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Collisional frequency shifts and line broadening in the cryogenic deuterium maser
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We study the spin-exchange frequency shifts and line broadening of the deuterium maser in the tem-
perature range from 0 to 10 K. We consider both a version operating on the P etr-ansition at B=3.0 pT
and one operating on the P-5 transition at B=3.9 mT. For the first transition, a comparison is made
with our earlier results based on the degenerate-internal-states approximation and its first-order correc-
tions [E. Tiesinga, H. T. C. Stoof, B. J. Verhaar, and S. B. Crampton, Physica B 165dk166, 19 (1990)].
We find cusp structures due to channel thresholds and also resonance structures, both of which disap-
pear almost completely after thermal averaging in the temperature range considered.

PACS number(s): 42.52.+x, 34.90.+q, 67.65.+ z

I. INTRODUCTION

Atomic-hydrogen masers have been developed to study
the hyperfine structure of all three hydrogen isotopes
[ 1 —3 ], but only hydrogen (H) has been used for precision
measurements other than hyperfine-structure determina-
tions near room temperature [4]. The radioactivity and
relative scarcity of tritium severely limit its use. The
lower deuterium (D) hyperfine frequency (=327 MHz)
relative to the hydrogen frequency ( = 1420 MHz) makes
it difficult to provide a stable rf-cavity Q value high
enough for D-maser oscillation using a room-temperature
cavity [3]. Of the two D transitions that have frequency
minima at some magnetic field, the I3 F. transition (adop-t-

ing the conventional notation aPy5eg in order of increas-
ing energy; see Fig. 1) is contaminated by the a-5 transi-
tion detuned by only 40 Hz, while the P-5 transition re-
quires a stable and homogeneous 3.9-mT field, which is
difficult to provide over the large experimental volumes
used near room temperature [3].

Recent pulsed magnetic-resonance experiments on
atomic deuterium gas near 1 K by Hardy and co-workers
[5—7] suggest that D-maser oscillation can be achieved at
low temperatures. Lifetimes against recombination were
as long as 30 min, despite the tendency of D to dissolve in
the liquid-helium film coating the experimental cell. The
Q value of their superconducting rf cavity is high enough
for D-maser oscillation using a state-selected atomic
beam like those used in several low-temperature H-maser
designs [8—10]. Uniform and stable magnetic fields near
3.9 mT can be maintained by superconducting magnetic
shielding. Investigations of electron-spin-exchange col-
lisions [ 1 1 —15 ] in the D maser would be interesting in
view of the current disagreement between experiments
measuring collisional frequency shifts in H masers and
theoretical predictions of the shifts due to hyperfine-
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FIG. 1. Energies of the deuterium hyperfine states as a func-
tion of magnetic field.

structure e8'ects during electron-exchange collisions
[16,17]. Including such effects predicts collisional fre-
quency shifts that are not canceled by cavity-pulling
effects [18]. Moreover, they have potentially distinctive
signatures because of their dependence on the H-level
populations. Reanalysis of the earliest room-temperature
experiment [19] in terms of these signatures to measure
the hyperfine-induced shifts reveals a discrepancy of
about 2 standard deviations. A more recent room-
temperature experiment was designed to be particularly
sensitive to the density-dependent frequency shifts pro-
portional to the sum of the populations of the two H lev-
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els coupled by the oscillation [20]. Theory fails by 6 stan-
dard deviations to account for the magnitude of the mea-
sured shifts, which even have an opposite algebraic sign.
Preliminary attempts [6] to measure frequency shift and
broadening cross sections at cryogenic temperatures also
disagree with theory by several standard deviations. In
all three experiments the measured shifts are so small rel-
ative to the resonance linewidths and other sources of fre-
quency shifts that it is dificult to estimate whether there
may be contributions that only mimic the signature of the
hyperfine-induced collisional shifts. Consequently, it
would be interesting to compare theory to experiment in
a related system in which both the theoretical predictions
and competing systematic effects may be different. For
this reason, we have calculated the hyperfine-induced fre-
quency shifts for both the i3 @and f-3-5 transitions in a D
maser. A preliminary report on part of the present work
was presented previously [21]. It was restricted to the f3 e-
transition and was based on the degenerate-internal-states
(DIS) approximation and its first-order correction. In the
present paper, we also carry out full coupled-channel
(CC) calculations. In Sec. II the method of calculation is
explained. The frequency shift and broadening cross sec-
tions of the P-e maser are studied in Sec. III. The appear-

ance of cusps and resonances in the calculated quantities
is discussed in some detail. In Sec. IV we discuss the P-5
maser and in Sec. V we present some conclusions.

II. MKTHQD

dt PKK
coll

=P~~'n X GvPvv

p, (—idaho, —I, ) .

Here, n is the density, the summation is over all spin
hyperfine states, and ~ and ~' are the hyperfine states in-
volved in the maser transition. The quantities h~, and

I, are the collisional frequency shift and line broadening,
respectively. The rate-constant-like quantities 6 con-
tain information on the spin-exchange collisions in the
form of S-matrix elements:

Our starting point is the time evolution of the single-
atom spin-density matrix of an ensemble of deuterium
atoms undergoing two-body spin-exchange collisions,
which may be obtained [17] from the quantum-
mechanical Bogoliubov-Born-Kirkwood- Yvon (BBGKY)
hierarchy:

2I + 1

I
th

(2)

c,& =Q(1+5,&)(1+5 )(1+5,,i)(1+5, ),

with v =fik/p the relative velocity of the atoms in the in-
itial state, k the corresponding wave number, 6„ the
Kronecker delta, and the large angular brackets denoting
a thermal average. Greek indices stand for hyperfine
states and l is the orbital angular-momentum quantum
number. The summation over m& has already been car-
ried out. The S'-matrix elements describe the spin-
exchange transition amplitude between spin states Ia/3]
for a fixed value of l. In view of Fermi-Dirac statistics
the two-particle (anti)symmetrized spin states are corre-
lated with odd (even) I.

The S-matrix elements follow from the Schrodinger
equation for a D+D collision, where the Hamiltonian in-
cludes intra-atomic hyperfine-interaction terms as well as
interatomic singlet and triplet potentials as described in
Refs. [22] and [23]. These potentials diff'er slightly from
those of our previous papers on the collisional effects in
the H maser [16,17] and the D maser [21]. However,
only minor changes are expected for the final cross sec-
tions, taking into account the values of the singlet and
triplet scattering lengths for both H+H and D+D,
which all change by less than 1%.

Nonadiabatic corrections to the adiabatic Born-
Oppenheimer approximation are taken into account by
using the reduced deuterium atomic mass in the D+D
Schrodinger equation. This procedure can be justified in
the same way as for H+H scattering [16,17].

III. THE@-e MASER

The frequency shift and line broadening due to spin-
exchange collisions are directly given by Eq. (1). We
rewrite this equation in terms of the frequency-shift cross
sections k; and the line-broadening cross sections o.;:

~~c n ( v )th[~0(Pea Ppp)+~1(Pee+Ppp)

+~2Pua+ ~3P +~4Pss+ ~5Pg ] & (3)

I,=n (v )a [ao(P Ppp)+ai(P +Ppp)

+a2P a+a3Pi i +a4Pss+asPg]

with the thermally averaged quantities

(4)

X(T)=(vk(E))/(v ),„,
(T)=( (&))/( ), (6)

with E=—,'pv the center-of-mass collision energy.
In Fig. 2 the results of CC calculations are shown as a

function of collision energy for the four cross sections A,o,

X2, and A.4 of the P-e maser at 8 =3.0 pT. The
remaining cross sections are omitted for clarity because
they approximately satisfy X2= —A.3/2=A, &, which is ex-
act in the DIS approximation at 8=0 T, as discussed
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FIG. 2. Full coupled-channel results of frequency-shift cross
sections for the P-e maser as a function of collision energy E.
Negative values of A, ; are plotted —

A,;.

below. It turns out that the agreement with our prelimi-
nary results in Ref. [21] is good, the discrepancies being
generally less than 1%. One exception is connected with
the cusplike discontinuities in A, 2 and A,4 at low energies,
to which we return below. Another exception is the
quantity k, in the higher part of the energy interval con-
sidered in Fig. 2, where it is very small.

The calculations in Ref. [21] were not based on full CC
calculations, but instead on the DIS approximation and
its first-order corrections. The DIS approximation is

I

based on the assumption that the hyperfine splitting can
be neglected in the calculation of the S-matrix elements
in Eq. (2). This offers the possibility to express the latter
in singlet and triplet scattering phase shifts, which are
easily obtainable by means of an elastic scattering calcu-
lation:

2i5 2ie''P +'
I

I 2 I+1/2 (7)

Po (P, ) standing for a projection operator projecting on
the singlet (triplet) subspace, k[ &[ and k[ s[ the initial
and final wave numbers, and k and average wave number
determined by k =(k [&s) +k[ &[ )/2. The physical
significance of the DIS approximation is illustrated by
Eq. (7). The hyperfine interactions are responsible for the
spin structure of the initial and final states Iag] and

I y5], respectively, but are neglected during the collision.
As pointed out in Ref. [21], introducing this approxima-
tion and neglecting the small infIuence of the magnetic
field on the spin states, one finds A,

&
and A,4 to be zero,

while A.2= —
A,3/2=A, 5, i.e.,

bco, =n (v ) [Xo(p„—p&&)+F2(p +p&&
—2p )] .

Finite values of A,
&

and A,4 can be obtained by treating
the inhuence of the hyperfine splitting on the collision in
first order. In classical terms, we thus take into account
the finite hyperfine precession angles of the electronic and
nuclear spins during the collision. As pointed out in Ref.
[24], a first-order Born-type treatment of the hyperfine in-
teractions in a collision leads to a divergent space in-
tegral. A more subtle approach, derived in the same pa-
per, replaces the spatial integral by one over a finite
volume enclosing the interatomic interaction region, sup-
plemented by an integral over the surface of this volume.
The result is a correction of the form

AS[ s[ [ p[
= ( [1 5J ~[(P~ Po)( V e)(P~ Po)~ [af3] }d[ s[ [ p[A (k ) (9)

with V" the sum of the two hyperfine-interaction terms for the two atoms and e the average hyperfine energy of the ini-
tial and final two-atom spin states. Equation (9) has the form of a simple spin matrix element multiplied by a quantity
6' computable by elastic scattering calculations:

rO

b, '(k)= —. k f (uo —u', ) dr+ —,'(So —S', ) W' 0'(kr), 0'(kr)
4i 2/k o r=r 0

(10)

where m is the deuterium mass, 8'is a Wronskian, 0 is a
Hankel-like free outgoing wave with asymptotic behavior
e'"" [, and the DIS singlet (triplet) radial wave func-
tions uo (u', ) are normalized so as to have the outgoing

2S'
part —S+0' with Sz =e . Note that the intermediate
Eqs. (10) and (11) in Ref. [16], as well as (53) and (54) in
Ref. [17],should contain an additional overall minus sign
on their right-hand sides to be in agreement with the fur-
ther equations and the final calculated cross sections in
the same paper.

The above agreement of our present full CC calcula-
tions with the DIS (plus first order corrections) results in
Ref. [21] confirms the validity of the previous simplified
approach for systems as H+ H and D+ D. It is of in-
terest to point out that the situation is completely
different for the frequency shifts in the cesium atomic
fountain, in which case the first-order corrections turn
out to be so large that the unitarity limit is violated [25].
Also, in our previous work on Na+Na cold-atom col-
lisions [26] we have found a similar breakdown of the
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simplified approach. As noticed in Ref. [16], a DIS plus
first-order corrections approach is not able to describe
the cusps occurring in the energy dependence of some of
the cross sections due to threshold e6'ects. Whereas the
exact S-matrix elements are analytic functions of each of
the channel wave numbers, a nonalytic dependence ap-
pears as soon as the channel wave numbers —and partic-
ularly that of the channel that opens up at the threshold
considered —are expressed in the collision energy. The
resulting nonanalytic dependence on energy does not fol-
low from a DIS plus first-order corrections approach. In
this connection it is interesting to note that the cusps are
absent in Xo and k&. This is understandable on the basis
of the Wigner threshold law [27], which predicts a
discontinuous energy derivative of S-matrix elements
only for I =0. Indeed, it follows from Eqs. (2) and (5) and
the fermion character of the D atoms that only odd par-
tial waves contribute to A,o and A,

In contrast with the H maser (for B =0), where inelas-
tic S-matrix elements do not contribute to the collisional
frequency shifts and broadenings for symmetry reasons,
inelastic contributions are significant for the D maser. It
turns out that, for low energies, a.o, o „and o.

2 are the
only rates in which these inelastic contributions are im-
portant. For higher energies, o.o is completely deter-
mined by them, while inelastic components in other cross
sections are negligible.

The cross sections in Fig. 2 have been obtained by sum-
ming over partial waves as indicated in Eq. (2). It is of
interest to point out that individual partial-wave contri-
butions contain a resonance structure that is almost in-
visible in the total sum. In Fig. 3 the partial-wave contri-
butions to A, 2 as a function of collision energy are shown.
The calculations have been continued up to energies of
Elk~ = 100 K since, later on, temperatures T ~ 10 K will

be of interest and energies several times k~ T are needed
for convergence of the thermal averaging. We see two
clear resonance structures. One occurs for l =6 at 9.9 K.
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Actually, it consists of three overlapping resonances with
comparable widths that are only one hyperfine splitting
apart. A similar resonance structure is seen for l =7 at
60 K.

The origin of the resonances can be understood in
terms of an extrapolation of singlet bound states into the
continuum. Treating I as a continuous variable (as in

Regge theory [28]), the energy of a vibrational level U can
be traced as a function of /(l+1). Starting with an l =0
rotational bound state and increasing l continuously, the
bound-state energy obtained by solving the radial equa-
tion increases until the threshold is reached. Above
threshold, following Ref. [29], we determine for each
fixed value of l the energy where the phase shift changes
by m.. In Fig. 4 we give the "trajectories" in the E-
versus-l(l + 1) plane for the U = 19, 20, and 21 vibrational
levels of the deuterium singlet potential. The crosses are
the physical bound states, while the circles denote the
resonance energies, both at integer l values. The energies
of the l =6 and 7 resonances that follow from Fig. 4 are
in agreement with the position of the I =6 and 7 reso-
nances, visible in Fig. 3. The above-mentioned three
l =6 resonances are a manifestation of a single singlet
resonance, but are shifted according to the energies at
which various scattering channels contributing to A, 2 are
in resonance. The three l =7 resonances overlap com-
pletely and are not separately visible, as their width is
much larger than the hyperfine splitting. From Fig. 4 it
also seems plausible that the broad structure for the l =2
partial wave between 2 and 5 K is a resonance related to
the U =21 trajectory. In both the total 2.2(E) and A,4(E)
curves in Fig. 2 this structure is visible as a "wiggle" in
the same energy interval.

In Figs. 5 and 6 the CC results for the A, and o. quanti-
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FIG. 3. Partial-wave contributions to A, 2 as a function of en-
ergy showing resonances for l =6 and 7.

FIG. 4. "Trajectories" of vibrational levels U =19, 20, and 21
of the singlet potential in the E-vs-l(l+1) plane. The crosses
denote bound states and the circles denote resonances both at
integer (physical) values of I. The line indicated by "barrier"
shows approximately the height of the centrifugal barrier for a
given l. The exact abscissas for l =6 and 7 are indicated by the
dashed lines.
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FIG. 5. Thermally averaged frequency-shift cross sections A.;
of the P-e maser at 8 =3.0 pT as a function of temperature.

FIG. 7. Thermally averaged frequency-shift cross sections A, ;
of the P-5 maser at 8 =3.9 mT as a function of temperature.

ties as a function of temperature are given. For tempera-
tures T & 10 K integration over energies up to 100 K and
partial waves l ~ 8 are necessary. After thermal averag-
ing the resonances are no longer visible and the cusps due
to threshold effects also disappear, except for a weak
bend in A, 2 at T =30 mK, i.e., equal to twice the hyper6ne
splitting.

IV. THE P-5 MASER

The frequency shift of this maser is again rewritten:

~ro ="& U & h~~o~P55 Ppp~i+~liP55+Ppp'i

+ A 2P~~+ A3Pyr +A4Pq~+ Agpg ]

with a corresponding expression for the line broadening
I, with A.; replaced by o.;. The nonaveraged cross sec-
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FIG. 6. Thermally averaged line-broadening cross sections
cr; of the P-e maser at 8 =3.0 pT as a function of temperature.
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FIG. 8. Thermally averaged line-broadening cross sections

o; of the P-5 maser at 8 =3.9 mT as a function of temperature.



47 COLLISIONAL FREQUENCY SHIFTS AND LINE BROADENING. . . 4347

tions X; and o.
,
- show cusps and resonances with the same

origin as for the f3 c-maser. Again, they disappear after
thermal averaging. In Figs. 7 and 8 the cross sections A, ,
and 0; as a function of temperature are shown. For tem-
peratures above twice the hyperfine splitting, the cross
sections A,; with i =1, . . . , 5 are smaller than A,o by
several orders of magnitude. This can be understood on
the basis of the DIS approximation, which is valid at
these temperatures. It predicts A, ,

' =0 if i =1, . . . , 5 for
the same (symmetry) reason, explaining the vanishing A,

&

and 2 cross sections of the H maser at zero magnetic
field [16,17].

V. CONCLUSIONS

in singlet elastic scattering. Even after summation over l,
the energy dependence of the cross sections shows cusp
structures related to the passage of thresholds in the vari-
ous scattering channels.

In the case of the P-5 maser, the DIS approximation
predicts that A,o is the only nonvanishing frequency-shift
cross section. The rigorous CC results show a corre-
sponding strong dominance of A,o relative to the remain-
ing A, ; quantities. The values of the latter are certainly
substantial, however, and do provide a potential testing
ground for theoretical predictions of collisional frequency
shifts. The cusp and resonance structures occurring in
the energy-dependent cross sections again disappear after
thermal averaging.

The approximate results on the basis of the DIS ap-
proximation plus first-order corrections given in our pre-
liminary report for the /3-e maser are confirmed by the
rigorous CC calculations of the present paper. Before
summation over partial waves and thermal averaging, the
calculated cross sections show pronounced resonance
structures, which can be explained in terms of resonances
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