared to a square profile. In the case of a square
profile our attention centered around removing excess in-
tensity at large transverse distances x ))1 [5]. This is
also of concern for the refracting medium, cf. Fig. 2(b),
but we now often encounter in addition a robust increase
in amplitude of the (normalized) bound eigenfunction
~v„~ )) 1 for x (1, particularly for large F„which com-
plicates further the implementation of the modal ap-
proach. Because of the strong coupling between the

-4x 104 ~ ~ ~ I ~ ~ ~ ~ I s M ~ I ~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ L
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FIG. 6. (a) Bound-bound (b b), bound-free -(b f=b f+f b), ---
and free-free (f-fl intensity contributions to Eq. (12) vs trans-
verse distance x for I', =100, q=2. 75, and goL =5. (b) Total
intensity is displayed; note the required amount of intensity can-
cellation by comparing the intensity scales in (a) and (b).
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FIG. 9. Shown is the normalized modal coherence length x,
vs horizontal Fresnel number I'„ for q=50 and gain-length
product goL =10, 15. Also shown is the ray-optics scaling law

[Eq. (23}j for coherence length divided by 2.8 to agree with the
modal value ofx, at F =80, goL =10.

g max

80

'9

F goL
(16)

which agrees with the ray-optics treatments of XRL in-
tensity in a parabolic medium [12,14]. In Fig. 10 we
display this reduced gain versus g for several values of
goL and F . For current XRL experiments with ¹

like Se at 206 A, a minimum a of 200 pm with q=100

a significant fraction of the output is coherent. For the
sech (x ) profile, we can estimate an (unnormalized) inten-
sity scale length LI by calculating the transverse distance
over which the intensity is reduced by 1/e from its on-
axis value due to gain narrowing and refraction. For
F, &)g, the intensity profile is strongly dominated by the
lowest-order even-parity bound eigenfunction due to gain
discrimination, giving Lt =a sech '

[ 1/exp[(F, /r) )'
—1] 'I. As we approach the strongly refracting regime
(F,~q), the free modes begin to dominate the intensity
profile and we must include all modes in order to deter-
mine xl. In this manner, we are able to quantify the de-
gree of transverse coherence.

At this point we can summarize very succinctly the in-
dicated trend toward improved coherence: a decreasing
refraction length L„=—a/P~ =L(F /goLri)', or length
along which a ray stays within the lasing medium before
bending out, is associated with enhanced coherence be-
cause of stronger refractive defocusing. However, anoth-
er important quantity to consider is the coherent energy
output at the end of the laser. Unfortunately, the
stronger refraction responsible for enhanced coherence
may also cause a rapid deterioration of on-axis intensity.
From Eq. (6) we note that the strongest growing bound
mode (n =0) has the following reduced gain for r) » 1:

' 1/2

FIG. 10. Shown are the (fractional) maximum modal gains
possible vs density parameter q for gain-length product
goL = 10 (dotted-dash line), goL = 15 (solid line), and three
values of Fresnel number F .

and goL =15 near saturation gives F„=320 and a gain
reduced by only 10%. However, the associated coher-
ence length is quite small, or less than 0.01. A direct ap-
proach toward improved coherence is to reduce a. For
example, by narrowing a to 50 pm so that F =20, the
coherence length is greatly improved (x, =0.5), cf. Fig.
9, but the gain of the strongest mode is now reduced by
57%.

The decrease in maximum growth with increasing re-
fraction does not completely describe the dependence of
on-axis intensity on refraction. In particular, the overlap
integrals B„entering Eq. (4) for the intensity tend to in
crease rapidly with refraction. The coherent power is ob-
tained by integrating the intensity (c /8n )( ~E (r)

~ ) over
both transverse directions, i.e., x and y, up to a respective
coherence length. As described in Sec. II our basic physi-
cal model consists of a vertical gain profile which is near-
ly Aat and with scale length b much larger than the hor-
izontal (rounded) gain profile scale length a. Thus, op-
timal transverse coherence is associated with the horizon-
tal direction. According to our model assumptions, the
vertical coherence length is small compared to the verti-
cal intensity scale length. Applying the van Cittert-
Zernike theorem in the vertical direction gives a vertical
coherence length L, =b/F, where F =kb /L is the
vertical Fresnel number. In addition, an implicit summa-
tion over the y transverse eigenfunctions in evaluating
(c /8m )( ~E (r)

~
) introduces an additional factor of

F~/m which simply corresponds to an estimate for the
number of modes in the vertical dimension [15]. Thus,
the vertical integration over intensity is trivially accom-
plished with use of the definition of C, below Eq. (4), and
our calculation of coherent power e8'ectively reduces to a
one-dimensional transverse problem. Two additional
considerations are the inclusion of gain narrowing in C&

through the prescription b,co~htol+goL, and a sensi-



4358 PETER AMENDT, RICHARD A. LONDON, AND MOSHE STRAUSS 47

1000

Li

O

100
W

QJ

W

W0
U R

10

a ~ ~ ~ ~ ~ ~

~r(=50; Modal Analysis

@=50;Scaling Law [Eqs.(18, 27)]
—4—&=10; Modal Analysis
—.-—&=10;Scaling Law IEqs.(18,27)]

10

Fresnel Number F
X

~ ~ ~ ~ ~ a
I~I

=15

100

tion, frequency, and time. The intensity discussed in the
modal analysis, i.e., the electric-field correlation function
evaluated at identical positions r, =r2 [see Eq. (4)], is

equivalent to the angular integral of I . The specific in-

tensity is found by solving the radiative transfer equation
along ray trajectories. The angular distribution is given

by the specific intensity of the various rays passing
through a given location. Ray trajectories, generally
curved due to refraction, are determined from the eikona1
equation [8]. The specific intensity characterization used
here does not contain phase information, which can be
included in more complete geometric optics treatments
(see the second paragraph of Sec. VC and Ref. [16]).
However, we believe that the angular distribution of the
specific intensity implicitly contains sufhcient informa-
tion to estimate the coherence length as discussed in Sec.
VC.

B. Incoherent disk-source model

FIG. 11. Shown is the coherent power vs Fresnel number I'
for goL =15 and g=10, 50 in Ni-like Ta based on a modal

analysis and a ray-optics scaling law [Eqs. (18) and (27}].

ble choice for X2/51V: =2.
In Fig. 11 we display the coherent power in Ni-like Ta

versus Fresnel number for goL =15, and q=10, 50. We
find evidence for a critical Fresnel number (F =25 for
il = 50) below which the coherent power sharply de-
creases as F is reduced. Below this value of Fresnel
number, stronger refraction serves only to degrade the
coherent power. Consequently, a reliance on increased
refraction for improved coherence has its limits, and we
may consider multipassing architectures with spatial
filtering as a possible means of improving coherent out-
put below this optimal regime.

V. SCALING LAW FOR COHERENCE BASED
ON GEOMETRIC OPTICS

A. Introduction

Using the modal analysis, we have calculated the
coherence properties of x-ray lasers for a broad range of
parameters. In this section, we consider an alternate
framework in order to understand the variations of
coherence length and coherent power with input parame-
ters, and to the results, particularly to larger Fresnel
number E and smaller density parameter g, for which
modal calculations are dificult. The framework is based
on a geometric optics model, in which coherence is relat-
ed to the angular distribution of radiation.

We review elements of the geometric optics treatment
of x-ray laser propagation [12]. The radiation is charac-
terized by the specific intensity I„defined as the amount
of energy crossing a unit area per unit time, per unit solid
angle, and per unit angular frequency. The specific inten-
sity is generally a function of space, propagation direc-

P, = f I dcodQdx dy . (17)

To find P„we add a second transverse dimension to the
model as in Sec. IV. We denote this direction as the vert-
ical or y direction and ascribe to it a characteristic half-
width b. We define the coherence area as 3,—:L,„L, ,
where L, and L, are the coherence lengths in the x and

y directions, respectively. This definition of coherence
area, in conjunction with the definition of L, as the point
at which the coherence function reaches =0.84, yields a
very conservative measure of coherent power. A useful
alternate definition of coherence area is discussed by

In order to motivate a geometric optics formulation of
coherence length, we discuss a simple incoherent disk-
source model applied to a laser with constant gain and no
refraction. We assume that spatially uncorrelated spon-
taneous emission occurs from a disk at one end of an
elongated medium having half-width a, cross-sectional
area A„and length L. The laser medium only acts to
amplify the specific intensity according to a solution of
the radiation transfer equation I =S exp[goL], where
S=(2hn~ /16m. c )(N2/bN) is the spontaneous-emission
source function, and we have assumed that the
amplification is large (exp[goL]»1). The frequency
dependence of the specific intensity is due to the variation
of gain over a narrow line profile, which is due mainly to
thermal motion of the lasing ions in x-ray lasers. Assum-
ing that the phase of the electromagnetic waves propa-
gates as in free space, we calculate the transverse coher-
ence length at the output of the laser from the van
Cittert-Zernike theorem [7—9]. For a rectangular-
shaped source region, the coherence length (in dimen-
sional units) is L, =1/[k(a/L )], as earlier introduced in
Sec. II. Detailed wave optics calculations for nonrefract-
ing (i'd=0) square profile lasers using the modal method
give coherence lengths in good agreement with this sim-
ple formula [3,17].

The coherent output power is defined as the power
passing through a specified coherence area 3, :
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angle. We have again assumed that the amplification is
large. We calculate hP for radiation emerging from the
center of the laser at x =0 since the intensity peaks at
this position. To be definite, we take b,P as the exit angle
of the ray whose gain length is reduced by unity from the
maximum gain-length ray. The specific intensity is thus
reduced by 1/e from the maximum on-axis value. The
implicit equation for this ray is

dsg s =goL —1 . (20)

We call the ray satisfying Eq. (20) the bounding ray. The
variation of gain along the bounding ray is included via
the known transverse gain profile, i.e, the sech (x) func-
tion, and the ray trajectory found from the eikonal equa-
tion in the paraxial approximation [8]:

d x d 1nn(x)
GX

(21)

where n(x)=[1—co, /co ]' =[1—Pi, sech (x)]' is the
index of refraction. To determine b,P we first solve Eq.
(21) for all ray trajectories and then apply Eq. (20) to find
the particular trajectory on which the intensity is reduced
by 1/e at z=L compared to the on-axis intensity. The
exit angle of this particular ray is b,P. We can obtain an
analytic result by making the approximation
(hP/Pz ) sinh (L/LR ) «1, which turns out to be
equivalent to approximating the sech (x ) profile by a par-
abolic function. The result is

2L6$=2$i, goLz sinh
L~

2L
L

—1/2

(22)

where Lz is defined before Eq. (16). Substituting Eq. (22)
for b,P into Eq. (19), we have

L, 1 L
X

a 2F L~

—3/2

L
X sinh 2

L

1/2
—2

L
(23)

1 L
2i/2F„Lq

L /L~gg, L e (24)

so that the coherence length grows approximately ex-
ponentially with length due to defocusing by refraction.
The range of validity of Eq. (24) can be seen by consider-
ing the condition on b,fig~ above Eq. (22). For the
strongly refracting limit (L &)Lz ) this condition can be
expressed as goL~ )&2, which sti11 allows a broad and
useful range of parameters. Experience with ray optics
indicates that the inequalities need only be satisfied

In the nonrefractive limit (L «L~ ), Eq. (23) reduces
to x, =(goL/3)' /F, which is the usual square profile
result now multiplied by a term proportional to (goL )'~ .
This latter factor describes an eA'ective narrowing with
gain length of the transverse region responsible for high
output. In the strongly refracting limit (L ))Lz ),

—3/2 P, =L,„L, AAf I„dco . — (25)

Using b,A=[4b/L]b, g, we readily find the same result
for P, as in Eq. (18) for the simple disk-source model
without refraction or gain variation. The transverse
geometry has again dropped out of the expression for
coherent power. In the partially coherent case the
coherent power scales quite strongly with gain length.

In the highly coherent liinit (L,„»LI„),Eq. (17) be-
cornes

P, -=LI„L,»b, A fI dco . (26)

moderately in order for Eqs. (22) and (24) to remain quite
accurate.

We have studied the sensitivity of Eq. (23) [through Eq.
(20)] to an arbitrary number y of e-folding lengths of
specific intensity in defining b,P. We find a mild depen-
dence on y through the relation x, ~x, /v'y.

In Fig. 9 we compare the coherence length estimated
with Eq. (23) to the modal results. The analytical result
has been divided by a constant ( =2.8) chosen to match
the modal results at g=50, I„=80, and goL =10. The
need for this correction factor may be due to a di6'erence
in the shape of the coherence function for the sech (x)
and parabolic profile and the choice of the I/e intensity
fallofF for defining b,P. There also may be some systemat-
ic error in the modal analysis for large Fresnel numbers
involving incomplete cancellation between free and
bound modes. Nevertheless, the scaling law gives the
correct order of magnitude and reproduces the variations
of the coherence length quite well for large Fresnel num-
bers. For smaller Fresnel numbers, where only a few
modes contribute to the intensity, the ray-optics descrip-
tion appears inaccurate. This is not surprising because
the failure of ray optics is expected to occur for small
Fresnel number [20]. We do not believe that the
di6'erence at small Fresnel number is a result of the para-
bolic approximation. It appears from Fig. 9 that a wave
optics treatment such as the modal approach is necessary
to reliably treat coherence for Fresnel numbers less than
about 30 when g) 50, as in current experiments. For
larger Fresnel numbers, the geometric optics description
as embodied in Eq. (19) may be used to estimate coher-
ence. A more accurate geometric optics treatment,
which treats the imaginary and real parts of the index of
refraction on an equal footing, may prove promising
[16,21,22]. To estimate the coherent power we assume
(nonrefracting) square gain and electron density profiles
of width b in the y direction as discussed at the end of
Sec. IV.

In each transverse direction two limiting cases exist:
the partially coherent case, in which the scale length for
the (angle-integrated) intensity (LI) is larger than the
coherence length (L, ), and the highly coherent case, in

which the coherence length is larger than the intensity
scale length. We assume the partially coherent case for
the vertical direction (LI ))L, ), while considering both
cases for the horizontal direction x.

In the partially coherent case LI ))L, , we approxi-
mate P, from Eq. (17) as
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To obtain an analytic estimate, and in keeping with the
approximation made in deriving Eq. (22), we use a para-
bolic profile to estimate the intensity scale length
LI =a(2/goL& )'~, which is valid for L ))L~ and

goL& )2 (see Ref. [12]). Using Eq. (22) for b, P and
evaluating the frequency integral as in Eq. (18), we find
from Eq. (26)

N2 A'ALOD

bN Qg I„

goL
ge '
2L

sinh
R

2L
L

2
m51n2

1/2

E. Maximum coherent power at saturation

For practical applications such as x-ray holography,
the coherent energy output of a laser is important. Using
Eqs. (18) and (27), we can estimate the coherent power as
plotted in Fig. 11. Given a small-signal gain coefficient
(go ), we want the end of the laser to barely coincide with
the onset of gain saturation, since the coherent power will
then grow exponentially with gain length along the entire

0
length of the laser. For a 45-A nickel-like tantalum laser
with standard parameters of a =b =75 pm and g=150
(see Table I), we estimate a maximum saturation gain
length of about 20 and coherent energy outputs on the or-
der of one pJ in 100 psec. Such output is not large
enough for holographic applications in biology and larger
gain-length products are therefore desired.

To create a laser with large gain length and increased
coherent output, we need to consider some details of gain
saturation. By gain saturation we mean the reduction of
the gain coefficient caused by stimulated emission
transferring significant population from the upper state of
the laser to the lower state. This happens at large gain
length when the amplified radiation field has become so
strong that the stimulated emission rate is comparable to

(27)

In Fig. 11 we have plotted the coherent power using Eqs.
(18) and (27) in their respective limits. Comparison with
the modal coherent power shows good agreement, partic-
ularly in the predicted location of the onset of declining
coherent power from excessive refraction. The ray-optics
results are systematically lower than the modal predic-
tions at low Fresnel number due to an apparent underes-
timate of b,P; this feature is also evident in Fig. 9 for
small Fresnel number.

The transition from partial to high coherence occurs
when L, =LI . This condition can be expressed in terms
of a critical Fresnel number for high coherence F, . In
the case L »LR and goL„&2, we evaluate F, by equat-
ing the coherence length given in Eq. (24) with the inten-
sity scale length a(2/goL~ )' discussed below Eq. (26),
giving F, :—rlgoL/[1n(4g)] . This critical Fresnel num-
ber represents an optimal condition simply because a
maximum coherence length is achieved without degraded
coherent power. The optimal coherence criterion F=F„
derived here by geometric optics methods, is identical to
the criterion for good coherence derived from a wave op-
tics analysis using only bound modes [3].

other rates. When the saturation gain length is exceeded,
the growth of intensity becomes linear rather than ex-
ponential. To extract the maximum coherent energy, we
propose configuring the laser such that the coherence
fraction approaches unity at saturation. This avoids sa-
turating the laser with unwanted incoherent radiation.
As we show below, the increased coherence length caused
by refraction is accompanied by a filtering of such
unwanted radiation. Therefore, the saturation gain
length is increased and more coherent power can be ex-
tracted.

To determine the saturation gain length, we introduce
a line mean intensity J, defined as the average of the radi-
ation intensity over angle and frequency, but weighted by
the line profile function g(co):

J—: f I g( co )d A d co,
1

(28)

where the line profile obeys the normalization

J des it (co)= 1. The stimulated emission rate is

R, =16~ JAz(c /2hco ), where Az is the spontaneous-
emission rate (or "Einstein A coefficient"). We evaluate
Eq. (28) using the ray solution for I„,the steepest-descent
approximation for the frequency integral, and a solid an-
gle factor for the angular integral

r

S
4~

e '"EQ/QG (29)

exp(G„, )

G 3/2
sat

~E.„,
go QF AES

(30)

where F = 1 corresponds to maximum coherence, G„, is
the saturation gain-length product, and
S= [1—g2N, /g, N2] ' is a dimensionless source.

For the parabolic profile, we solve two simultaneous
equations: the optimal coherence condition, i.e., F=F„
and the saturation condition J=J„,. From Eqs. (22) and
(29), we find the following implicit equation for G„,:

G
e "' k 1 n E

(G„~i —$G„) ) gobs QF g 2 AS
1/2

sinh [2/] (31)

where g=ln[4g], and g,b, is the obserued gain strength of

where G,„ is the maximum gain length as a function of
angle at a particular exit position, and S is the source
function. The saturation mean intensity is estimated by
equating the stimulated emission rate to the total exit
rate E,„, from the upper laser state excluding stimulated
processes: J„,=(2hco /16~ c )E,„,/AF. The emission
rate E,„,generally includes collisional rates in addition to
the spontaneous rate AE.

We now look for the maximum coherent power at satu-
ration, and the laser configuration to achieve such power.
For a square profile, the optimuum condition, i.e.,
LJ, =L,„, is F= 1, since LI =a and L, =a/F. Using
AQ=4ab /L, the saturation condition reads



4362 PETER AMENDT, RICHARD A. LONDON, AND MOSHE STRAUSS 47

25

24
U

23

~+
U

22
O

~ ~

21
@=200,g b 3cm

20 a ~ ~ a ~ ~ ~ ~ I

10

a a ~ ~ ~ ~ ~ ~ I

100 1000

Vertical Fresnel Number F

FIG. 13. Shown is the optimal saturation gain-length prod-
uct 6„,vs vertical Fresnel number F~ for g = 100, 150, 200, and

observed gain g,b, =2, 3 cm ' in Ni-like Ta.

the lasing medium after allowing for refraction through
Eq. (16). In Fig. 13 we display the solution of Eq. (31) for
G„, in Ni-like Ta for the 4d ~4p ' transition at 45 A
for several values of g and g,b, as the vertical Fresnel
number I is varied. We have determined the quantity
E,„t/Az =9. 1 based on simulations of a 40% Ni-like Ta
x-ray lasing plasma with an electron (ion) temperature of
800 (430) eV and electron density n, =2X 10 ' cm [23].
We find that gain-length products up to G„,=25 are per-
mitted in the optimal case indicated (F» =1, g,b, =2
cm ', rI=200), as compared with G„,=23 for the square
profile, cf. Eq. (30). For current experimental conditions
with b =75 pm, F =100, g,b, =3 cm ', and g=150, the
maximum gain-length product is about 22. The corre-
sponding coherent output energy is now on the order of
10 pJ in 100 psec, which falls short by nearly two orders
of magnitude if we demand a resolution of 300 A. Fur-
ther improvement is possible if we legislate that the gain
profile be strongly refracting in the vertical direction in-
stead of squarelike, as we have assumed throughout this
work. We thus require that F„also satisfy the optimum
condition F=rigoL/[ln(4r))], giving a =b. After mak-
ing the replacement b,Q=(2b, g) in Eq. (29) and repeat-
ing the procedure leading to Eq. (31), we find that
G„,=26 for g,b, =2 cm ' and g=150. The physical
characteristics of such an optimized Ni-like Ta laser are
an output of nearly 0.5 mJ in 100 psec, a length of 13 cm
and half-width of about 100 pm, and a coherence length
of about 70 pm. This optimized coherent energy output

now compares favorably with calculated requirements for
coherent energy generation in holographic imaging stud-
ies of biological specimens at a useful resolution of 300 A
[2]. However, the operation of a single-stage amplifier at
such an optimum level of performance necessary for
holographic studies may prove unrealistic. Thus, a mul-
tistage or multipass architecture with spatial filtering
should be considered as a practical alternative to an opti-
mized single-stage x-ray laser.

VI. SUMMARY

Theoretical modeling of transverse coherence in XRL's
is of current interest because of ongoing experimental
efforts to study and optimize coherence for eventual holo-
graphic applications. As a further step in understanding
the basic properties of transverse coherence, we have ad-
vanced the modal approach as a sensible alternative to
wave optics simulations and propagator methods
[24,16,25]. In this paper, we have extended our previous
work on transverse square profiles and considered the im-
portance of refraction in smoothly varying media on
transverse coherence. Although a smooth profile is found
to render the modal approach awkward to implement, we
have succeeded in determining the degree of coherence
for a wide range of parameters that is experimentally
relevant. We have found that current XRL designs are
not expected to be very coherent, as confirmed by recent
measurements [26]. We have also shown that refraction
helps a great deal in improving the coherence length, but
only up to a certain point after which the coherent ener-

gy output rapidly drops. For the idealized profiles con-
sidered, we have identified an optimal operating range for
a single-stage laser to achieve high coherent power.

Some unexplored phenomena may adversely affect
coherence. For example, x-ray refraction by density Auc-

tuations or driver-induced nonuniformities in single stage
XRL's are suggested topics of future study. Use of mul-

tistage or multipass architectures may prove helpful to-
ward relaxing the strict operating conditions associated
with our optimized single-stage x-ray laser design.
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