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Statistics of difference events in homodyne detection
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The statistics of the difference events in a balanced homodyne-detection scheme is studied without us-

ing the standard assumption of a strong, classical local oscillator. Starting from the quantum theory of
photon counting, we derive the probability distribution for the difference events in the two detection
channels. In the limit of the local oscillator being strong compared with the signal, the difference-
number statistics tends to the statistics of the electric-field strength of the signal field. For weak signals,
this limit may be obtained already far from a classical behavior of the local oscillator. While changing
the local oscillator intensity, a transition of the observable concerning the signal field occurs from the
photon-number difference towards the electric-field strength. Such a measurement scheme renders it
possible to observe the quantum features of a coherent state or a single-photon state from the point of
view of the field-strength statistics, a picture which is closely related to classical optics. The possibility
to get some insight in the statistical properties of the phase difference of two microscopic fields is dis-
cussed.

PACS number(s): 42.50.Ar, 03.65.—w

I. INTRODUCTION

Homodyne detection is a well-established method for
measuring phase-sensitive properties of light. Usually, a
signal field is superimposed with a much stronger local
oscillator. Consequently, the resulting field is rather
strong and can be detected with photodiodes. In such a
scheme a photocurrent is produced which may be treated
classically. Nevertheless, from the statistical properties
of this classical current one may get some insight into the
nonclassical statistics of light. Theoretical studies of
homodyne detection have been given in a series of papers;
see, e.g. , [1—5]. In these approaches the mean value and
the variance of the photocurrent have been considered
and related to the corresponding properties of the field
quadratures.

In quantum optics the method of balanced homodyn-
ing plays an important role in experiments devoted to the
detection [6—8] and application [9—11] of squeezed light.
For measuring the squeezing effect a strong local oscilla-
tor is applied and thus one may consider the noise prop-
erties of the photocurrents produced by the diodes. Since
squeezing is related to the variance of the field strength of
the light field under study, the measurement of the
second moment is sufficient for the demonstration and
application of the reduced quantum noise in one field
quadrature. Nevertheless, a direct detection of the prob-
ability distribution of the recorded signal field and the
deriviation of the underlying statistics of the light would
be of some interest. Since homodyning yields insight into
the field-strength statistics one may expect to observe the
corresponding field-strength probability distributions for
typical quantum states as first studied by Schubert and
Vogel [12]. For example, the vacuum field distribution
which is unavoidably connected with a coherent state
should be directly measurable. Furthermore, for a
single-photon state one might observe a double-peaked

probability distribution which is characteristic for the
first excited state of the harmonic oscillator. Effects such
as higher-order squeezing [13] could directly be derived
from the field statistics [14]. Moreover, the field-strength
probability distribution yields insight into the phase
statistics of light fields in the quantum domain [15].

The measurement of the field-strength distribution is
expected to be possible in the limit of a strong, classical
local oscillator. From the point of view of quantum op-
tics, however, it is of some interest to study the statistics
of homodyne detection for a weak local oscillator. For
example, it has been shown that for measuring squeezing
in resonance Auorescence the strength of the local oscilla-
tor field should be comparable with that of the Auores-
cence [16]. In such a situation nonclassical anomalous
moments of the fluorescence may be observed which
disappear with increasing local oscillator strength.
Moreover, homodyne detection has been applied recently
for measuring statistical properties of the phase difference
of two weak coherent fields [17,18]. In homodyne mea-
surements of such weak fields photon-counting tech-
niques must be involved instead of detecting photo-
currents.

In the present paper we study the counting statistics of
balanced homodyne detection and its relation to the
statistics of the light field. The starting point is the quan-
tum theory of light detection [19,20] which is used for
calculating the statistics of the difference events in a bal-
anced homodyne-detection scheme. It is shown that the
difference statistics of the detected events is related to the
probability distribution of the field strength of the signal
field, provided the local oscillator is sufficiently strong.
Examples for the continuous transition from observing
the statistics of the number difference of the signal field to
its field-strength statistics are given for a coherent state
and a single-photon state; for a first discussion of this
behavior see [21]. Moreover, it is demonstrated that the
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measured probability distributions allow some insight
into the statistics of the phase difference between two
weak quantum fields.

Our paper is organized as follows. In Sec. II the
number-difference statistics is derived from the theory of
photon counting and it is related in Sec. III to the field-
strength distribution of the light field under study. Sec-
tion IV is devoted to the properties of the phase
difference between two weak fields. A brief summary and
some conclusions are given in Sec. V.

BS

II. JOINT PROBABILITY AND
DIFFERENCE STATISTICS

Let us consider a typical balanced homodyne-detection
scheme as shown in Fig. 1. The signal field under study is
superimposed with a local oscillator field by means of a
beam splitter. In the two output channels of the device
the statistics of the corresponding difference events is ob-
served. Starting from the quantum theory of photon
counting [19,20] we will study this statistics for arbitrary
ratios of the local oscillator to the signal field strength.

For dealing with the light in the output channels 1 and
2 we have to relate the corresponding photon annihila-
tion operators & i and a2, respectively, to the field opera-
tors of the input fields. Although we do not restrict our
treatment to the usually considered case of a strong local
oscillator we will use the standard notations for the two
input fields. Combining the signal field (characterized by
the annihilation operator b ) with a coherent, local oscil-
lator (annihilation operator a ) by a symmetric (50:50)
beam splitter, the operators for the output fields read

—(a+ib),
2

—(b +i3),
2

and the corresponding photon-number operators 8, 2
=8 i 2&i 2 are given by

&, 2
=

—,'(a +ib )(&+ib ) . (2)

In the case of idealized detectors the statistics of the
difFerence of counts in the two output channels may be
characterized by the operator of the photon-number
difference

(3)

This operator is of the same structure as the operator of
the electric-field strength of the signal field

E=ilgl(b '~ be'~), — (5)

where lgf =[((r3,E) )„„]' characterizes the field-
strength noise in the vacuum state. Comparing the

Based on the usual assumption of a strong, coherent local
oscillator, we may replace the corresponding field opera-
tor by a c number (&~a). Therefore the operator for
the number difference simplifies according to

bR'=ilal(be —b e ) .

FIG. 1. Experimental scheme for balanced homodyne detec-
tion. The signal field (operator b) and the local oscillator field

(8) are superimposed by a beam splitter (BS). The superim-
posed light in the two output channels (operators && 2 ) is record-
ed by two photodetectors (D, 2) and a correlator is used to
derive the difference statistics of the recorded events.

operators b,Rand E, 'the local oscillator amplitude lal
formally corresponds to the vacuum noise:

and the local oscillator phase y is related to the phase of
the signal field y via

where i); (i =1,2) is the efficiency of the ith detector.
From this quantity we derive the distribution of the
difference events b, n =n, n2 acco—rding to (for example,
see [22])

Phn X nP&, n& En-
ny

(9)

We now make use of the fact that the local oscillator is in
a coherent state,

&la)=ala& .

Moreover, applying the P representation [23]

p= Jd'PP(P)IP&&PI

for the density operator p of the signal field, we derive
from Eq. (8) the following result for the joint probability
distribution:

0'+~V'

In the following we are interested in the statistics of
balanced homodyne detection without making the ap-
proximation given in Eq. (4). Thus we have to derive the
statistics including the quantum properties of the
coherent local oscillator. Since the measurement is per-
formed with two photodetectors we have to start with the
joint probability P„„ for the events in the two output1' 2

channels. Using the results of the quantum theory of
photodetection [19,20] this distribution reads as

-„,I, ~nI~I ~
' -„,I,

)Pl ),n2 n2!
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P„„=fd'PP(P) .

'
n&

91
1

e
ni!

—(1/2)g16l

p(x,y)= f d PP(P) 1

(n rI, B, )'

gix—
2

X

I2

2 2

e
n2~

—( 1/2) q2g2 (12)

Based on Eq. (9) we obtain the difference statistics in the
form

X exp

X exp

7l2
2'2

2

1

(~~,a, )'"

(17)

P~„=f d 13P(13)[C,2]
" I~„[(vl,ibad'i82)' ]

( 1 /2)('g&29'] + 7)282)Xe (13)

The difference statistics according to Eq. (9) is now
rewritten as

where p (b.x ) = f dx p (x,x —b,x ) . (18)

&,, ,= al'+ IPI'+2lall& sin(V. —
V p) (14)

I&„being the modified Bessel functions and

ri, d, lr)282 for b, n 0
Ci2 q2a2/17, t'i, for An (0 .

This result for the distribution P&„ is valid for any ratio
of the local oscillator field strength to the signal field
strength, for arbitrary detection efficiencies and for any
quantum state of the signal field. In practice, however,
for some nonclassical states of light such as squeezed
states it may be troublesome to use this expression with
the P representation of the density operator for practical
calculations. In such situations it may be more advanta-
geous to return to the basic equations (8) and (9). Howev-
er, the results derived in this section using the P represen-
tation will turn out to be helpful for deriving some gen-
eral relations. An example is the proof that the measured
difference statistics tends to the field-strength statistics
of the signal field when the local oscillator becomes
sufficiently strong.

III. DIFFERENCE-COUNTING STATISTICS
VERSUS FIELD-STRENGTH STATISTICS

Remembering Eqs. (4) and (5) we expect that the distri-
bution of the measured difference events is closely related
to the probability distribution of the electric-field
strength of the signal field provided the local oscillator is
sufficiently strong. We will derive this relation based on
the photon-counting theory, including the nonunity
efficiencies of the detectors. For this purpose we consider
the joint probability according to Eq. (12) in the limits
~a~ &&~P~ and i);~a~ &&1 (i =1,2). Provided the distri-
bution P(P) is not too pathological, this condition is
sufficient for approximating the Poisson distributions by
Gaussian distributions. Replacing the discrete numbers
of events (which become rather large) by continuous vari-
ables

X exp
[bx —

—,'(i),8, —i),82)]'

n ji+ n2&2
(19)

For simplicity we confine ourselves to equal efficiencies of
the two detectors (i), =i)2=g). In practice this situation
is realized by balancing the detectors. Applying in Eq.
(19) once more the condition that the local oscillator is
strong compared with the signal field ( ~a ~

&& ~P~ ) we find

p(b,x)= J d'PP(P)
(2~~ a ')'"

[b,x —2i) (
a

) ( P )
sin( y —

p&) ]
X exp'—

(20)

Let us compare now the measured difference statistics
with the field-strength probability distribution p (E,y) for
the field strength E at the phase y. For this purpose it is
advantageous to apply the eigenkets of the field-strength
operator [Eq. (5)], which are defined by

&(y) l&(q ) & =&(q ) E(q ) & . (21)

Based on the number-state representation the solution
reads [12,14]

l&(q))=(2~) '" g (2"n') '"~ E( )

—&'(y)
X exp ~

4lgl'

X exp in p —— ~n) .
2

(22)

Inserting into this expression the joint probability density
as given in Eq. (17) the x integration is easily performed,
which yields

p(hx)= f d PP(13)
[vr(ri, 8, + i)282) ]'

(n„n )~2( , x)y, (16)
The field-strength probability distribution is readily de-
rived using the relation

we arrive at p(E, y)= TrIplE(q&) &~E(y)l j . (23)
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Applying now the P representation of the density opera-
tor [Eq. (11)]we may write

p(E, q)= fd'PP(P)p(E, 1p; P&), (24)

that is, the field-strength distribution p(E, 1p) for an arbi-
trary field state described by the density operator p may
be expressed in terms of the field-strength distribution
p (E,y; Ip & ) = I (plE(1p) & I for the coherent state Ip&,
which reads

p(E, y; IP&)=, exp ~—(E —(E&)'
(2vro )'/ 2o.

(30)

(31)

representing the noise contribution due to a nonunity
detection efficiency. The variance of this distribution is
given by

It is seen that the measured distribution p(E, y)
represents a convolution of the field-strength distribution
p (E)= Tr I p I

E & ( El ] with the quantity

1 E2
p (E)= exp) (2 2)1/2 2 2

& E &
=

& PIE(q ) I p &
=2lg I I pl »n(q —

q p) (26)

(32)

and

'=(p [~E(q )]'Ip& = «~E)'&...= Igl'. (27)

Finally we arrive at

p (E,@)= f d p p(p) 1

(2 2)1/2

[E —2lgl IPI sin(q —
happ)]X exp'—

(28)

p (&x)~p(E, y) = f dE'p (E',y)p„(E E'), —

where the scaling given in Eq. (6) is now replaced by

(29)

Comparing Eq. (28) with the statistics of difference events
as given in Eq. (20) together with Eqs. (6) and (7) agree-
ment of both expressions is found for q = 1.

In the general case of nonideal detectors the distribu-
tions p (b,x) and p (E,y) are related to each other accord-
ing to

1

k=O k'- . .

a c}

Bp Qp*

k

g(2)(p) (33)

where 5' '(p) =5( Re I p] )5( Im [p] ). Inserting this ex-
pression into Eq. (13) and integrating by parts we derive
an explicit expression for the difference-counting statis-
tics in the form

For ideal detectors (i)=1) the quantity pz(E) reduces to
a 5 distribution and the field-strength probability distri-
bution is directly observed.

Let us consider the dependence of the distribution for
the measured difference events on the local oscillator am-
plitude for special states of the signal field. Consider the
case of a single-photon state as the input in the signal
channel. Clearly, a single-photon state shows nonclassi-
cal properties. For this reason the I' representation does
not exist in the sense of P(p) having the properties of a
probability density. Nevertheless, we may apply the re-
sult derived above for the difference statistics as given in
Eq. (13). For a single-photon state we have

2 '

1i) 91 /2 5n
I I

91 /2

2 lal 2
[&1,2]'"/21'. [(nin2)'/21 a 12] exp — (pi+ g2) (34)

where

g&/g2 for An 0
&i2= '

g2/g] for An &0 . (35)

This result is valid for arbitrary mean photon numbers of the local oscillator. In the limit of a strong local oscillator we
derive from Eq. (19)

2 '

'+
[~l a I'(q, +q2) ]'" exp

[bx —
—,
' lal (2), —q2)]

la I'(g, +g2)
(36)

It should be noted that the distributions corresponding to
the limit of a classical local oscillator have already been
studied (for 2)) =2)2) by Yurke and Stoler [24). In this ap-
proach the authors start from the field-strength distribu-
tion rather than the photon-counting theory. The nonun-
ity detection efficiency is modeled by an additional beam
splitter in front of the ideal detectors, which partly intro-

I

duces vacuum noise. Such a model for nonideal detectors
is consistent with the result derived above from the
photon-counting theory.

In Fig. 2 the difference statistics Pz'„' is shown for the
case of ideal detectors (i), =2)2=2)=1) and for various
mean photon numbers of the local oscillator. For an ex-
tremely weak local oscillator (Ial «1) the difference
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statistics shows the features expected for a single photon
which is divided into two channels. Since the photon is
observed with equal probabilities in one of the channels
the observed number difference may become An =+1
with a probability of —,. With increasing strength of the
local oscillator the difference statistics approaches the
probability distribution p (E,p; I

1 ) ) for the electric-field
strength in a single-photon state. This tendency is in
agreement with the general proof given above. More-
over, it is seen that the requirement of a strong local os-
cillator is already fulfilled for about five local oscillator
photons compared with the single photon in the signal
channel. In this case the envelope of the discrete
difference-counting statistics is in suitable agreement with
the field-strength distribution. Thus one may observe the
field-strength statistics already far from the case of a clas-
sical local oscillator. In Fig. 3 the situation is shown for
nonideal detectors ( g =0.75 ). The structures of the
field-strength distribution are seen to be smoothed out
and the convolution of the field-strength distribution with
a Gaussian noise distribution as given in Eqs. (29) and
(31) is a good approximation already when the mean
number of local oscillator photons is about 5.

Consider now the difference statistics for a signal field
in a coherent state IP). Inserting P(P') =5( )(P—P') into
Eq. (13) we arrive at

p(p) [( jan/21 ( y y )I/2

X expI —
—,'(r1,8, +r1282) I, (37)

where 8i 2 and C, 2, respectively, are defined in Eqs. (14)
and (15). The limit of a strong local oscillator is easily
derived from Eq. (19). In Fig. 4 the behavior of the
difference distribution is shown for a coherent signal field.
Although the mean number of signal photons is assumed
to be 1 (IPI =1), the distributions significantly differ
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from that of a single-photon state. When the local oscil-
lator is blocked the measured number difference is zero
with large probability. Moreover, values of hn =+1,+2
are seen to contribute significantly. This is due to the
fact that the coherent state represents a Poissonian distri-
bution of photons. For increasing numbers of local oscil-
lator photons the difference distribution again ap-

0.6

FIG. 3. Difference statistics P&„ for a single-photon state for
nonideal photodetectors (g&=F2=0.75) and for various mean
photon numbers of the local oscillator: ~a~ =0 (a), 0.5 (b), 5 (c),
10 (d). The smooth curves represent the appropriately scaled
probability distributions p(E, y), which are the convolution of
the field-strength distributions p (E,y) with the noise distribu-
tion p„(E)describing the inhuence of the nonideal detectors.
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FIG. 2. Difference statistics Pz„ for a single-photon state for
ideal photodetectors (q&=q2=1) and for various mean photon
numbers of the local oscillator: ~a~ =0 (a), 0.5 (b), 5 (c), 10 (d).
The smooth curves represent the appropriately scaled probabili-
ty distributions p (E,y) of the electric-field strength.

FIG. 4. Difference statistics Pz„ for a coherent state of mean
photon number equal to 1 for ideal photodetectors (g& =g2=1)
and for various mean photon numbers of the local oscillator:
~a~ =0 (a), 0.5 (b), 5 (c), 10 (d). The phase diff'erence is given by
hy =y —y&=0. The smooth curves represent the appropriate-
ly scaled probability distributions p(E, y) of the electric-field
strength.
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proaches the probability distribution for the electric-field
strength in the coherent state under study. Changing the
phase of the local oscillator, the Gaussian field-strength
distribution is shifted (see Fig. 5). Remembering the
field-strength distribution according to Eqs. (25)—(27), the
observation of this behavior would be a demonstration of
the quantum physical counterpart of a classical wave.
The quantum physical coherent state behaves like a clas-
sical wave which is superimposed by the vacuum noise,
the latter scales in the homodyne-observation scheme un-
der study with the local oscillator amplitude; see Eq. (6).
Note that we need not consider the situation for nonunity
detection efficiency (il&1) for a coherent signal field. In
such a case the distribution remains unchanged when we
use the mean numbers of detected counts i)lal and illpl
instead of the mean photon numbers lal and IPI, re-
spectively [see Eq. (37) together with Eq. (14)].

To our knowledge neither the homodyne statistics P&„
in the case of two microscopic fields nor the field-strength
distribution p (E,y) for a strong local oscillator have been
observed so far. As discussed above the measurement of
the latter would give some insight into the behavior of
quantized light fields from the point of view of the
electric-field strength. The field-strength representation,
which was introduced to quantum optics by Schubert and
Vogel [12], enables us to directly compare some quantum
features with the corresponding classical behavior of the
electric-field strength we are familiar with from classical
electrodynamics. Moreover, the homodyne measurement
of the difference statistics shows (with increasing strength
of the local oscillator) a transition from the observable
5& for the number difference of the signal field to its field
strength P, . It should be rather simple to observe these
distributions for a coherent signal field. After splitting a
laser field into two parts they can be used as the local os-
cillator and signal fields. In this manner the phases are
correlated and the phase-sensitive distributions are easily
measured by varying the phase difference between the in-
put beams. For detecting the homodyne difference statis-

ties and the field-strength statistics of a single-photon
state, the field state could be prepared similarly to the ex-
perimental demonstration of localized single-photon
states by Hong and Mandel [25]. In this case the phase
diffusion of the local oscillator is meaningless since the
corresponding distributions of the single-photon state are
phase insensitive.

We would like to emphasize that a first measurement
of the statistics of difference events has been performed
for twin pulses of light [26]. In this experiment the pho-
ton numbers are rather large and correlated pulses are
used instead of the local oscillator and the signal field.
Nevertheless, the measured distributions could be derived
from the counting theory in a similar manner as done
above for the balanced homodyne-detection scheme.

IV. PHASE STATISTICS AND HOMODYNE
DETECTION

The phase probability distribution of a quantum state
P& of the radiation field may be introduced on the basis

of the phase state

(38)

(39)

Recently a truncated version of these phase states has
been used to define a Hermitian phase operator [27].
Since we only deal with physical states

I f & containing a
finite energy the truncation of the Hilbert space is
superAuous. The problem connected with the distribu-
tion p(y;lg&) consists of the fact that there exists no
scheme for the measurement of this quantity. Standard
approaches to measure phase properties are based on in-
terference techniques, such as homodyne detection. Mea-
sured operators for the sine and cosine of the phase
difference of the two input fields have recently been
defined by Noh, Fougeres, and Mandel [17,18]. Their
operator definitions are directly related to a homodyne-
measurement scheme and consequently the agreement be-
tween theory and experiment is very good.

A different way to introduce phase distributions which
are related to homodyne detection was proposed by
Vogel and Schleich [15]. This concept is based on the
probability distribution of the electric-field strength [12].
The basic idea is closely related to the classical under-
standing of the phase of a wave, which may be character-
ized by the electric-field strength E(p) considered as a
function of the phase y. In quantum physics the corre-
sponding statistical information is contained in the field-
strength probability distribution p (E,y) as defined in Eq.
(23) together with Eq. (22). When the field-strength
statistics has been observed via homodyne detection (see
Sec. III) a measurable phase distribution can be intro-
duced in the following manner [15]:

FIG. 5. The same as in Fig. 4 but for the phase difference

0'p (40)
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that is, the field-strength distribution is considered for the
field value E =0 as a function of the parameter-valued
phase y. The normalization constant JV is given by

J dpi &E(y)=0lt/j& I' (41)

In this approach no phase operator is required, the fun-
damental operator being the well-defined field operator k
The conditions for a suitable agreement of the phase dis-
tribution based on the measurable field strength with the
phase distribution given in Eq. (39) have been studied in
[15]. For example, consider the situation for a coherent
state Ig& = IP&. According to the scaling given in Eqs.
(6) and (7) we derive from Eqs. (25)—(27) together with
(40)

pE(y; Ip&)=IV, exp
1

(2vro )' (42)

where

&E & =21al IPI »n(y qp)—
and

(43)

(44)

It should be noted that the normalized distribution
pz(y; IP&) as given by Eqs. (41)—(44) is independent of
the local oscillator amplitude. On the other hand, we ob-
tain from Eqs. (38) and (39)

clusions of [15] it is seen that both distributions become
close together when the photon number increases. We
find that already for IPI =4 both kinds of phase distribu-
tions show an excellent agreement.

For a squeezed state /3&, the phase distribution given
in Eqs. (42)—(44) remains valid when we replace cr by cr,
with

~,' = I
~ I'[ I+21 vl'+21 vl(1+ I

vl') '"cos(2q —g. ) ] .

(46)

The quantities I/3I and Ivl, respectively, characterize the
coherent amplitude and the strength of squeezing of the
signal field, IvI=0 corresponds to a coherent state. In
Fig. 7 examples for this phase distribution are given. For
different orientations of the squeezing ellipse narrow,
broad, or asymmetric phase distributions may be ob-
served.

Let us now return to the more general situation of the
difference counting statistics for an arbitrarily weak local
oscillator. We may generalize the concept of the phase
distribution pz(y;If&) for the quantum state lg& in the
limit of a strong local oscillator to the case of the phase
difference of two microscopic light fields. The latter
problem is closely related to that studied by Noh,
Fougeres, and Mandel [17,18]. Generalizing the ap-
proach of [15], an operational distribution pa„(hy) for
the phase difference can be introduced by considering the
statistics P&„0 and as a function of the phase difference

0'a 0'p:

p(ip, lp&)= e ') ' g exp[ im(y—yp)I—/31-
2m o v'm!

(45)

pa„(b rp) =JRPa„=o,

with the normalization constant

(47)

In Fig. 6 the phase distributions given in Eqs. (42) and
(45) are compared for various mean photon numbers IPI
of the signal field. In agreement with the general con-

JR= ~ f d(b, rp)Pax=o '
0

(48)

For a strong, coherent local oscillator this quantity tends
to the operational phase distribution pz(y; li/ & ). Consid-
er now the more general situation for two microscopic
fields which are in coherent states la & and I/3&. In this

1.5

(c)

I I
I y

I
~ I

I

i

~ ~

I
~ I

0.5 q:,

00 27T 0
'o

FIG. 6. Comparison of the phase distributions
p(y)=p(y; IP) ) (solid lines) and p(p)=pE(qr IP) ) (dashed
lines) for pE= m /2 and for various mean photon numbers

I pl of
the signal field: IPI =0 (a), 0.25 (b), 1 (c), 4 (d).

FICx. 7. Phase statistics p(y)=pE(y;IP&, ) for a squeezed
state (with

I pl = 1, I vl = 1, (pE=O) and for various orientations
of the noise ellipse: y =0 (solid line), g =m. /2 (long-dashed
line), and y =m (short-dashed line).
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case we easily obtain from Eq. (37)

&~Z.'=o=la. =o(tltn2~1~2) e"PI —(91~1+92~2)] .

(49)

In Fig. 8 the distribution pa„(b,y) is shown for a ratio of
the mean photon numbers ~a~ /~P~ =2, which is far
from the situation of a strong local oscillator. It is seen
that, although the distribution Pz„of the difference
events is discrete we arrive at a continuous distribution
pa„(b,y) for the phase differences, y which becomes
sharper with increasing mean photon numbers.

A quantitative comparison of the phase statistics based
on the distribution pz(y, ~f) ) with the measured data
and the corresponding measured phase operators of Noh,
Fougeres, and Mandel [17,18] was presented by Lynch
[28]. For the data recorded for a strong local oscillator
agreement of both concepts was found for photon num-
bers of the signal field larger than 1. Based on the distri-
bution pa„(b,p) we may now compare the corresponding
variances of the phase quantities with the data for a weak
local oscillator. For this reason we calculate the mo-
ments of the phase quantity I' [where F=S= sin(4y)
and F =C = cos(b, q&), respectively, being the sine and the
cosine of the phase difference] according to

(F")= f d(&y)F"(&q )Pa„(&y), (50)
+77 /2

where I+ /2 means integration over a vr interval around
the peak of the distribution p~„(hy). This approach gen-
eralizes that of Lynch to arbitrarily weak local oscillator
fields. In Fig. 9 we compare the moments calculated
from Eq. (50) with the data presented in [17]. Data
points for (signal) photon numbers below 1 are not given
since in this case one cannot expect a suitable agreement
already for a strong local oscillator; see [15,28]. For a ra-
tio of the photon numbers of the local oscillator to the
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signal field of 7 the agreement is rather good. Thus we
may conclude that this ratio is already large enough to be
considered as a strong local oscillator situation, which is
in agreement with our findings for the difference statistics
in Sec. III. For a ratio of 1 some deviations are found to
appear. However, compared with the deviation between
the measured data and other phase concepts that already
appear for a strong local oscillator (see [17]) the agree-
ment is still surprisingly good. The origin of the similari-
ties may be seen in the same type of measurement scheme
which is used for defining the phase properties. On the
other hand, the two concepts are quite different from
each other. Whereas Noh, Fougeres, and Mandel define
phase operators, a c-number phase appears in our ap-
proach. Consequently, the data needed for deriving the
curves (according to Fig. 9) from the homodyne measure-
ment are quite different for the two kinds of phase quanti-
ties.

FIG. 9. Comparison of ((b,C) ) + ((hS) ) as calculated
from the operational distribution pz„(Ay) (solid lines) with the
experimental data (markers) of Noh, Fougeres, and Mandel
[17]. For comparing with the measurement we have introduced
the quantity (m, ) =2t)~P~ as used in [17]. The upper curve
(and markers) corresponds to a ratio of mean photon numbers
~a( /~P~ =1; for the lower curve (and markers) ~a~ /(P~'=7.

0.5

0
i.5

(c)

0.5

00 27T 0 2TI

FIG. 8. Distribution pz„(hy) of the phase difference of two
coherent states for the ratio of the mean photon numbers
~a~ /~P~ =2 and for various mean photon numbers of the local
oscillator:

~
a

~

=0.2 (a), 1 (b), 4 (c), 10 (d).

V. SUMMARY AND CONCLUSIONS

In the present paper we have studied the statistics of
the difference events in a balanced homodyne-detection
scheme. The starting point of our consideration was the
quantum theory of photon detection. From the joint
probability of the events measured by the two detectors
involved in the detection scheme we derived the distribu-
tion for the difference events of both counters. From this
quantum statistical point of view the usual case of homo-
dyne detection is considered, that is, the local oscillator is
strong compared with the signal field. In this limit and
for ideal detectors the difference statistics represents the
probability distribution of the electric-field strength of
the signal field. Nonideal detectors yield a convolution of
the field-strength distribution with a noise distribution
characterizing the nonunity detection efficienc. Experi-
ments which use the balanced detection scheme in the re-
gime of photon counting have recently been performed in
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connection with the phase statistics of quantized light
fields. The determination of the difference statistics in
such an experiment would render it possible to demon-
strate a change of observables from the difference of the
photon numbers of the signal field in the two detection
ports to the electric-field strength by simply increasing
the intensity of the local oscillator. Using two coherent
input fields such an experiment would allow one to
directly observe the quantum counterpart of a classical
wave, including the vacuum noise distribution for the
electric field, which is displaced in a phase-sensitive
manner when the local oscillator phase is shifted with
respect to the signal phase. Moreover, using a localized
single-photon state as the signal field one may demon-
strate the double-peaked field-strength distribution of a
single photon, which represents the quantum optical ana-
log of the spatial probability distribution for the harmon-
ic oscillator known from any quantum-mechanics text-
book. For the case of weak signal fields (for example, a
single photon) we have found that the difference statistics
of the superimposed light already is close to the field-
strength distribution when the mean number of local os-
cillator photons is about 5, that is in a regime far from a
classical description of the local oscillator.

It has been shown recently that from the field-strength
probability distribution of a quantum field one may also
get some insight into its phase statistics. In the present

paper we have generalized this operational concept in or-
der to consider the properties of the phase difference of
two quantum fields of low mean photon numbers. The
phase-difference distribution is derived from the distribu-
tion for the difference events in the homodyne experi-
ment. The latter quantity is considered for a difference of
events equal to zero as a function of the phase difference
of the input fields. In this approach the phases play the
role of parameters. Nevertheless, the phase information
available for two microscopic input fields may be rather
close to that based on recently defined measured phase
operators.

Tote added. We would like to thank M. G. Raymer for
bringing a paper of S. L. Braunstein [Phys. Rev. A 42,
474 (1990)] to our attention in which homodyne detection
is also considered for weak local oscillators. Compared
with our approach Braunstein starts with the definition of
a characteristic function for the operator of the photon-
number difference rather than from the theory of light
detection. For the special case of unity detection
efficiency some of our results reduce to that found by
Braunstein.
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