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Perturbations of optical solitons

J. N. Elgin*
Department ofMathematics, Imperial College, London SR'728Z, England, United Kingdom

{Received 11 November 1992)

A perturbation theory is developed to investigate the effects of various perturbations on soliton propa-
gation down an optical fiber. The theory is formulated within the "natural" framework of inverse
scattering theory. The perturbative effects of third-order dispersion, the soliton self-frequency shift,
bandwidth-limited gain, periodic modulation, and stochastic fluctuations are analyzed in detail. In each
case, the analytic results presented here are in excellent agreement with simulations carried out here and
elsewhere.

PACS number{s): 42.50.Rh, 42.81.Dp

I. INTRODUCTION

The purpose of this article is to develop a perturbation
theory to investigate aspects of soliton propagation down
a nonideal optical fiber. In so doing, the advantages of
using a "natural" mathematical framework based on in-
verse scattering theory will be emphasized [1,2]. The
equation under study is the perturbed nonlinear
Schrodinger equation, whose unperturbed form is known
to be integrable using the techniques of inverse scattering
theory [1—3]. In particular, it has the exact single-soliton
solution, Eq. (2) below. Additional perturbations modify
this in two distinct ways.

(i) The soliton parameters, which were constants of the
motion in the unperturbed case, now vary with distance
down the fiber. If the perturbation is small, this change is
adiabatic [4,5].

(ii) The perturbation is responsible also for the genera-
tion of a background radiation field, which is superim-
posed on the soliton pulse. Depending on the nature of
the perturbation, this can exhibit quite complicated reso-
nance features [6—13].

The propagation of optical pulses down a nonideal
anomalously dispersive single-mode optical fiber is de-
scribed by the perturbed nonlinear Schrodinger equation
[2]

. Bq Bq 2q~q~'= F . —
Bx

is its velocity relative to a convenient reference frame.
We will be interested in the case when FAO, but is as-

sumed to represent a small perturbing inhuence on the
propagating soliton. Many different forms for F have
been considered in the literature, including the following.

(i)

a' q

Bt
(3a)

e real, representing the perturbing effects of third-order
dispersion in the fiber [6,7, 10,14].

(ii)

F=ieq fq/',a
Bf

(3b)

8 qF=I q+y at2 ' (3c)

I,y real, representing soliton propagation through a
doped fiber offering bandwidth-limited gain. For simple
gain (loss), y is zero and I is positive (negative)
[14,20—23].

(iv)

e real, causing a self-frequency shift in the propagating
soliton [15,16]. A more general nonlocalized form for F
has been considered elsewhere, but is not discussed here
[17—19].

(iii)

F= A(x)q, (3d)
q is the complex field envelope, x )0 is the propagation
distance down the fiber, and I; is retarded time; all vari-
ables appear in normalized form. Perturbing influences
are represented by the complex term iF, with appropriate
choices for F. With F set to zero, Eq. (1) is integrable us-
ing the techniques of inverse scattering theory [1,2]. In
particular, it has the exact single-soliton solution

—2i $1 t +4i ( g'I —q I )x
q(x, t ) =—q, =2q, e ' ' ' sech[2g, (t —4g, x )],

(2)

hereafter denoted q, . The parameters rii and g'i charac-
terize the soliton; 2g, is its height and inverse width, 4g,

where

A (x ) =1 —G g 5(x nx,)—
n=1

(3e)

is periodic in x with period x, . A(x ) has zero mean
when G = exp(1 x, ). This form for F represents soliton
amplification (loss) when 1 )0 ( (0), with discrete loss
(gain) at locations x =nx, [8,9,11,24 —26, 13].

(v) Stochastic perturbations [27—33]: There are actual-
ly two sources of stochasticity which usefully can be
termed homogeneous and inhomogeneous by analogy
with similar distinctions made in other branches of non-
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F=o(x, t), (3f)

or in density Auctuations in the fiber material, where

linear optics [30]. In the inhomogeneous case, the sto-
chasticity-is a feature of the input pulse to the fiber, and
does not derive from any agency in the fiber itself. Then,
F=0, and the soliton parameters remain fixed. However,
the stochastic element present in q(O, t) results in an un-
certainty in the value of these fixed parameters, which are
known only in terms of a probability distribution [28,29].
In the homogeneous case, the stochasticity originates in
some random property of the fiber itself, such as in spon-
taneous emissions in a fiber amplifier, where

Then, the required form for 5q(x, t ) is

=a' a
5q(x, t)= —2y +y f+q, f*,

dt
(7)

where y= —q, 'Bq, /Bt. The algorithm for finding 6q is
first to solve Eq. (5) for the associate field f(x, t ), then to
find 5q(x, t ) from this, using Eq. (7).

Equation (5) appears intractable at first sight, since an-
alytic forms are not generally known for P;, etc. Howev-
er, in the perturbative limit considered here, these Jost
function components can be approximated by their "soli-
tonic" expressions, and the integrals can then be evalu-
ated using standard techniques. For example, with F
given by Eq. (3a), the last term in Eq. (5) becomes

F=io (x ) Poq iP—, +P~Bq Bq
at at' (3g)

'd f ie ~q
16'

gt3 4 jt
In either case, o. is an appropriate stochastic term. For
purely dispersive fiuctuations, Po, P„and Pz are real, as in
o (x ). The evolution equations for the soliton parameters
are now described by a set of Langevin equations, possi-
bly of multiplicative type [30]. These examples will be
discussed in detail in Sec. III.

We now quote two results, which should find useful ap-
plication in studies on Eq. (1). The first result is exact
and is true for any form of the perturbation F, which
need not be small. It states that, under the action of the
perturbation iF, the infinity of conserved quantities C„,
n =0, 1,2, . . . , associated with the unperturbed equation,
evolve according todC„„q= J [F",F](2iL)", dt . (4)

X. is the integro-differential operator associated with the
squared eigenfunctions obtained from the linear eigenval-
ue problem connected with Eq. (1), and is defined in Sec.
II. An equivalent form for Eq. (4) was first reported by
Karpman and Maslov [4].

The second result describes the generation of the radia-
tion field, and generalizes recent work by Gordon [8]. In-
troduce an "associate field" f, which evolves according to
the equation

e
—2i gt

4~ . . 2+ 2
F 11+F22*

91

Xdt dg, (5)

where the asterisk denotes complex conjugation, and
P;, g;, P;, g; are components of Jost functions which arise
in the linear eigenvalue problem associated with Eq. (1)
[1,2]. A solution of Eq. (5) will be required subject to
f(x =O, t)=0. The action of the perturbation iF on the
soliton q, generates a radiation field 6q(x, t) so that, at
any location x,

leading to a simple linear inhomogeneous evolution equa-
tion for f, which can be solved using standard (Fourier)
transform techniques.

Equations (4), (5), and (7) are proven in Sec. II and are
the main results of this article.

It is interesting to note what is happening in the use of
the algorithm described to find 5q( xt), since of course
one could find an evolution equation for 5q directly by
substituting Eq. (6) into Eq. (1); on linearizing, this gives

. aSq a'fiq
i = +45q(q, (

—2q, 5q*+iF .
Bt2

(9)

II. THE EVOLUTION EQUATIONS

A. Background material

The difficulty arises when an attempt is made to solve this
using standard techniques, such as a Fourier transforma-
tion with respect to the t variable, since the presence of q,
results in convolution terms which prove intractable to
further analysis. Similar complicating terms are not
present in the evolution equation for f. Replacing Eq. (9)
with the equivalent equations (5) and (7) corresponds to
finding 6q(x, t) by expanding it not in terms of the stan-
dard Fourier modes exp(idiot) but rather in a basis of dis-
torted continuum modes which take proper account of
the existence of the soliton. In the language of quantum
optics, the soliton presence leads to a set of "dressed"
continuum modes. These modes are precisely the Jost
functions which arise in the linear eigenvalue problem as-
sociated with Eq. (1). The inner integral in Eq. (5) de-
scribes the manner in which F is projected onto these
modes.

The salient features of inverse scattering theory re-
quired for this article are reviewed briefly in the next sec-
tion, after which the main results Eqs. (4), (5), and (7) are
proven. In Sec. III, the specific examples noted in Eqs.
(3) are examined in detail. A few concluding comments
are made in Sec. IV.

q(x, t ) =q, +oq(x, t )

with

5 ( qtO)= .0 (6b)

A knowledge of the basic techniques of inverse scatter-
ing theory is assumed, and is summarized in Appendix A.
Here, we identify those features required in connection
with Eqs. (4), (5), and (7). The notation used throughout
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is the one defined in Refs. [1,2], with one modification:
the roles of the independent variables x and t to denote
space and time are interchanged to conform with Eq. (1).
The variable x now describes "time" (distance down the
fiber), while t denotes "space" and therefore appears ex-
plicitly in the scattering problem associated with Eq. (1)
[cf. Eqs. (Al)].

Scattering data are summarized by the coefficients a
and b (see Appendix A). Kaup [34] has shown that the
evolution equations for these quantities are

= f ~„4A'2 —~„4i0i «

C]= q (16b)

c,= J'" , Bqq* q+lql' dt, (16c)

c,= —f™g~qq* q+3qlql' q
at3 at

(16d)

C„= g [(2ig* )"+'—(2ig )"+']
m=1

and so on. Finally, we state the complementary forms for
C„ in terms of the spectral data: these are [2]

Br Bq
Bx Bx

(10) s' "ln ].—b, x d (17)

Bb Bq — Br—f p2A — p, p2 dt

f ~ Br Bq
—oo Bx Bx

Here, r = —
q *, as appropriate for Eq. (1), P = [$„$2],P,

g, and g are two-component spinor Jost functions dis-
cussed brieAy in Appendix A; and the second forms of
Eqs. (10) and (11) serve to introduce the bilinear spinors
N and k. In either case, we write this as [g,h], where
g= —

P&t/r&, and h = $2/2 for —4& and g= —
P&&Pi and

h = $2/2 for —@. Evolution equations for g and h are
quoted in Eqs. (A7), with appropriate definitions of the
auxiliary function k. A formal solution to these leads to
the relation (A8), which is satisfied by both N and 4& with
appropriate choice of k . For @, k =

—,
' a; for

k = —
—,'b. In other words,

The discrete sum gives the contribution to C„ from an ar-
bitrary ¹oliton state (throughout this article N=l),
whereas the integral denotes the contribution from the
(continuum) radiation modes.

B. Evolution equations for the perturbed system

Consider first the derivation of Eq. (4). Substituting
(14) into Eq. (10), differentiating Eq. (15) with respect to
x, then comparing coefficients of (2ig) '"+"gives

(18)

Next, we substitute for Bq/Bx from Eq. (1); this is best
done by noting that Eq. (1), together with its conjugate,
can be written in the form [2]

BX q
i (2iX „)——

q F (19)

XC&=(@+-a
2i q

qX&b=(4 ——.
2i q

(12)

(13)
(20)

where L„ is the formal adjoint of the operator X. Since

6C

(2iX )

(14)

We will require also the asymptotic expansion for lna;
this is [2]

lna =
(2 ~ g)n+1 (15)

where the coefficients C„ the conserved functionals for
the unperturbed form of Eq. (1), are given by [2]

c,= f lql'«, (16a)

In each case, X is the integro-differential operator defined
in Eq. (A9).

Equations (12) and (13) can be solved to express both N
and 4 in terms of a formal asymptotic series; from Eq.
(11), it follows that

q(2iX)"

6C„
6q'
6C„
6q

(21)

where 6C /5q, etc. are functional derivatives of the C
and since all C„ functionals commute [2], we getdC„q*= f [F*,F](2iX)" dt (22)

8X q

as required. This result is exact for any choice of the per-
turbation F, which need not be small, and does not re-
quire that the number % of solitons remains fixed.

A generalized form for the evolution equation for the
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spectral parameter b [which is simply related to the asso-
ciate field f; see Eq. (25) below] is found in a similar way.
Substituting Eq. (19) into Eq. (11)gives [35]

4—ig'b+ f [F*,F]@dt .

The first term follows using standard manipulations for
the unperturbed system, while 4& = —[p,p„pg2]
satisfies Eq. (13). The complex eigenfunction g=g+iil is
discussed brieAy in Appendix A. The spectral parameter
b(g, x) is a measure of the radiation field present in the
pulse; for a pure soliton, b =0. For a soliton input to the
fiber, q(O, t) =q, and b(0, ()=0. The last term in Eq. (23)
is the source which generates the radiation field. We will
be interested in the case when (=g is real and where 4 is
approximated by its solitonic expression. Then, the in-
tegral in Eq. (23) is the projection of the perturbation F
onto these dressed continuum modes, labeled by the pa-
rameter g, in much the same way that a spectral com-
ponent of a source F is found by projecting onto a contin-
uum mode exp(icot) in simple Fourier analysis. Indeed,
in the absence of the soliton, N = —[exp( 2igt ),0—], and
the source term is simply the conjugate of the Fourier
component of F, with (2g) the transform variable. To
make this explicit, and for later use, introduce the
Fourier operator 9' and its inverse by

f=7(f)= f e—2'&'f(t)dt, (24a)

f=&'f = f— e "'f—(k)d 4, (24b)

for any function f. Then, in the absence of the soliton,
the source term in Eq. (23) is simply
F*(g,x )

=—[V( F(,xt ))]*. Rather than work with the
spectral parameter b(g, x ), it is more convenient to intro-
duce an associate field f(x, t), such that its transform
f ( g, t ) —= 9(f(x, t ) ) is related to b ( g, x ) by

f(g, x)=—
4 0'+n'i

(25)

where g& is the soliton parameter. Simple manipulation
of Eq. (23), together with an inverse Fourier transform,
then leads to Eq. (5).

Having derived the evolution equation for the associate
field f, it remains to link this to the radiation field 5q [cf.
Eq. (6)]. This is done by using the squared eigenfunction
expansion for q (x, t ), which in its most general form
states that [2]

q= ——J ~' Pi(g;x t)+ ' P(g;x t) dg
a(g, x)

Equation (1) implies certain symmetry relationships be-
tween P and P, b and b, and a and a; these are [2]

[4»42]=Id'2 —4i ]

a(x )=a*(g), g real

b(g) =b*(g), g real .

Then,

(27a)

(27b)

(27c)

5q(x, t)= ——J '
Q, (g; x, t)1 b*(g,x)

a(g, x)

+ ~' P* (gx t) dg.
a*(g,x)

(28)

For a single soliton in an unperturbed fiber, b is zero, and
remains zero as the soliton propagates, so that 5q is zero.
The presence of the perturbation changes b in accordance
with Eq. (23), so that b is first order in the perturbing
term. To find the leading-order contribution to 5q(x, t),
we now approximate $„$2, and a by their appropriate
expressions for the single-soliton state; these are

a(g)=
i ii,—

+ii)i
e

—igt

(g —ii), t nah2 2)t),+ i',

(29a)

(29b)

~ g& —igt+4ig&x
e ' sech2 2)t .+i', (29c)

To simplify the algebra, and with no loss of generality, we
have set the (constant) soliton parameter g, =0—a
Galilean transformation eA'ects this change. Using these
results, together with Eq. (25), it is easy to show that

b, 4i=f(k «)e "'(4k' 24)' —r'»— (30a)

y2 Js(g )
2igt 2 (30b)

III. SOME SPECIFIC FORMS FOR F

A. The integrable case

Consider the choice

where y= —q, 'Bq, /Bt Inserting . these into Eq. (28) and
carrying out the required inverse (Fourier) transform
leads directly to Eq. (7).

This completes the required proofs of Eqs. (4)—(7).

N
+2i g P,(g;x, t ) — P7(g;x, t )

5C
(31)

(26)

The integral represents the contribution from the radia-
tion field 6q, whereas the discrete sum gives the contribu-
tion to q(x, t ) from a general N-soliton state. Here N = 1,
so that the latter contribution is q„while the former is
the required expression for 5q(x, t ).

where C is any one of the conserved functionals associ-
ated with the unperturbed (F=0) nonlinear Schrodinger
(NLS) equation. The addition of a perturbing term such
as Eq. (31) simply generates a new member of the NLS
family, which is itself integrable with the same conserved
densities C, as the unperturbed equation and for which
the evolution equation for b is homogeneous, with the ad-
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ditional term i(2ig) b. We therefore anticipate a null re-
sult: all C„'s should remain conserved quantities, and the
inhomogeneous contribution to the source term in the
evolution equation for b should be identically zero.

Substituting Eq. (31) into Eq. (22), and using Eq. (21),
produces

dC„ =i [C,C„ I =0,
8x

(32)

since all functionals commute. Similarly, substituting Eq.
(31) into the integral expression in Eq. (23), using Eq.
(20), and replacing one of the adjoint operators X„with
its equivalent action X on 4, gives

5C
l

5q

5C
2iXk dt . (33a)

Now use Eq. (13), noting that in the final term

[q, q*] =[5CO/5q', 5CO/5q] . Since Co and C
commute, the contribution from the final term to the in-
tegral is zero, leaving the contribution from the term con-
taining (2ig). Continuing this iterative process, the in-
tegral reduces to

i(2ig) f [q*,—q]ddt . (33b)

With g, h, and k defined by Eqs. (A6), the integrand is
(gq* —qh), which according to the first of Eqs. (A7) is
equal to Bk/dt. The integral in Eq. (33b) then reduces to
k(+ 00)—k( —oo ), which, from the definition of k and
the definitions of the Jost functions in Appendix A, is
equal to the spectral coefficient b. Hence the above be-
comes

i(2ig) b

as required. The inhomogeneous contribution to the
source term in Eq. (23) is zero, whereas the homogeneous
contribution is precisely that expected from inverse
scattering theory.

qC', = f q*, +(q(' —iraq*, dt (34)

is a conserved quantity, as first noted by Malomed [14].
With n =3, Eq. (22) produces

2 2

iqi' dt .
Qt2 Qt

c+ "f"
Bx, 2

, 2

Bq=9i&'f,(Iq I')dt (35)
i3t

(36)

using analytic forms for P;, etc. noted above. Substitut-
ing, and evaluating the integral using standard tech-
niques, then gives

so that, to order e, C3, the quantity in parenthesis, is con-
served. Similar "quasiconserved" densities —that is,
modified forms of C„which are conserved to O(e)—exist
for all further values of n &3. The proof of this state-
ment follows from the observation that b(x, g) is O(e), so
that the integral contribution to C„ in Eq. (17) is O(e ),
assuming that e is a suitably small parameter. Since
X= 1 (by assumption, that is, a single soliton), and since
Co and C& are conserved, the change in the soliton pa-
rameters g, and g, is O(e ); the proof of the statement
follows.

Consider next the radiation field. To O(e), the soliton
parameters g, and g, remain constant. To simplify the
algebra, and with no loss of generality, g, can self-
consistently be set to zero. The soliton forms for P, and

P2 are given in Eqs. (29). Similar expressions for P, and

$2 are readily deduced using Eqs. (A4) with (27). Howev-
er, since b is required to O(e), we may replace g with a/,
where a (g) =a "(g) is given by Eq. (29a).

To get the evolution equation for b, it remains to evalu-
ate the integral [cf. Eq. (23)]

a'q, ' a'q,
at' ' Bt' —

Oz02

B. Third-order dispersion
I=2ig(g +g, )Q,*, (37)

Here, I' is given by Eq. (3a). Consider first an investi-
gation of the effects of the perturbation I' on the con-
served densities C„,after which the salient features of the
generated radiation field will be discussed.

For the cases n =0 and 1, the integrals in Eq. (22) are
zero, so that Co and C, are conserved quantities (i.e., in-
dependent of x). With n =2, the right-hand side of Eq.
(22) becomes

Q3 i' Q32ef" (q(' q
q +q*

which, after a little rearrangement and judicious use of
Eq. (1), can be expressed in the form

where Q,
* is the conjugate of the Fourier transform of the

soliton q„as defined by Eq. (24a). Explicitly,
—4i x

Q, ( g, x ) =n.e ' sech
27J i

(38)

If Eq. (37) is divided by 4(g +g, ), conjugated [cf. Eq.
(25)], and the inverse Fourier transform taken, the final
term in Eq. (8) results. In other words, the contribution
(37) is essentially the inhomogeneous source term quoted
in Eq. (8). The first term written there is actually O(E )

[since b, and hence f, are O(e)] and derives from bound-
ary terms in Eq. (36), obtained when the standard "in-
tegration by parts" operation is carried out. A little care
needs to be taken with this, or else the appropriate con-
tribution

ie f q', dt .
Bt3 —8ig b (39)

Hence, using Eq. (16c), we deduce that is easily omitted. The details of the calculation are given
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in Appendix B.
Substituting these results into Eq. (13) then gives the

required evolution equation for b. Rather than quote
this, we introduce the equivalent associate field f(g, x ),
defined by Eq. (25), whose evolution equation is hence
obtained as

D(co) =co +4', —ego (45)

For notational convenience, we have introduced the
frequency variable co = —2g. Secular growth occurs
when D(co)=0, and is the origin of the observed reso-
nance peak; this occurs when

i = 4g —f e8(—f+ —2@, .
Bx 4

(40) (46)

An inverse transform produces the required evolution
equation for f,

. r)f d f . r) f ie ~Vs+lF
ax at' at' 4 at

(41)

On solving this, the radiation field 5q is obtained directly
from Eq. (7).

Consider now a discussion of Eq. (40). This remark-
ably simple equation will be shown to account for all
features noted in numerical simulations of the system
Eqs. (1) and (3a) [6,7]. The results of such a simulation
are shown in Fig. 1, reproduced from Ref. 7. The most
prominent feature is the strong resonance peak in the
pulse spectrum, which is observed to occur at a frequency
displaced from line center by an amount [6,7]

in agreement with the observation, Eq. (42), but note the
new feature of dependence on pulse intensity contained in
the higher-order second term. The asymmetric source
term induces a similar asymmetry in the spectral com-
ponents f(co, x ), as observed numerically.

For any value of propagation distance x, F will be re-
turned to zero at those frequency components satisfying
xD(co)=2rrn, where n is an integer. This accounts for
the secondary oscillations in the spectrum, and for the
observed asymmetry in those secondary oscillations
[since D(co) is asymmetric]. Finally, at line center, the
source term vanishes, and F(x,0) remains zero, which
again conforms with numerical observation.

The addition of further dispersive terms, say

1
6co

E
(42)

(47)

Moreover, these studies reveal that the peak becomes
more pronounced as the propagation distance down the
fiber increases.

The explicit x-dependent factor exp( 4i g,x—) con-
tained in g, is removed by introducing D —co +4'g~ E'6) +@co +vco (48)

does not alter things in any significant way. The disper-
sion function D(co) is now given by

+4iq)x r~ 2

F=e
Then, the evolution equation for F is

dP .D( )p+ i e77
h

7TCO

where the "dispersive function" D(co) is

1.5

Cl'U
1.0

CL
E

4l
0.5

O
LL,

0.0

(43)

(44)

As before, secular growth occurs when D(co) =0, but now
there may be more than one resonance feature.

C. Periodic amplification

~= te2r~

z=(e ""—1)/41

p =q exp [ —2I x i rP(z )], —

(49a)

(49b)

(49c)

Here, F is given by Eq. (3d). Unlike the previous
dispersive case, the perturbation causes Co (and all other
C„) to vary with x, imparting a corresponding x depen-
dence to the soliton parameters gi and gi. Evaluation of
the integral in Eq. (23) is then at best difficult, if not im-
possible. However, a change of variables to a set of
"stretched coordinates, "which correctly capture the evo-
lution of the soliton parameters, results in a situation
where the redefined functionals Co and C, are again con-
stants of the motion. In this new coordinate system, the
soliton parameters are constant to O(1 ).

Introduce

-8.0 -4.0 0.0 4.0 8.0 where the phase factor P(z ) is

P(z ) =2/, [1—(1+4I z )
'i

] . (49d)

FIG. 1. Soliton spectrum, with perturbative effect of third-
harmonic dispersion. Taken from Fig. 3, Ref. [7].

In terms of the new variables, Eq. (1)—with F given by
Eq. (3d)—becomes
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. Bp Bp
i

q
—

~
—2plpI'=— iI Bp@+27

where

z„=(e ' —1)Z4r

=nx„ I «1

4rg,+ r p —P p+2iP
cj7.

iG
1+4rz ~ P '

n =1
(50)

(5 la)

denotes (Fourier) convolution. The
er, 5 ) is fo

'on. e required 5q (or rath-
r, p is ound in the usual way from E . (7
io sr lce entofoldb nmen o o d by new variables. Equations

so iton pulse q, .
ion, to escribe the evolution of th e

We conclude this sectiontion with a discussion of Eq. (53).
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g 5(z —nz, )= g e
n=1

and introducing
—4ig zg

(56)

(57)

The first two observations are easily explained, by us-
ing

It remains to explain the feature displayed in Fig. 2(b),
where the relative heights of all resonance peaks over the
background soliton pulse are the same. Denote by g„,
the resonance frequency values satisfying Eq. (55). Let
5p(g=g„,z) denote the Fourier transform of 5p(~, z)
evaluated at g=g„, n =1,2, . . . . To first order in I, the
incremental contribution 5I(g„,z) =(P,*5P+c.c. ) to the
power spectrum is

. BF
l

az (g +g, )(1+41z)

Then, Eq. (53) reads 2 2

5I((„z)=2Gz '
lP, (g, »)l'

0'. +ni
=2Gz IP, (N„,z ) I

(61a)

(61b)

—4i(g' +g))zX 'Ie

—i[4(g +vP&) —nk ]z
e - sech

n= 00
h2

g1

(58)

where the second form holds when g„»g, . Linearity in
z is a consequence of the secular behavior of Eq. (58) at
resonance, and Eq. (7) has been used to link 5q (or rather,
5p) to f. Equation (61b) reveals that the ratio of incre-
mental power at resonance to the background power of
the soliton pulse has the same value for all resonances, in
agreement with numerical observations [Fig. 2(b)].

A vanishing of the second exponent gives the resonance
condition, Eq. (55), with an accompanying secular growth
in the spectral component F(g=g„) over distances z such
that 4I z ((1. In alternative form, Eq. (55) reads

5'„=+ +Sn(zo/z, ) —1, n =1,2, . . . ,
1

2m'
(59)

where z, is the period of A (x ), Szo is the "soliton
period, "where zo =m/(4', ), and. 2~r 5' =pig„rein—tes
5' to g through the soliton pulse halfwidth r~. Equation
(59) was first reported by Gordon [8], and independently
by Kelly [9],but see also Kaup [13]. The important point
to note is that the resonance spikes have the same origin
as those discussed in Sec. III B; only their number and lo-
cations differ.

With G set to zero (no periodic loss), all primary reso-
nances are removed. A solution of Eq. (57) for F(z ) then
indicates that, as z increases, F(z)~ asymptotes in an os-
cillatory manner to a final steady-state value. Since Co is
a constant of the motion (in the stretched variables),
there will be a complementary evolution for the soliton
parameter q1, consistent with numerical results reported
elsewhere [23].

The secondary oscillations in Fig. 2(a) are easily ex-
plained by noting that F(z ) is returned to zero [to O(I )]
for those frequency components g—:g which satisfy the
phase-matching condition

4(g +g, )z =2m.m (60)

(where m is an integer) for any value of z. As z increases,
the relative spacing between g and g +, decreases, as is
observed in Fig. 2(a).

Finally, a modulation at the soliton period Szo occurs
at the peak of the pulse spectrum, where /=0. The
modulation period (Szo) has the same value as that found
in the modulations of higher-order ¹oliton states N ~ 2.
This modulation is due to the exp( 4ig, z) term —in Eq.
(58), which can be expressed in the alternative form
exp( i vrz /4zo ). —

D. Soliton self-frequency shift

Here, F is given by Eq. (3b). In the preceding sections,
we have established the procedure to be followed to ana-
lyze the effects of any perturbation on the input soliton,
and so need only summarize the results for this next case.
The perturbation F leaves Co invariant but causes C, to
change with distance. Consequently, to 0 ( e), g &

is in-
variant, but not g&. For the single soliton input, the ap-
propriate evolution for g, is

64
Co+Ax~ p= (62)

indicating a linear change in soliton velocity. Using simi-
lar arguments to those used in Sec. III C, the soliton can
be brought to an invariant form (i.e., to rest) by an ap-
propriate change of variables. Introduce

z= t —4px

Z —X

(63a)

(63b)

7=e 9'

where the phase function P is

P=2pxt 4px (2(0+@x)—.

(63c)

(63d)

=4i pz —2p(~ —Sgox ) —ep ~p ~

Bp
87 O'7

(64)

Identifying the right-hand side here with iF, the functions
Co and C1 are independent of z for the restricted case
when the input to the fiber is the sing1e soliton p, . The
single soliton is then invariant in the sense that, to O(e),
the parameters g'0 and g, [note that go replaces g, ; cf. Eq.
(62)] remain constant. The parameter go can self-

In terms of these variables, Eq. (1), with F given by Eq.
(3b), becomes

c}2;dp ~p
Bz ()Q
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consistently be set to zero, so that Fbecomes

F=4pz + 2i pal+i cp ~p ~

Bp . . 8
a7. O'T

(65)

The radiation field is generated in accordance with Eq.
(23). It is easily checked that the contributions from the
first, second, and third terms in F to the integral in Eq.
(23) are, respectively, 16i gpzb, 0, and —8ep,*g(3$
+7g, )/15. Converting to an evolution equation for f in
the usual way gives

i = +8ipz + —e + (hp) .. af a~f . af 1 ap 4e a
z B~ 5 Bw 15 Bw

(66)

Here, h(3) denotes the convolution of the two-sided ex-
ponential function h (r) [cf. Eq. (54)] with the soliton p, .

Equation (66) has a pleasing interpretation which ac-
cords with intuition: the inhomogeneous source terms
are in the moving frame (z, r). Using the transformation
equations (63a) and (63b), the homogeneous terms can be
written in the form

. af a f
2

In a recent article [30], a distinction was made between
two types of stochasticity, which were termed homogene-
ous and inhomogeneous. The latter arises from an in-
determinacy associated with the input pulse to the fiber
q(0, t), and not from any agency in the fiber itself. The
evolution equations for the soliton parameters are deter-
ministic, only their initial values are random. An addi-
tional perturbation —such as Eq. (3c)—resulting in the
presence of an attracting fixed point in these evolution
equations necessarily reduces the initial statistical spread,
and so diminishes the stoichasticity [30]. The main
features were elucidated first in an article by Elgin [28],
then later by Gordon and Haus [29]. See [30] for a fur-
ther discussion.

In the homogeneous case, the stochasticity is associat-
ed with some random property of the fiber itself. All
fibers contain impurities, imperfections and random den-
sity fluctuations, causing small stochastic fluctuations in
the fiber refractive index. In a suitable dispersive limit,
this leads to the form for F quoted in Eq. (3g), where the
(real) random stochastic variable o.(x ) has the statistical
properties

(o (x ) ) =0, (o(x )o (x') ) =2D5(x —x') . (67)

Angular brackets denote an ensemble average. This type

bringing the description of the evolution of f back to the
"fixed" coordinate system. In this frame, the source
sweeps across the spectrum, generating f at the appropri-
ate frequencies as it does so. By virtue of the relative
movement, new frequency modes are constantly excited,
while a long tail of freely evolving modes are left behind.
This feature is observed numerically, and accords with
intuition [19]. A more detailed study of this, and of the
nonlocal problem [17—19], is in progress and results will
be reported in due course.

E. Stochastic perturbations

P(x)= f o(x')dx' .
0

(68)

(ii) The term with P& produces an uncertainty in the
soliton velocity, giving rise to a stochastic velocity incre-
ment

6V= ——f3,$(x) .1
(69)

This has the statistical properties

(6V) =0, ((5V) ) =2Df3, /x . (70)

For a single length of fiber, all solitons q, passing a given
point x will have the same value of 5V. A statistical
spread results only when similar solitons are propagated
the same distance down different fibers.

(iii) The final term with P2 generates a background ra-
diation field fiq(x, t), which is 0(/32) in magnitude, and
whose associate field f satisfies the evolution equation

a =a' a 1
i = +o(x)P2 + —o(x)P2q, .

ax at at
(71)

The proof of these statements is given elsewhere [36].
The important point to note is that the system compris-
ing Eq. (1), with F given by Eq. (3g), is tractable because
o(x) is independent of the variable t. The stochastic
variable o. can then be removed from various integrals,
resulting in a set of Langevin equations, such as Eq. (71)
above.

More generally, o. is a function of both x and t. If the
stochasticity derives from spontaneous emissions in a
bandwidth-limited fiber amplifier, the appropriate form
for Fis

BqF=I q+y +o(x, t), .
Bt

(72)

together with some suitable statement for the statistical
properties of o (x, t ). Equations (1) and (72) were ana-
lyzed in a recent article in the (unphysical) limit where
the t dependence in o. was simply ignored, so that
o.=o (x ) [30]. The object was to demonstrate that the re-
sulting Langevin equations for the soliton parameters g,
and g& were necessarily of multiplicative type, whose sta-
tistical properties need bear no resemblance to those of
the corresponding linear Langevin system obtained by ig-
noring multiplicative terms.

The more important case where o. retains its t depen-
dence has not been analyzed to date. The difhculty, from
a mathematical viewpoint, is that the t dependence in o.

precludes its removal from the various integral expres-
sions for the C„. For example, the evolution equation for
g, (obtained from the evolution equation for Co) contains

of stochastic term is fairly straightforward to analyze,
and results may be summarized as follows (see Ref. [36]
for further details).

(i) The term with Po generates an overall stochastic
phase factor P(x ), so that

i poP
q, ~e q, ,

where
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the term

f [o *(x,t )q, +c.c. ]dt . (73)

q, contains the stochastic variables g, and i), . To
proceed further, one needs a careful statement defining
the statistical properties of o (x, t ), which to date, has not
been given. An investigation of this problem, within the
general mathematical framework described in this article,
is in progress and results will be reported in due course.

IV. CONCLUDING COMMENTS
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The main results of this article, Eqs. (4), (5), and (7),
have been shown to have useful applications to all the ex-
ample considered in Sec. III, and hence validate the com-
ment expressed in the introduction concerning the use of
a "natural mathematical framework. " One might object
to this claim on the grounds that all the examples con-
sidered are in some sense trivial, since they involve the
study of perturbations around a single-soliton state.
However, similar investigations elsewhere invariably re-
quire numerical simulations because attempts to analyze
the problem using the wrong type of continuum modes
(Fourier) quickly become very involved —compare, for
example, the analysis in Sec. III 8 with that presented in
Ref. [7] on a similar study of the same problem. The
analysis here is trivial because the correct framework has
been used.

The next step will be to develop the general technique
to study perturbations of ¹oliton states; aspects of this
work is now in progress. Equations (4) hold for this more
general case, likewise Eq. (23) for the evolution of the b
field, but now a different expression for + is required, as
appropriate for the %-soliton state. The equation con-
necting 5q with f, Eq. (7), is invalid, though the appropri-
ate corrected form can be deduced from the general equa-
tion (28) once appropriate expressions are deduced for P,

x~+ oo

0
sgx

1 —i'
0

(A3)

The relationship between these defines the scattering data
a, a, b, and b:

P=aQ+bg, P= a/+—bP,
a/+—bP, g=aP+bP,

(A4)

where the latter (inverse) expressions are obtained using

aa —bb =1 . (A5)

A squared eigenfunction problem can be associated with
Eq. (1): for example, defining

h = —(t 2'(i'2 (A6)

k =
—,'(024i+0i0z)

leads to the evolution equations

ak
at

=q*g —qh,

ag
at

2i gg
—2q—k,

ah
at

=2i(h+2q*k .

(A7)

A formal solution of Eqs. (A7) leads to the relationship

+ik (A8)

where k denotes k(t~ —~), and L is the integro-
differential operator

It is a pleasure to thank S. M. J. Kelly for many useful
discussions concerning this work, and for the use of Fig.

-2.
=1

21 2rI [r ]—8, 2rI [q ]—
—8, +2qI [r ] 2qI [q ]

(A9)

APPENDIX A

aUy
+lgv, =qv2

at

aU2
i gv2 = ——q*v, ,

(A 1)

The linear eigenvalue problem associated with the un-
perturbed form (i.e., F=0) of Eq. (1) is [1,2]

Here, r = —q* as appropriate for Eq. (1), and I denotes
the integral operator

I [r ]f=I [r,f ]—:f r(t')f(t')dt, (A10)

for any function f. Note that [g, h ] is an eigenfunction
of X (with eigenvalue g) only if k is zero.

APPENDIX B

where /=/+i') is a complex eigenvalue. Jost function
solutions P, P, P, and g are defined such that

It is required to evaluate the integral

aq, aq,I=, dt, (B1)
—tgx

0

0
tax

(A2)
where g and h are defined in Eqs. (A6). The quantity k
will also be required, as will the evolution Eqs. (A7).

Integrate Eq. (Bl) by parts and use Eqs. (A7) to substi-
tute for ag/at and ah/at to give
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Q2 sic Q2

I=2(J g
—h+~ ~ (B2)

where V' denotes "other terms. " Repeating this opera-
tion twice more, similarly gives

I=(2ig) I (q,*g —
q, h )dt+ T .

However, the integrand is just Bk ldt, so that

I=(2i g) k ~+"+ 7 (B3)

Since k(+ ~ )= —k( —~ )=bl2 [cf. Eq. (A6) with
(A2) —(A4)] the final result, with g set to (real) g, is

I= —Si g b + "T . (B4)

The other terms correspond to the contribution equation
(37), which can alternatively be obtained direct from Eq.
(36), as discussed in the text.
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