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Revivals made simple: Poisson summation formula as a key to the revivals
in the Jaynes-Cummings model
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We investigate the phenomenon of quantum revivals in the Jaynes-Cummings model for an arbitrary
quantized field mode. With the help of the Poisson summation formula, we cast the infinite sum deter-
mining the atomic inversion into an infinite sum of integrals. Each integral, when evaluated using the
method of stationary phase, yields under appropriate conditions one revival. We present simple approxi-
mate analytical expressions for these revivals and illustrate this general technique by the examples of a
coherent and a highly squeezed state. The oscillatory photon distribution of the latter creates slightly
different Rabi frequencies which give rise to a beat note; that is, echos in the revivals. We obtain the
photon statistics of the quantized field by "measuring" the atomic collapse of a single revival —a tech-
nique which might be applicable in the realm of the one-atom maser.

PACS number(s): 42.50.Dv, 42.52.+x

I. POISSON SUMMATION FORMULA: THE KEY
TO QUANTUM REVIVALS

A two-level atom in the presence of a quantized mode
of the radiation field —the well-known Jaynes-Cummings
model [1]—has been explored theoretically [2—4] and
tested in its predictions experimentally [5] in a wealth of
articles. This model displays fascinating quantum
features: the squeezing [6] of the fluctuations in the elec-
tromagnetic field [7], the generation of sub-Poissonian
photon statistics [8,9], and the so-called quantum revivals
[2,10], to name only a few e6'ects arising in this paradigm
of quantum optics. The impressive phenomenon of the
revival —the recovery of population at a time long after
the Cummings collapse has taken place —has been inves-
tigated extensively for the case of the field mode being in
a coherent state [2]. But what are the necessary condi-
tions to obtain such a revival in the presence of an arbi-
trary state? What is the fine structure of each revival in
this general case? Is it possible to recover the photon dis-
tribution 8' of the electromagnetic field from the atom-
ic inversion? These are three questions put forward, dis-
cussed, and answered in the present article.

The photon distribution 8' determines the atomic in-
version w =w (t) at a time t )0, given that the atom is in
its ground state at t=O, via the Jaynes-Cummings sum

w(t)= —
—,
' g W cos(2i, tV'm ),

m=0

where A, denotes the interaction strength. Unfortunately
this sum involves the summation index m as the square
root. This complication has prevented so far the deriva-
tion of a simple and explicit expression for w in the pres-

ence of an arbitrary field. For the case of a coherent-state
field mode, approximate expressions have been derived
and have been compared to a numerical evalUation of the
relevant sum [2]. However, this treatment is limited to
this particular example of the coherent state and is rather
dificult to generalize. The Jaynes-Cummings sum, Eq.
(1.1), can be converted to a complex integral. Its explicit
evaluation is possible, however, only for special quantum
states of the field mode, such as a coherent or a weakly
squeezed state [11]. In the present article we make use of
the Poisson summation formula [12] and the method of
stationary phase [13]—two techniques already success-
fully applied to rainbow scattering [14], the renormaliza-
tion of curlicues [15),and Rydberg wave packets [16].

The article is organized as follows: With the help of
the Poisson summation formula we, in Sec. II, convert
the original Jaynes-Cummings sum over m, Eq. (1.1), into
an infinite sum of integrals. Under appropriate condi-
tions each term of this sum represents one revival which
we evaluate with the method of stationary phase. In par-
ticular, for a slowly varying photon distribution we can
derive a general expression for the revivals which
identifies the shape of the photon distribution as the
determiner of the revival envelope. The v=O term of this
expression corresponds then to the Cummings collapse.
We illustrate this technique for the case of a coherent
state and find excellent agreement with the exact numeri-
cal evaluation of the sum, Eq. (1.1).

In Sec. III we demonstrate the power of this approach
for the example of a highly squeezed state. It has been
shown numerically that also in this case the atomic inver-
sion exhibits revival. More importantly, however, each
revival is accompanied by little echoes [17]. The physical
origin of these echos stands out most clearly when we re-
call the discussion of Sec. II together with the fact that
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an appropriately squeezed state displays an oscillatory
photon distribution [18]. Since the shape of each revival
is governed by the shape of the photon distribution, the
modulation in W must lead to a modulation of the en-
velope of the revival. This explains the qualitative but
not the quantitative features. A more appropriate
analysis has to include the modulation in W in the
stationary-phase analysis as well. This is made possible
by a simple asymptotic expression for W [18] that al-
lows us to separate the rapid oscillations in m from the
slowly varying part. This approach yields results which
are again in good agreement with the numerical calcula-
tion.

How to extract from the time dependence of the atom-
ic inversion the initial photon distribution is the question
investigated in Sec. IV. Under appropriate conditions
this distribution follows by a Fourier transformation of
either the collapse or of one of the revivals. We illustrate
this technique by a special example. Section V is devoted
to a summary and an outlook.

II. REVIVAL AS READOUT OF THE
PHOTON DISTRIBUTION

W(m). The example of a coherent state serves as an illus-
tration of these results.

A. General formalism

When we substitute the Poisson summation formula,
Eq. (2.1), into the Jaynes-Cummings sum, Eq. (1.1), we
arrive at

w(t) = —
—,
' g f dm 8'(m)e2~™cos(2kt&m ) ——,

' 8'0

w (t) —
—,'Wo . (2.2a)

with a phase

S,(m) =a vm kt&m— (2.2c)

When the variation of the photon distribution W(m) is
slow compared to the m variation of exp[2iS (m)], we
can evaluate the integral w, Eq. (2.2b), by expanding the
phase S (m), Eq. (2.2c),

Here we have introduced the definition

w (t)= —
—,'ReI J dm W(m)exp[2is (m)]], (2.2b)

In the present section we rewrite the Jaynes-Cummings
sum, Eq. (1.1), with the help of the Poisson summation
formula [12]

1 aS (m)
S (m)—=S (m =m )+—

V V V m=m
(m —m )

(2.3)

g f = g I dm f(m)e ' +'fo,
rn =0 oo

(2.1) around the point of stationary phase m defined by

where f(m) is a continuous version of f . We evaluate
the resulting integrals with the method of stationary
phase for the case of a slowly varying photon distribution

as (m)

m m=m
V

The resulting integral

(2.4)

2
2iS (m =en ) as.

w (t)=——
—,
' W(m =m )Re e ' dm exp i

0 pm 2 m=m
(m —m, )

yields [19] that is,

BS 1/2 Qm„= (2.7)
w (t)=——

—,
' W(m =m„)

Bm 2 m=m.

where

Xcos 2S (m =m, )+g— (2.&)

Since we are only interested in positive times t )0, only
positive v values will provide a point of stationary phase.
Note that the term v=0 exhibits only a stationary-phase
point for t =0 and we have to evaluate the corresponding
integral wo by diFerent means. We therefore express the
approximate atomic inversion, Eq. (2.2a), in the form

g=sgn
a's.
pm 2 m=m

The explicit form of S (m), Eq. (2.2c), transforms Eq.
(2.4) into

w(t)=- —
—,'Wo+wo(t)+ g w (t), (2.8a)

V= 1

where we have taken out the term v=0 from the sum.
We now discuss the explicit form of w for the case v) 0.
From Eq. (2.2c) we find

aS (m)0=
Bm

1 kt
wv

m=m 2 v'm m=m
V

(2.6) A' t'
S (m=m )=—

V V 4
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and Eqs. (2.6) and (2.7) yield

BS
Qm2 m=m

=-'A, tm4 m=m
V

2' V

A2t2

Therefore the final expression for w, when v) 0 reads

= A' t' Xt A,2t 2

w, (t)= —
—,'W m= cos4~'v' vr 2v' 2~v 4

A.2t 2 2 TTVm~, , or t~ &m.
4~ v

(2.9)

From this rule we immediately recognize that the en-
velope of w (t) is approximately centered at the times

2rrv Q m (2.10)

where m = g Om W denotes the average number of
photons. The substitution rule of Eq. (2.9) translates the
width

1/2

(2.8b)

The time dependence of w (t) is hence governed by three
factors: (i) a rapidly oscillating cosine function, (ii) a slow-
ly varying amplitude which decays with increasing v, and
(iii) an envelope translating photon number into time ac-
cording to the simple substitution rule

represents therefore the vth revival.
We emphasize that for a given photon distribution the

inequality (2.13) is always violated for appropriately large
v, and hence the corresponding revivals cannot be
resolved. Since according to Eq. (2.9) v corresponds to
time (note that m -m), many terms w in the sum (2.8a)
determine the atomic inversion in the large-time limit.
When 0. )m, as is true for thermal light, not even the
first revival is well defined [20].

B. Example of a coherent state

We now illustrate the results of Sec. II A by the exam-
ple of a coherent state of average photon number
m —= IaI . The familiar Poisson photon distribution

8'(m)= 1

2vrm
exp[ —2(&m —+m ) ], (2.14)

—a2
and 8 o

=e =0. When we substitute this expression
into Eq. (2.8b) we immediately arrive at

1 kt
w (t)=- exp —

2 z (t —t, )
2v'mv 2m v

I
a

I
2m'v'

m t

reduces in the large IaI limit to the Gaussian approxi-
mation [21]

o= g [m —m] W
m=0

i' t'
X cos

2~v 4
(2.15a)

of the photon distribution 8' into a measure for the
width of w in time, denoted by At . Indeed we find

A,
2

4m. v

At
+

2

2

—t =0. (2.11)

4~ v 2~v o.
At = 0—

A, 't, (2.12)

mv(
0

(2.13)

In this case only a single term w [v= kt /(2vr+m ) ] con-—
tributes at a given instance of time t. This term w

I

Here we have made use of Eq. (2.10) and have neglected
the quadratic contribution of ht . Two consecutive
terms of the sum Eq. (2.8a) separate in time when their
temporal separation 5t,:—t + i

—t„=(2vrll, )+m is

larger than their width At, that is, when 6t )At .
With Eq. (2.12) this condition reads

where the revival times following from Eq. (2.14) are

'rrv
I

(2.15b)

in agreement with Eq. (2.10). When we recognize that w

assumes appreciable values only at times in the neighbor-
hood of the revival time, that is, t =t, the expression Eq.
(2.15a) simplifies even further

1
w (t) = — exp —,, (t —t )'

&4m v 2w'v'

A-'t'
Xcos

2mv 4
(2.15c)

This formula is in agreement with the well-known results
obtained by different methods [2]. In Fig. 1 we compare
and contrast this approximate expression, Eq. (2.15c), for
the first revival w„shown in (a), to the numerical evalua-
tion of the Jaynes-Cummings sum, displayed in (b). We
conclude by discussing the term v=0 in Eq. (2.8a), that
1s,

wo(t)= —,' f dm W—(m)cos(2kt&m )

= —
—,'(2mIaI ) f dm exp[ —2(&m —IaI ) ]cos(2k tv'm )

= —(2rr) ' f dy exp[ —2(y —IaI) ]cos(2Aty) .
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(a)
the revivals in the atomic inversion in the presence of a
highly squeezed state. This problem has been investigat-
ed in Ref. [17] by numerical means. In this case revivals
with an oscillatory envelope, the so-called echos, make
their appearance as exemplified in Fig. 2(a). Moreover,
the collapse time may exceed that of a coherent state of
identical photon number [17,22]. To obtain an analytical
result for the atomic inversion w =w(t), Eq. (1.1), in the

0.2—

Ihh

(b) 0.2

-0.2

', U Iijlii

-0.2—
0

W(m)

I

50
l

100
I

(b)

FIG. 1. First quantum revival in the Jaynes-Cummings mod-
el for a coherent state of average number of photons
m =a =49. The approximate analytical result based on Eq.
(2.15c) and shown in (a) is in good agreement with the numerical
evaluation of the Jaynes-Cummings sum Eq. (1.1) depicted in
(b).

0.06-

0.03—

Here we have applied the approximate photon-number
distribution, Eq. (2.14), and have made the substitution
y =&m. Si—nce the Gaussian distribution W(m) in the
above integral is sharply centered at &m = ~a~, we can
approximate the term (y /h a

~
) by unity and extend the

lower limit of integration to minus infinity. When we
substitute x =y —

~ ah and perform the remaining integral
[19]

(wto)= —(2m) '~ f dx e c s[2o)t i+x2At~ ~]a

w(t)—

0.2—

0

-0.2-

40 60
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I
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we arrive at

k't'
wo( t) = —

—,
' exp — cos(2A t

h
a

h
) . (2.16)

Equation (2.16) describes the Gaussian decay of the
Rabi oscillations: the Cummings collapse. Although we
have derived this result only for the special case of a
coherent state it may serve as an indication for the more
general feature: The contribution wo describes the col-
lapse even for an arbitrary field state, provided the first
revival separates from the collapse.

III. REVIVALS AND ECHOS IN THE PRESENCE
OF A HIGHLY SQUEEZED STATE

In the present section we apply the techniques of Sec.
II A and extend them to gain a deeper understanding of

I

50
I

)00

FICx. 2. The atomic inversion m =m(t) in the presence of a
highly squeezed state exhibits revivals accompanied by little
echos when numerically evaluated via Eq. (1.1) as depicted in
(a). Here we have used the exact photon distribution derived in
Ref. [18], which is shown in (b) for a coherent amplitude a=7
and a squeeze parameter s =21. The most elementary attempt
at understanding the echos of (a) consists of substituting the os-
cillatory photon distribution of (b) into the approximate analyti-
cal expression for the atomic inversion, Eq. (2.8b). According
to this result, the envelope of each revival is a rescaled readout
of the photon distribution 8'(m): The oscillations in 8'(m)
translate into oscillations of the revival envelope as shown in (c).
However, when we compare this approximation with the exact
numerical result of (a), we recognize that the position and the
shape of the echos are not properly described by this approach.
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presence of a highly squeezed state is our goal in this sec-
tion.

A. Dscillations in photon-number distribution
modify stationary-phase analysis

It is tempting to make use of the approximation Eq.
(2.8b) for u~, and substitute the photon-number distribu-
tion of a highly squeezed state, shown in Fig. 2(b) into
this expression. The approximation of W(m) most suit-
able for this purpose reads [23]

This formula is valid for numbers m appropriately larger
than a, that is, in the oscillatory regime of W(m). We
obtain an expression for W(m) which holds for arbitrary
m values by introducing the appropriate Heaviside step
functions denoted by e=e(y). We thus rewrite W(m) in
the form

W(m)= A(m)+e(m+ —,
' —a ) cos(2$ ),W(m )

2cos ((l

(3.3a)

W(m) =V4~e[Ai(p, )] exp[ —e(m+ —,
' —a )]

1/2
p

a —m ——'2
2 J

(3.1a)

where

A(m)=e(a —m —
—,')W(m)+e(m+ —,

' —a )
2cos P

(3.3b)
with

&Za' 2/3
+ —,

' dx x —2m —1'
+2m +1
V'2m +1 2/3

dx(2m+ 1—x')'"
&Za'

fof m+
z
(Q

for m+ —,
' )a

Equations (3.3) give a decomposition of the photon-
number distribution in slowly varying amplitudes A (m)
and W'(m ) /2 cos P and in an oscillating function
cos2$ . We substitute Eq. (3.3a) into Eq. (2.2b) and ar-
rive at

(3.1b) u. =a.+b'.+'+b(. ', (3.4a)

W(m)=4A cos P (3.2a)

where

Here Ai denotes the Airy function. This formula is valid
in the limit of strong squeezing, 0&2/s «1, and large
coherent amplitude, a) 0. Equation (2.8) together with
the photon distribution Eq. (3.1) indeed creates revivals
as well as echos as displayed in Fig. 2(c). Why~ Equation
(2.8b) and remark (iii) in Sec. II A provide an immediate
answer: The envelope of each revival is a readout of the
photon distribution, which in this case is oscillating, as
indicated in Fig. 2(b). Hence each maximum in W(m)
corresponds to one echo. A closer comparison between
Figs. 2(a) and 2(c), however, reveals that this argument is
quantitatively not correct: It cannot provide the precise
location, the correct amplitude, and the shape of each
echo. This is, however, not surprising when we recall
that in the derivation of Eq. (2.8) we have assumed that
W(m) is slowly varying compared to the oscillations in
exp[2iS (m)]. Obviously the oscillatory photon distribu-
tion Eq. (3.1) violates this condition. But a slightly im-
proved version of the approach of Sec. II A gets a grip on
this problem: Include the oscillations of W(m) in the
stationary-phase treatment; this is the strategy we pursue
in the remainder of the present section.

We achieve a decomposition of W(m) into a slowly
varying and an oscillatory part when we recall the
asymptotic approximation of Eq. (3.1) [18,23]

where

a = —
—,'Re ~ f dm A(m)exp[2iS„(m)] . ,

0
(3.4b)

b'. '= —
—,'Re. , dm

2 exp 2lS'.+' m
W(m)

4cos P

(3.4c)

b = —
—,'Re . f, dm exp[2iS' '(m ) ] . .( —)— W(m)

4cos P

(3.4d)

Here we have introduced the new phases

S'„+-'(m) =—S.(m)+y. . (3.4e)

The decomposition of W(m) through Eq. (3.3) has creat-
ed integrals Eqs. (3.4), which now consist of a slowly
varying amplitude A (m) or W(m)/(4cos P ), and a
rapidly oscillating phase factor exp[2iS (m)] or
exp[2is' —'(m)]. Hence we are in the position to apply
again the techniques of Sec. II A.

The point of stationary phase for a„determined by
S (m ), is identical to that calculated in Sec. II A, that is,

and

exp [ —e( m + —,
' —a~ ) ]

(m + 1 a2)1/2
2

(3.2b)

27TV
(3.&)

=(m+ —,')arctan[(m+ —,
' —a )'~ /a]

—a(m+ —' —a )
~ ——.2 1 2

2 4
(3.2c)

The presence of the oscillations in W(m), represented by
the phase p, modifies this point when we investigate the
integrals b',—'. Here the stationary-phase points follow-
ing from Eqs. (3.4e) and (3.2c) are given by
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aS(.+-)(m)
0=

Bm

aS.(m) ay.+
Bm Bm

(m'.-+'+-,' —a')'"
+av=

(m (+) + 1 )1/2
A, t

2( m (+ )
)
1/2 (3.9a)

= harv —' ——+arctan[(m +—,
—a ) /a],2 1/2

'&m
(3.6)

that is

ktarctan[(m'+'+ —' —a )' /a]+~v=
2(m,

(3.7a)

kt—arctan[(m' '+ —' —a )' /a]+1rv=
2(m )

rather than Eq. (3.7), are only slightly affected by this
"brutal" replacement. We can simplify Eq. (3.9) even
further when we recall that according to Fig. 3 and Eqs.
(3.4c) and (3.4d) the values of m' —' must be larger than
e ))1. We can therefore neglect the contribution —,

' in
the denominator of Eq. (3.9a) and arrive at the quadratic
equation for (m „—)

(+ ) 1/2

(m '.+-'+-,' —a')'"
0=+

(
(+) )1/2

+ trv ,3.9b
2(m' —

)

which has the solutions

(3.7b)

We gain considerable insight into the solutions of these
transcendental equations and their dependence on the pa-
rameters of interest, such as the time t, by a graphical
solution. In Fig. 3 we depict the time-independent left-
hand side of Eq. (3.7) in its functional dependence on m
by dashed and dotted lines, Eq. (3.7a) and (3.7b), respec-
tively. The solid curves (a) —(c) represent the right-hand
side of Eq. (3.7) for different times. The m coordinates of
the crossings between the solid and dashed or dotted

' +—'. Iocurves correspond to points of stationary phase m —.
this picture the point of stationary phase m, Eq. (3.5),
for a is then the m coordinate of the crossings of the
curves (a), (b), or (c), with the solid straight lines harv.

Figure 3 reveals three striking features of the solutions:
(i) No crossings and hence no points of stationary

p ahase exist for negative v values. This is a result of the
right-hand side of Eq. (3.7) always being positive.

(ii) For a given positive value of v there exist points of
stationary phase for b'+' as well as b' ' provided that

7T& &2v'm =u' —1/2

(
(k) )1/2 mvkt

2(m v —1)
1

(3.10)

1

50
I

]00
I

~50 m

[A, t +4(l —1r v )(a —
—,')]'

2(1 —1r v )

that is,

) —2~+ t 2 1 )1/2

as exemplified by curve (b). For t ~ r there is no real-
valued phase point m' —'. In the remainder of this article
we focus on the echo aspect of the revivals and therefore
con6ne ourselves to times t ~ ~ .

(iii) A point of stationary phase exists even for v=O as
shown by the trajectory (a). This is in contrast to the dis-
cussion of Sec. II A, where no such point occurred.

Motivated by these considerations we now proceed to
(+)find an approximate analytical result for m —. Here the

substitution

arctanx~
2 1/2(1+x )

(3.8)

guides us in our quest. This is a quite remarkable substi-
tution when we recognize that the expressions in Eq. (3.8)
do not agree at any x value except for ~ =0. Neverthe-
less the points of stationary phase, now given by

FIG. 3. Graphical solution of the transcendental equation
(+)(3.7) determining the points of stationary phase, m„and m,

of the integrals a and b'+), Eq. (3.4). The point of stationary
phase m —given by A, t (/2+m„=}harv —is the crossing be-
tween the horizontal lines at mv and the solid decaying trajecto-
r . The oscillations in W(m) shown in the lower part of thery. e
figure modify this picture for the case of b' and replace eac(+) h
constant horizontal line by two arctangent functions of different
signs indicated here by dashed and dotted lines. We note an in-
tersection between the solid trajectory (a) and the dashed curve
at v=O, which leads to a prolongation of the Cummings col-
lapse. For appropriately large times t we find intersections be-
t een the decaying trajectory (b) with both the dashed and dot-ween

(6)ted lines giving rise to two points of stationary phase m
However, only when m and m'*' lie within the dominant re-
gion of W(m) do they contribute. In curve (b), the contribution
from the value m

&

' is negligible and the two remaining points
of stationary phase, m) and m', +', interfere and lead to the
echos of Fig. 4. For higher v values, as indicated by the curve
(c) for v=2, the point m( ' moves towards the dominant region
of W(m) and gives rise to a third contribution to m(t) and a
beat note in the echos, as shown in Fig. 5 for the second reviva .l.
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In the next two subsections we discuss the revivals (v) 0)
and the Cummings collapse (v=0) resulting from the
points of stationary phase m, Eq. (3.5), and m' —', Eq.
(3.10).

B. Beating between stationary phases creates echos

w (t)=a (t)cos 2S„(t)+—

+b'+'(t)cos 2S'+'(t)+—

We now study the phenomenon of revivals, that is we
calculate the integrals a and b' —+' for v~ 1. Since these
integrals are of the type discussed in Sec. II A—the in-
tegrand consists of a slowly varying envelope and a rapid-
ly oscillating function —they follow from Eq. (2.5). We
therefore substitute the so-calculated points of stationary
phase, Eqs. (3.5) and (3.10), into the phases S and S' —',

as well as their second derivatives. The integral a, Eq.
(3.4b), follows immediately from Eq. (2.8b) and we find

+b' '(t)cos 2S', '~(t)+— (3.13)

The magnitude of the amplitudes a and b'+' are approx-
imately the same for times t ~r . Moreover for small
values of v the amplitude b' ' is small since the point of
stationary phase I' ' is located in the exponential tail of
the photon-number distribution, as shown by curve (b) of
Fig. 3. We are therefore led to combine the b'+' oscilla-
tion with the a oscillation, that is,

a, (t) =a„(t)cos[2S (t)+m. /4],
where

(3.11a)
w (t)=2a cos[2S (t)+m/4+6S'+. '(t)]cos[6S'+'(t)],

(3.11b)

(3.11c)

After some minor algebra, which is shown in Appendix
A, the resulting expressions for the integrals b '—' read

b',—'(r) =6'.—'(r)cos [2[S.(t)+6S'.+—I(r)]+~/4], (3.12a)

where the amplitudes b' (t) are given by

(3.14)

where we have approximated b',+', by a and neglected
the b' ' term. Hence the time dependence of m consists
mainly of the Rabi oscillations —described by the first
cosine term —modulated by the oscillations due to the
phase correction from the oscillatory photon statistics. It
is this modulation which forms the echos.

In Fig. 4 we compare and contrast the exact numerical
treatment [17] of the first revival to the stationary phase
result (3.13). For higher revivals the stationary-phase
point I ' ' moves towards smaller values of m and hence
at this point the amplitude b' ' gains in importance.
This brings in a third frequency, which is apparent in the

—(+) 1 W(m) At

8 cos P m=m'. —' vr(2v )'~

1/2
7

t+7tv t —7 +
7T V

1/2

1/2

0.2—

-0.2—

I(i
[Hf,Ip

(3.12b) 0.2—
tb)

and the phase corrections due to the oscillations in 8
are

A.
2

6S'„—'(r)= (t —r )
4~ v

-0.2—

X t+mv t 2+ 2—1/2

+—. (3.12c)
4

We are now in the position to discuss the details of the
vth revival. According to Eq. (3.4a), w consists of the
sum of the three contributions a, b'+', and b' ', given
by Eqs. (3.11) and (3.12), that is,
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FICi. 4. Comparison between the approximate analytical ex-
pression for the first revival, Eq. (3.13), shown in (a) for times
t 0' 7 l and the exact numerical calculation of the Jaynes-
Cummings sum, Eq. (1.1), depicted in (b). Here we have used a
squeezed state that has squeeze and displacement parameters
s =21 and +=7, respectively.
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FIG. 5. Comparison between the approximate analytical ex-
pression for the second revival w2, shown in (a), and the numeri-
cal evaluation of the Jaynes-Cummings sum, Eq. (1.1), depicted
in (b). The parameters are identical to those of Fig. 4. Note the
appearance of the beat in the echos arising from the third sta-
tionary phase point m2 '. Moreover, the third revival already
makes its appearance in the numerical representation, shown in
(b).
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FIG. 6. The enhanced lifetime of the exact collapse, shown in .

(a), results from the existence of the stationary phase point m 0
which creates the curve shown in (b). Here we have chosen pa-
rameters identical to those in Figs. 4 and 5.

which is valid for times t appropriately larger than zero.
In Fig. 6(a) we show the Cummings collapse as calculated
numerically from the sum Eq. (1.1). In Fig. 6(b) we
display the quantity bo+' from Eq. (3.13), (3.16), which is
the origin of the long tail of the collapse. Hence the os-
cillations of the photon distribution of the highly
squeezed state which give rise to the additional
stationary-phase point (3.1S) enhance the decay time of
the Cummings collapse.

beating of the Rabi oscillations, that is, in the modulation
of the echos shown in Fig. 5 for the ease of the second re-
vival.

C. Oscillations in 8'(m ) enhance lifetime

We conclude this section by analyzing the e6'ect of the
oscillatory photon distribution on the Cummings col-
lapse. The method of stationary phase as discussed in
Sec. IIIA fails to provide a stationary point for ao and
bo ' [Eqs. (3.5) and (3.10)]. We have to evaluate the in-

tegrals directly. However the integral ho+' enjoys a point
of stationary phase governed by

IV. PHOTON-NUMBER DISTRIBUTION FROM
MEASUREMENT OF ATOMIC INVERSION

(
(+) + 1 2)1/2—mo —, cz (3.15)

Since we are only interested in the tail of the Cummings
collapse we use in the stationary-phase calculation the
asymptotic expression Eq. (3.2a) for W(m) and obtain
after minor algebra, shown in Appendix B,

1/2 x't'
exp —e

4

[A. t +4a —2]X
[2A.'t'+4a(A, 't'+4a' 2)'"]''—

(3.16)

Under appropriate conditions the stationary state of
the radiation field in a one-atom micromaser can be a
nonclassical state of sub-Poissonian photon statistics [8].
But how does one measure the photon distribution of the
maser field? Standard photon-count experiments are out
of question. Coupling the radiation out the supercon-
ducting cavity destroys the high-quality factor and hence
the maser action. To deduce from the statistics of the ex-
cited atoms leaving the cavity the corresponding photon
statistics inside the cavity represents one possibility
which has recently been experimentally realized [9].
Another way to get a handle on the phenomena taking
place inside the cavity without coupling light out consists
of realizing the real Jaynes-Cummings model in the one-
atom maser [24]: Generate a stationary electromagnetic
field in the cavity by pumping it by one strong atomic
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Jaynes-Cummings sum suggest an idea of how to measure
the photon statistics underlying the dynamics of an atom
in the one-atom maser? Yes. To observe the collapse or
a single revival is enough to deduce the photon distribu-
tion.

We could only gain insight into the Jaynes-Cummings
sum hiding the quantum phenomenon of revivals by ap-
plying the tools of semiclassical quantum mechanics: the
method of stationary phase combined with the Poisson
summation equation.

ACKNOWLEDGMENTS

(+) )I/2 ~vk, t

2(vr v 1—)

+ [A, t +4(1—vr v )(a ——')]'1

2(~ v —1)

For v ~ 1 we can simplify this expression when we neglect
in the denominator of the second term the contribution
of unity compared to ~ v, expand the denominator of
the first term, make use of the definition of ~, and arrive
at

We thank M. V. Berry, L. Davidovich, J. P. Dowling,
J. Eberly, P. Knight, P. Meystre, G. Milburn, J. M. Rai-
mond, H. Risken, M. O. Scully, and H. %'alther for many
fruitful and stimulating discussions on this topic. One of
us (M.F.) would like to express his appreciation for the
hospitality during his stay at the Max-Planck-Institut fur
Quantenoptik, Garching, Germany.

APPENDIX A: CALCULATION OF PHASES AND
ENVELOPES OF INTEGRALS b'„*' FOR v & 0

In this appendix we evaluate the integrals b' —' with the
help of the points of stationary phase

( m (+ )
)
1/2—

1/2

t+mv t —v +
2&v 7T v

(A 1)

Hence the oscillations in W(m) have modified the
stationary-phase point A, t l(2mv) of a„Eq. (3.5). We now
use this expression to evaluate the phases
S'-+'(m =m'+-').

V V

According to Eqs. (3.4e), (3.2c), and (2.2c) these phases
S' +—' read

S' +—'(m =m' —')=mvm' —' —At(m' —')' +I(m',—'+ —,')arctan[(m' —'+ —,
' —a )' /a] —a(m'„—'+ —' —a )' ——

] . (A2)
4

We substitute the arctangent via Eq. (3.7) and neglect the
contribution of —,

' compared to m' —' in the prefactor of
the arctangent term in Eq. (A2) and obtain

S'+-' = — ' (m'+-')'"+ a(m"-'+-' —a')'"+—
V V 2 4

s'.+-' = — — (t —r, )
4~v 4~3v3

X t+nv t r+— + —. (A4)
4

With the help of Eq. (3.9b) we eliminate the square-root
expression in the second term.

(m' —')' +a av(m' —')' — +—
2 4

Let us now calculate the envelope b ' '. According to
Eqs. (2.5), (3.4c), and (3.4d) the amplitudes b' —'(t) read

1 W(m)
& cosP ~=m + ()

(A3)
a's' (m)

X
8pl m ——m' —'

v

1//2

(A5)

We now substitute the expression for m', +—', Eq. (Al) into
this result and find

We obtain the second derivative of the phase 5' —' irn-
mediately from Eq. (3.6)

a's'.+-'(m)

Bm

i,t a
~(+) 4( (+) )3/2 2(m (+) + ( )(m (+) + ) a2)1/2

v V 2 V 2

(A6)

We eliminate the square-root expression in the second term with the help of Eq. (3.9a), which yields

a's'.+-'(m)

c)m

a(m '.-+' )'"
4(m' —') 2(m' —'+ —')v V 2

—

harv(m

' —'
)
'" (A7)

When we substitute the expression for m', —', Eq. (Al), into this expression and neglect the contribution of —,
' in the

denominator of the second term, we find
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According to Eq. (A5) the second derivative of S'„—' only enters in the denominator of O',—'. Therefore these amplitudes
do not depend sensitively on the points of stationary phase. We can therefore approximate m — in this equation by m,
Eq. (2.7), and find
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B17' m=m' —' 4V V
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1/2

t+vrv t —r +
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Note that for t )i, this expression is always positive. With this result we find for the envelopes O'„', Eq. —(A5),
1/2

-(+) 1 8'(m) At

cos P m =m —) vr(2v )

t+mv t r+—
7T V

1/2 (A 10)

APPENDIX 8: CALCULATION OF THE PHASE AND ENVELOPE OF THE INTEGRAL 60+ '

We obtain the stationary phase So+
' from Eq. (A3) by setting v=0 and making use of Eq. (3.15).

S(+) At
(0 2 2 4

[[A t +4(a ——')]'/ +2aI ——
4

The second derivative of the phase So+
' follows from Eq. (A7) and Eq. (3.15),

a's(+ ) (m)
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A, t a
(+) 4( (+) )3/2 Atm(+)0 m0 0

2kt 4'
(A, t +4a —2) At(A, t +4a —2)
2A2t 2+4a( A2t 2+4a2 2 )

) /2

At(A2t2+4a2 —2)3/2
(B2)

We are interested in the tail of the Cummings collapse, that is, in times t appropriately larger than zero. When we use
the asymptotic expression, Eq. (3.2), for W(m), that is,

W(m) A
4cos (5 m=m(

m 0

the amplitude Oo+ '(t), Eq. (A5), reads
1/2

A' t'
- 1/2 exp —e

E' 4

[A. t +4a —2]
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b
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