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Coherence and phase dynamics of spatially coupled solid-state lasers
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We examine the mutual coherence and phase dynamics of two solid-state lasers, generated adjacent to
each other in a single Nd: YAG rod. The coupling of the lasers is varied by changing the separation of
the pump beams. A model is formulated to interpret the experimental results, and theoretical predic-
tions are obtained that are in excellent agreement with the measurements.
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I. INTRQDUCTIGN

Laser arrays have been fabricated and their properties
studied for many years. Most of these studies have been
concerned with semiconductor laser arrays. Recent stud-
ies have shown [l] that although the total light output
from the semiconductor arrays may be stable, the emis-
sion from individual elements of an array is often unsta-
ble and even chaotic, and a stable phase-locked operation
is possible only over small parameter ranges. These re-
sults indicate that it is very important to study the condi-
tions for the stable operation of coupled lasers [2,3] even
in the simplest case of two lasers, in order to develop a
thorough understanding of the factors that affect their
stability.

It has also become clear that miniaturized solid-state
lasers and their arrays are gaining importance through
potential applications and through the development of
new solid-state lasing media. There are indications that
while semiconductor laser arrays demonstrate a stable
phase-locked operation only over a small range of operat-
ing parameters, solid-state laser arrays may exhibit stable
phase locking over a much wider range of coupling and
operating parameters [4]. Therefore it is of great interest
to examine both experimentally and theoretically the
coherence and phase dynamics of two coupled solid-state
lasers. In the system studied here, we vary the coupling
between the lasers and study the mutual coherence of the
lasers as revealed in the formation of interference fringes
by the overlapped beams.

It is important to note the similarities and differences
between solid-state and semiconductor lasers. Both are
class B lasers [5], because the polarization dynamics may
be adiabatically eliminated when cw operation is con-
sidered. Thus, the lasers are well described by coupled
complex field and inversion equations. In both cases the
decay rate of the cavity is larger than that of the inver-
sion. For Nd: YACC (yttrium-aluminum-garnet) lasers
these are p, =10 s ' and y~~=4X10 s ', respectively,
while for a solitary semiconductor laser the correspond-
ing values are p, =10' s ' and y~~=10 s '. This means
that while solid-state laser dynamics may be studied with

conventional detectors, streak cameras are often neces-
sary for studies of semiconductor laser array dynamics
[l]. We have used simple p i np-h-otodiodes and a video
camera system for the studies reported here. Another
important distinction between solid-state and semicon-
ductor lasing media is the large value of the "linewidth
enhancement factor" a for semiconductors (a=3—5)
compared with a =0 for solid-state systems. This
difference makes solid-state lasers much more suitable for
phase locking than semiconductor lasers.

We have fabricated solid-state laser arrays by several
different procedures. A single pump beam may be split
into several approximately equal components through the
use of beam splitters, microlens arrays, specially designed
binary optic gratings such as the Dammann grating, and
fiber beam splitters. While we have generated arrays of
multiple lasers by all of these methods, here we report the
results of our study of the mutual coherence of two lasers
created in a single Nd:YAG rod by two parallel pump
beams obtained using beam splitters. We will describe
the experimental system in Sec. II. Section III contains
the experimental results obtained with the video camera
system. Section IV describes a model for the two-laser
system. We show that if the intensity of the two lasers is
assumed to be more or less constant, and there is negligi-
ble coupling between intensity and phase Auctuations, we
may obtain a single stochastic equation to describe the
dynamics of the phase difference between the two lasers.
The solution of the stochastic equation is the subject of
Sec. V. The Langevin equation for the phase difference y
is converted to a Fokker-Planck equation and solved in
the stationary state under the appropriate boundary con-
ditions to yield a simple expression for the probability
density of y. The visibility of the two lasers may be cal-
culated as a function of their separation and compared
directly with experiment. Several numerical computa-
tions performed with the model of Sec. IV are given and
we present a discussion of our results in Sec. VI.

II. EXPERIMENTAL SYSTEM

The experimental system for studying the coherence of
two spatially coupled lasers is shown in Fig. 1. Two spa-
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FIG. 1. Experimental system for generating two adjacent
lasers in an Nd: YAG crystal and measuring their mutual coher-
ence. The two beams overlap at the sensor of the CCD camera
which has its imaging lens removed. OC is the output coupler;
NF is the notch filter transmitting at 1064 nm; VND is the vari-
able neutral density filter.

tially separated parallel lasing beams are created in a
plane parallel cavity by end pumping a single Nd:YAG
rod with two pump beams for an argon laser. Two pump
beams are produced from a single Ar laser source by first
splitting and then recombining the beams using two beam
splitters. The YAG crystal is 5 mm in length and 5 mm
in diameter, while the entire cavity is =1 cm in length.
One end of the crystal serves as a Aat cavity mirror and is
coated to be highly reAecting at the lasing wavelength of
1064 nm and highly transmitting at 514.5 nm. The oppo-
site crystal face is antireAection coated at both wave-
lengths.

Thermal lensing [4,6] induced in the crystal by the two
pump beams is responsible for generating two separate
stable cavities. This is a consequence of the
temperature-dependent index of refraction (dn IdT
=7.3X10 K ') of the crystal, and is responsible for
the creation in each cavity of an effective positive lens
with a focal length of the order of —1 m. A second
mechanism, self-focusing, also contributes to the forma-
tion of a positive lens in the crystal, but to a significantly
lesser degree. Self-focusing is the result of the depen-
dence of the index of refraction on the intensity of the
light propagating in the material. In these experiments,
the effective lens generated by self-focusing was estimated
to be of the order of —10 m, so thermal lensing is the
dominant effect in generating a stable resonator. Howev-
er, self-focusing has the potential to be more important if
the Nd: YAG lasers were to be operated as pulsed rather
than cw lasers.

Unlike the fixed geometry inherent in coupled semicon-
ductor lasers, here we have the freedom to continuously
vary the overlap of the lasing fields by varying the pump
beam separation. Typically, both pump beams are fo-
cused in the crystal to a radius, measured at 1/e of the
peak intensity, of r =17 pm while the lasing intensity
beam radii are r =220 pm. In this study, the separation
d between the pump beam centers was always larger than
350 pm, which implies that the coupling between the
lasers is entirely through spatial overlap of their fields,

- and not through direct coupling of the pump beams. For
pump beam separations d ~ 350 pm, we find that the
thermal lensing distorts the two distinct lasing beams and
they tend to combine into a single higher-order lasing
mode rather than maintain their separate identity as
lasers.

We can determine whether some degree of coherence
exists between the two lasers by observing the far-field
output of the two lasers. As shown in Fig. 2(a), two
parallel uncoupled TEMoo lasers will add incoherently to
produce a far-field pattern similar to that of a single
TEMoo laser. In this figure the experimentally measured
incoherent sum is shown together with the profiles of the
two separate lasers. The two lasers are generated as de-
scribed above with a pump spot separation of d = 1.5
mm. Next, in Figs. 2(b) and 2(c), we show the far-field
pattern of two strongly coupled lasers, for a pump sepa-
ration 'of d=0. 60 mm. The two individual beams are
now phase locked with a phase difference of ~, and a
two-lobed far-field pattern is obtained. This pattern is
characteristic of spatially separated coherent TEM00
beams with a constant ~ phase difference and should not
be confused with a TEMO& mode pattern. In fact, if one
pump beam is blocked, a single TEMOO mode is still ob-
served. If the two beams could be made to lase with zero
phase difference, the output pattern would assume the
more desirable form of a strong central peak with small
side lobes. Although we are unable to force the two cou-
pled lasers to lase intrinsically with zero phase difference,
we can shift the phase of one beam relative to the other
by using a binary optic phase plate with a vr-phase step.

A binary phase plate was fabricated with this aim, but
it turned out to create a 3m/4 phase step instead of ~,
due to a difficulty in the etching process. However, it was
still possible to produce a predominantly single-lobed
far-field pattern with this plate. The result of insertion of
this plate just beyond the output coupler is shown in Fig.
2(d). A comparison is made of the expected and mea-
sured profiles, with excellent agreement.

To provide a quantitative measurement of the coher-
ence of the two lasers, we determined the visibility of the
fringes formed by the interference of the two laser beams.
A lens and a beam splitter produced two separate near-
field images of the output (see Fig. 1), at which point
apertures were used to select opposite beams in the two
paths. The two beams were then overlapped at a small
relative angle on the sensor of the charge-coupled-device
(CCD) camera. The pattern was digitized by a frame-
grabber and analyzed on a microcomputer to calculate
the visibility. Although the two beams propagate =4 m
in air before reaching the camera, the generated fringe
pattern is not affected noticeably by atmospheric phase
fIuctuations. The relative propagation angle was shallow
enough such that both beams traveled nearly identical
paths.

The fringes acquired by the camera-framegrabber sys-
tem were averaged over a time of =10 ms. The video
camera acquires 30 frames per second, allowing us to ex-
amine only slow variations in the visibility. An example
of a high visibility fringe pattern is shown in Fig. 3. A
line profile through the middle of this pattern allowed us
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FIG. 3. A representative high visibility fringe pattern ac-
quired by the camera-framegrabber system of Fig. 1, showing a
high degree of coherence between the two lasers.

to calculate the visibility, as will be described in the next
section. Measurements were made approximately at
twice the threshold value for the pumping.

III. EXPERIMENTAL RESULTS

~ I++I

We recall [7] that the intensity of the interference pat-
tern formed by the overlap of wave fronts from two light
sources 1 and 2 is (after time averaging)
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yz arises from an initial phase difference between the two
waves. The visibility of the fringes is deGned as
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where u& and u2 are the complex, slowly varying ampli-
tudes of the two sources and
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FIG. 2. Measured far-field output intensity. (a) Profile of the
far-field intensity for two uncoupled lasers, showing the total in-
tensity and the individual laser intensities. The separation of
the two lasers is d=1.5 mm. Solid line, total intensity; dashed
line, intensity of laser 1; dotted line, intensity of laser 2. The x
axis gives the pixel number on the CCD sensor. (b) Two-lobed
far-field intensity for two coupled lasers phase-locked m. out of
phase for d =0.60 mm. (c) Profile of the intensity for two cou-
pled lasers, showing the total intensity and the individual laser
intensities for d=0. 60 mm. Solid line, total intensity; dashed
line, intensity of laser 1; dotted line, intensity of laser 2. (d)
Two-lobed output intensity profile corrected to a predominantly
single-peaked profile by a binary phase plate. Dashed line,
theoretically predicted profile after correction by phase plate;
solid line, measured intensity profile.

If the two lasers are independent, we expect that the
time-averaged interference pattern will have zero visibili-
ty if the averaging is done over a time long compared to
the coherence time of each laser. In our case, the time
average is taken over a =10-ms period, which is long
compared to the coherence time of each separate laser
(r„h~10 IMs).

The calculation of the visibility utilizes the central five
or six peaks of the interference pattern. Samples of in-
terference patterns are shown for separations of the pump
beams of 1.8, 1.1, and 0.40 mm in Figs. 4(a), 4(b) and 4(c),
respectively. In Fig. 4(a), the two lasers are well separat-
ed, and the interference pattern yields U =0. The visibili-
ty measured increases to v=0. 91 in Fig. 4(c). The ac-
companying Figs. 4(d) —4(f) show the corresponding sepa-
rations of the laser beams, represented by their intensity
profiles and the circles of 1/e radii. It is clear that a
very small amount of Geld overlap creates a transition
from an incoherent to a coherent phase relationship.

Visibility measurements were performed for pump
beam separations d, in the range 0.35 & d & 2.0 mrn. The
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real, and choose its sign in the equations to correspond to
the experimentally observed results for the relative
phases of the two coupled lasers, as will be explained later
in this section.

Equations (4.1) and (4.3) can be written in terms of the
intensity Ik and phase yk of each beam. In the Stratono-
vich calculus, Eqs. (4.1)—(4.4) are equivalent to the fol-
lowing [8]:

0
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FIG. 5. Experimental values of the maximum fringe visibility
as a function of the separation d between the two lasers.

al, ( =0.01) are the pumping and cavity loss coefficients,
while cok are the detunings of the lasers from a common
cavity mode. The index k =1,2 stands for the two lasers.
The last terms on the right-hand sides of the gain equa-
tions (4.2) and (4.4) account for self-saturation of the
gains. Spontaneous emission, present in both lasers, is
modeled by the noise source terms Qekgk(t), where

+e, +2+e,I, rt, ( t),
' 1/2

I21—
CO1 +

dt w, I1
1/2

~ sin(y~ —y, )

qf(t),

dG,
dt

1

C

dI2
[(G2 —a~)I~+&V I)I~cos(q&) —y2) ]

c

(4.9)

(4.10)

(4.11)

(gJ(t)gk(t')) =2&,k&(t —t') . (4.5)

The noise sources are independent, Gaussian, and 5-
function correlated in time.

The ~Ek terms in the field equations represent the cou-
pling between the two lasers through spatial overlap of
the electric fields. We have not included any coupling of
the lasers through sharing of the inversions, since the
pump beams do not overlap to any appreciable extent.
Assuming that each laser field has a Gaussian intensity
profile and a constant phase front, the transverse field can
be written as

Ek(t) x +yEk(x,y, t) = .exp
2770' 20

(4.6)

E&(t)E& (t)
exp

4~cr 4o.
(4.7)

The coupling coeImicient ~ is obtained from the overlap
integral through appropriate normalization such that
I~I =1 when d=0. Then,

~=+exp
4o.

(4.8)

The question arises whether ~ should be complex. A
strictly imaginary coupling coefticient corresponds to
conservative coupling, while a strictly real coeScient cor-
responds to nonconservative (dissipative) coupling. Con-
sidering the nature of coupling between the lasers, we
take the simple point of view that ~ is predominantly

where o is related to the 1/e radius of the intensity
profile by r=V2cr. The overlap integral of the two
beams separated by a distance d is given by

I I dx dyE', (x+d, y, t)E2*(x,y, t)

d@2

dt

+E2+ 2"(/'e2I27)2( t ),
1/2

—CO2+
I2

~ sin(y, —y2)+
2

(4.12)

qf(t),

dG2

dt

(4.13)

(4.14)

The g. (t) are real Gaussian white-noise sources of zero
mean and obey

(q, (t)rI~&(t') ) =5,„5g(t —t') . (4.15)

We assume that a stable steady state exists for the intensi-
ty of each laser. The intensity of each beam Auctuates
about the mean value due to spontaneous emission noise.
Neglecting these Auctuations and assuming equal average
intensities for the two beams, we get from equations
(4.10) and (4.13) the following single equation for the
phase difference y —= (y2 —

qr, ) of the two lasers:

dg 2= (co2 —co, ) — ~ sin(p)
dt

1/2 1/2

rig(t) . (4.16)

The deterministic part of this equation corresponds to the
Adler equation [9] which has been widely used in the
study of coupled oscillators. The synchronization of an
electronic oscillator with an externally injected signal
gives rise to the same stochastic equation for the phase
when the amplitude evolves so rapidly that it can be adia-
batically eliminated as was studied by Stratonovich [10].
A similar stochastic equation also describes the voltage
due to thermal noise in the dc Josephson effect, as shown
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dy dV(y) ~ ( )
dt dy g) g 7

where

(4.17)

(4.18)

g(t) is a Gaussian white-noise source of zero mean and
correlation

and

(q(r)r)(r') ) =&(r —r') (4.19)

2V(g)= —(F2 ci)~)p — Kcos+
C

(4.20)

(b)
[ co - (o

f
-

f
2K

f

by Ambegaokar and Halperin [11]. Through combina-
tion of the noise source terms, Eq. (4.16) may be rewritten
as the I.angevin equation

is the associated "potentia177 for the overdamped motion
of the phase.

Figures 6(a) —6(c) show representative plots of the po-
tential V(y) for three different sets of values of a. and
r, ~co2

—co, ~. When r, co2 —co, ~
&& ~2~, V is a sinusoidal

potential, and the system resides in one of the local mini-
ma, located at y=2nn (n =0, 1,2, . . . , ) for I~) 0 and at
y= (2n + 1)~ for a & 0. Experimentally, we have only ob-
served y=~ for the two phase-locked lasers, thus we will
only consider ~ & 0. With the choice of ~ & 0 in the model
equations (4.1)—(4.4), the nonconservative nature of the
coupling causes two out-of-phase fields to reinforce each
other while two in-phase fields are mutually destructive.
For small noise strengths, jumps from one minimum to
another will occur extrem. ely infrequently. When
r, ~co2

—co, ~

= ~2a ~, the potential shape of Fig. 6(b) is real-
ized, and noise is most important in this regime. The sys-
tem motion is a combination of sliding down the edges of
the "staircase" with diffusion on the plateaus. The lasers
lock imperfectly and we may expect that large Auctua-
tions in the visibility will be observed for operation in this
range of coupling. The measured visibility Auctuations
are apparent in successive averages over the —10-ms
time window for which U is calculated.

For the extreme situation r, ~co&
—co,

~

))~2a
~

[Fig. 6(c)],
the linear term dominates the potential and the phase
difference y evolves toward +~, depending on the sign
of (co@

—co, ). The lasers will be completely unlocked in
phase, and we may expect zero visibility in this case.

In our experiments there may be fluctuations in the
value of the detuning of the lasers (co2 —co&) due to envi-
ronmental changes. The coupling coefficient rc can be
changed by varying the pump beam separation, and small
fluctuations in beam diameter will produce large Auctua-
tions in ~. To a certain extent these Auctuations can be
effectively accounted for in the diffusion coefficient D
In the next section we interpret the experimental results
of Sec. III by comparison with .the predictions of the
theoretical model.

V. THEORETICAL PREDICTIONS AND COMPARISON
WITH EXPERIMENTAL OBSERVATIONS

(c)

T (0 - 0) &) 2K

The Langevin equation (4.17) may be simulated numer-
ically, and the phase dynamics of the two lasers examined
from stochastic realizations of the time trajectories of the
phase difference y=(g2 —y, ). We will present some re-
sults obtained from numerical simulations at the end of
this section. However, for many purposes, it is very in-
formative to consider the related Fokker-Planck equation
for P (y, t), the probability density of the phase difference.
This equation is immediately obtained from an examina-
tion of Eq. (4.17) as [8]

FICx. 6. Schematic plot of the "potential" V{y) of Eq. (4.20)
for different relative magnitudes of detuning frequency (~2 —

cu&)

and coupling strength sc. (a) Potential which produces phase
locking, r, ~co2

—co, ~
&& ~2a~. (b) Potential at transition region be-

tween phase-locking and free-running phases, r, ~co, —co,
~

= ~2'~.
(c) Potential when the detuning dominates the coupling strength
and no phase locking occurs, r, ~co2

—co, ~
&) ~2a. ~.

J(y, t) = —
—,'D a

Btp

dV(g) P y, t

which has the form of a continuity equation where

(5.1)

(5 2)
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is the probability current density. Because any physical
observable is periodic in y with period 2m, the densities P
and J must also be periodic. Therefore Eqs. (5.1) and
(5.2) must be solved subject to periodic boundary condi-
tions for P, i.e., P (y+2n m, t) =. P (y, t), for
n =0,+1,+2, . . . .

The physical significance of J can be easily revealed by
considering the time-averaged Langevin equation (4.17),

(5.3)

Assuming that the system is ergodic, the right-hand side
of Eq. (5.3) can be expressed, using Eq. (5.2), as

=f dy' J+ ,'D—
dy'J cp' (5.4)

2 q+ 2'
P (y) =C exp — V(y) f dy'exp V(y')

D D

(5.6)
and the probability current is

T

where we have assumed periodic boundary conditions for
the probability density P (0, t) =P (2', t). Combining
Eqs. (5.3) and (5.4) we conclude that the integrated
current f 0 dy'J(y') is just the effective detuning fre-

quency between the laser fields, i.e.,

Q,s=(y) = f dy'J(y') . (5.5)

Note that in the stationary state J will be independent of
y, so that the right-hand side of Eq. (5.5) is simply 2m.J.

Because the experimental data do not involve any
short-time transients, we look for the stationary solution
of Eqs. (5.1)—(5.2). This solution is characterized by the
fact that P is independent of t, and J is constant, indepen-
dent of y and t. Note that, unlike many other problems
where J=O, in this case the tilt of the potential requires
JAO. We get [10)

(siny) = — [Q,~—(co2 —coi)], (5.10)

but we could not find a similar expression for ( cosy ).
From Eqs. (4.20) and (5.6) it is clear that there are only

two effective independent dimensionless parameters,
namely

D 2K
and B=

(co2 coi ) T~(co2 coi )
(5.1 1)

where according to Eq. (4.8) z depends on the pump sepa-
ration d and the beamwidth o.. The parameter A plays
the role of an effective diffusion rate whereas parameter B
is the effective coupling rate. In the limit IB I

«1 (weak
coupling) the exponent (2/D )V(y) in Eq. (5.6) can be
approximated as (2/D ) V(y) = —2y/A, so that the
probability distribution P becomes constant, independent
of y. Normalizing, we have P(y)=1/2m. . As y is uni-
formly distributed in the interval [0,2m. ], the averages
(siny ) and ( cosy ) vanish, so that the visibility vanishes
as well. For weak coupling and in the limit D —+0, the
Langevin equation (4.17) reduces to the well-known
Adler equation [9,12]. It has the analytic stationary state
solution

tan
2

. a-
tan

(co2 co i )

Q,gt —t, )

2
2K

r, (co2 co, )—

V(y) = V(yo) — (y —yo) cos(yo)
Tc

(5.12)

where Qdt=[(coz —co, ) —(2'/r, ) ]' . In this case, both
lasers are monochromatic, but due to the nonzero fre-
quency difference, the visibility will vanish.

In the limit IBI ))I (strong coupling) the lasers will
phase lock to each other, i.e., (y) =0. The locking angle

yo corresponds to a minimum of the potential given by
Eq. (4.20), so that yo=n. —arcsin[(co& —co, )r, /(2~)]. We
can approximate the potential by a quadratic form and
the probability density by a Gaussian, since y will stay
close to this lock angle, i.e.,

J=C 1 —exp (co2 —co, ) (5.7) = V (yo)+ ,'r,8y -yo)'—
1/2

(5.13)

(IE I')+(IE I')
(5.8)

for fields of equal magnitude. Then,

u=&(cosy) +(siny) (5.9)

The averages of the sing and cosy functions are obtained
using P (y). From (4.20), (5.3), and (5.5), we have

where C is a constant normalizing P(y) to unity.
The visibility of the interference fringes formed by the

superposition of the laser beams can be calculated from
Eq. (5.6), since

P(y) =
7T

e"p
'Pea'

D
(5.14)

where y,s=[(2'/r, ) —(co2 —co, ) ]'~ . The visibility in
this approximation is given by

u =exp( D /4y, tt) . — (5.15)

Figure 7 shows a comparison of the experimental mea-
surements of the visibility versus beam separation with
those predicted from the theory, for several sets of pa-
rameters. We have a reasonable estimate for o. because
we can measure the beam radii when the beams are well
separated. However, there is some distortion of the
beams when they are overlapped, and cr can only be tak-
en to be an estimate, not an accurately determined pa-
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FIG. 7. Experimental and theoretical results for the visibility
as a function of the beam separation. Dots correspond to the
experimental measurements shown in Fig. 5. The theoretical
visibility is calculated from Eqs. (5.6) and (5.9) for
(co2 —cu, )=5000 rad/s, o.=0.141 rnm, and D~=8 s ' (dashed
line); (co2 —co&)=5000 rad/s, o =0.175 mm, and D~=1X10 s
(solid line).
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rameter. The parameter 3 which measures the ratio be-
tween noise strength and the detuning is a parameter that
is not determined easily. From estimates of the spontane-
ous emission noise, one would arrive at a value of
3 =10,but external sources of noise are far greater in
magnitude, and may give A = 10 . The theoretical curves
shown in Fig. 7 reveal that the fits are not very sensitive
to the noise strength, over several orders of magnitude.
The observed transition from coherent to incoherent be-
havior is very well reproduced by theoretical predictions.
For the phase-locked regime we note that the visibility
measurements are quite scattered, and consistently lower
than the predictions. There are several possible reasons
for this feature. We have neglected the multimode nature
of the laser fields, as well as the possibility of intensity
Auctuations in the laser beams. Pump fluctuations have
been entirely neglected as well. Given these many
sources of fluctuations that are not accounted for, it is
not surprising that the theory provides an upper bound to
the visibility measurements in Fig. 7. With these points
in mind, the agreement between theory and experiment is
very good.

The Langevin equation (4.17) may be directly simulat-
ed to examine the behavior of the phase di6'erence y in
time for difFerent characteristic shapes of the potential
V(y). Ten trajectories each are plotted in Figs. 8(a)—8(c),
corresponding to the potentials of Figs. 6(a)—6(c). In Fig.
8(a) the phase difference locks quickly at m, and remains
locked thereafter, while in Fig. 8(b), y jumps at random
times from one step of the potential to the next. In Fig.
8(c), the evolution of y is almost linear in time, indicating
the absence of phase locking between the lasers.

The three situations discussed above are characterized
by the measurements of visibility versus time shown in
Fig. 9. The visibility itself is a time-averaged measure-
ment, but the camera system shown in Fig. 1 predeter-
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FIG. 8. Plots of ten phase trajectories obtained from the nu-
merical integration of Eq. (4.17) for (co2 —co, )=5000 rad/s,
D~=4 s ', and different values of the coupling coefficient: (a)
The two lasers quickly lock at w out of phase, for
2~/z, = —5X10 s '. (b) Intermediate transient locking re-
gime, where the noise induces 2m. phase jumps at random time
intervals between "constant" phase states, for 2~/~, = —5 X 10'
s '. (c) Unlocked regime, where the phase difference evolves
nearly linearly in time, for 2x/~, = —5 X 10 s
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mines the time averaging-window to be of the order of 10
ms. Figure 9(a) shows that, for strongly coupled lasers
that produce high visibility fringes, the visibility remains
relatively constant in time. When the distance between
the two lasers is increased so that it is within the narrow
transition region shown in Fig. 5, large fluctuations are
seen in the visibility, as shown in Fig. 9(b). Increasing the
laser separation beyond the transition region reduces the
visibility to zero for all time, as shown in Fig. 9(c). The
visibility measurements of Figs. 9(a)—9(c) correspond to
the respective phase dynamics of Figs. 8(a) —8(c).
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FIG. 9. Experimentally measured visibility as a function of
time for diferent laser separations d. (a) Two strongly coupled
lasers produce stable interference fringes for d=0. 39 mm. (b)
In the intermediate transient locking regime, large fluctuations
are seen in the visibility for d =1.03 mm. (c) Uncoupled lasers
produce zero visibility fringes for d = 1.5 mm.

VI. DISCUSSION

The experimental results and theoretical predictions
presented in the previous sections showed that a critical
separation exists for phase locking of two spatially cou-
pled Nd:YACC lasers. The two lasers exhibited stable
phase-locking ~ out of phase for separations less than a
critical value. In contrast, evanescently coupled semicon-
ductor lasers display phase locking only in a narrow win-
dow of coupling strength, a window which is not always
physically achievable [1,2]. It was also demonstrated that
a simple phase plate can be used to compensate for the
180 phase difference between the lasers and generate a
predominantly single-lobed far-field intensity.

Although the agreement between experimentally mea-
sured data and theoretical predictions was quite good,
there are several enhancements to the laser model which
could be made. The laser model predicted perfect phase
locking with u =1 for su%ciently small laser separations,
but Fig. 5 shows a scatter of corresponding experimental-
ly measured visibilities, with U (1. The model does not
include several sources of noise which can reduce the
visibility below v=1. The model neglected fluctuations
in the population inversion induced by spontaneous emis-
sion, intensity fluctuations of the pump laser, and Auctua-
tions in the overlap of the laser fields. These additional
sources of noise can also contribute to decreased visibili-
ty. Furthermore, each laser typically operates with two
to five longitudinal modes rather than the single mode as-
sumed in Eqs. (4.1)—(4.4), thus introducing the possibility
of Auctuations due to mode competition. The noise
strength D was varied from D —10 to D —10 . The
effect of increasing D by five orders of magnitude is to
cause a smoothing of the visibility curve in Fig. 7 and a
slight decrease of the critical separation. The larger
value of D may to some extent account for fluctuations
in the detuning of the lasers as well as some of the other
sources of noise mentioned above that are responsible for
the scatter of visibility values when measured on a —10-
ms time scale. It is clear, however, that the theoretical
predictions should be regarded as an upper bound to the
measured values of the visibility.

It was assumed in the reduction of the model to a sin-
gle Langevin equation for the phase difference of the two
lasers that the intensities have negligible Auctuations, and
that there exists a stable steady state. This assumption
needs to be reexamined, particularly since the complete
form of the coupling coefticient ~ and contributions from
different coupling mechanisms are not fully understood
for the present system. v was chosen to be real and nega-
tive in the model, since this was consistent with the ex-
perimental observations, but there is no a priori reason
for ~ to have this form. We can calculate only the magni-
tude of v from Eq. (4.8). A more comprehensive calcula-
tion of the coupling coeScient is desirable for various
coupling mechanisms.

Finally, we mention the existence of solid-state laser
arrays with geometries more complex than that of the
two parallel lasers studied here, geometries which induce
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phase locking at relative phases other than ~. A square
configuration of four Nd: YAG lasers has been observed
to lase with adjacent elements phase-locked ~ out of
phase, but a three-laser triangle was found to be phase
locked with a +2n/3 phase difference between lasers [4].
The only stable phase-locked mode for an odd number N
of solid-state lasers arranged in a ring has been predicted
[13] to have a constant phase difference between adjacent
lasers, where the phase difference is given by
tp=+m. (N 1)/N—. The dynamics of both intensity and
phase of such complex configurations of lasers remain to
be explored.
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