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Closed-form solutions for the production of ions in the collisionless ionization
of gases by intense lasers
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We derive in closed form the solutions to the rate equations for sequential field ionization of gases by a
focused laser beam. We obtain the low-intensity and the high-intensity limits of the ion yield for each
charge state produced by the laser pulse. Furthermore we derive the scaling laws for the appearance in-

tensity and the saturation intensity of the ion yield. We find that the appearance intensity depends not
only on the binding energy of the ionized electron but also on the quantum numbers of the shell from
which the electron ionizes. We interpret this dependence on the quantum number to be the species
dependence in the appearance intensities discussed by Meyerhofer and co-workers [Phys. Rev. Lett. 63,
2212 (1989)]. Formulas for five ionization models are presented.

PACS number(s): 32.80.Rm, 32.80.Wr, 42.50.Hz, 32.80.Fb

I. INTRODUCTION

Although the equations for calculating the ion yield in
the ionization of collisionless gases by lasers appear to be
simple, no one has yet solved them in closed form. The
absence of closed-form solutions severely limits our abili-
ty: (i) to predict ion yields for new sets of parameters, (ii)
to test the atomic models of ionization, and (iii) to im-
prove these models. Their absence also hampers our abil-
ity to use the ionization process for practical applica-

tions. For example, closed-form solutions enable us to
examine appearance and threshold intensities for ion pro-
duction easily and to detect any significant deviations
from the sequential prediction. Since the ionization of
gases is essential for collisionless-recombination lasers [1],
relativistic propagation of ionization fronts [2], and com-
petes with the production of higher-order harmonics in
optical harmonic generation [3,4], our closed form solu-
tions may also be applicable to investigations in these
fields of physics.

TABLE I. Scaling laws and formulas for the simple-atom and cycle-averaged simple-atom models.
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'Kl and Kp are the modified Bessel functions of the second kind of the order of 1 and 0.
Ki, is the repeated integral of Ko of the order of 1, Sec. 11.2 of Ref. [18].
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TABLE II ~ Scaling laws and formulas for the complex-atom and cycle-averaged complex-atom models.

Quantity Complex-atom model Cycle-averaged complex-atom model
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"Equations (28) and (29) of text.

We have examined five ionization models and have
found closed-form soiutions for them. These solutions
give scaling laws for the appearance intensity as a func-
tion of the ionization potential. The scaling laws derived
from the static complex-atom model [5,6] and its cycle-
averaged variant [5,6] agree with the measured [7—9] ap-
pearance intensities better than the scaling laws of the
other three examples. Furthermore, the scaling laws for
these two models predict the species dependence of the
measured appearance intensities for noble gases.

Augst et al. [7] have argued intuitively that laser
suppression of the Coulomb barrier predicts the species
dependence. On the other hand, Gibson, Luk, and
Rhodes [8] have argued that barrier suppression could
not be the reason for the species dependence because the
suppression of the Coulomb barrier yields unrealistically
large rates. They concluded that the barrier-suppression
model works because of a fortuitous cancellation of er-
rors. We show the species dependence to be a depen-
dence on the quantum numbers of the valence shell from
which the electron is removed. This dependence on the
quantum numbers arises in the complex-atom model be-
cause the rate at which an atom or ion ionizes in this
model depends not only on the binding energy of the elec-
tron but also on the initial state of the electron.

We also derive saturation intensities from our closed--
form solutions. The saturation intensity I„, is where the

growth in the ion-yield curve levels oF to a —,
' power law

in intensity. In contrast to experimentally defined ap-
pearance intensities, saturation intensities are indepen-
dent of the ambient gas density. Raising the gas density
shifts the ion yield versus intensity curve upwards but
does not alter the shape of the curve. If the goal is to use
ion yields to measure intensities [10], then the saturation
threshold may be a better indicator of intensity than the
detection threshold; the density independence of the satu-
ration threshold eliminates an experimental uncertainty.

Tables I—III show our results for five rate laws. The
five cases are the following: (i) the static simple atom [11],
(ii) the cycle-averaged simple atom, (iii) the complex atom
[5,6], (iv) the cycle-averaged complex atom [5,6], and (v)
the multiphoton-ionization (MPI) model [12]. We derive
only the results for the static simple atom because the
reader can easily use the integration technique, provided
in Sec. IV, to derive the formulas for cases 2—4. The
form of the MPI rate law is different from the other four
so the technique is not applicable. However, the MPI
rate law is simple enough to permit derivation of the cor-
responding formulas by direct integration.

II. THE RATE EQUATIGNS

We assume that the ambient gas density is low enough
that recombination and collisional ionization occur on a
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TABLE III. Scaling laws and formulas for the multiphoton-
ionization model.
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Although we use atomic units in the formulas, we plot
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Here Fo is the peak strength of the electric field, k is the
laser wavelength, wo is the 1/e radius of the focal spot,
and ~ is the full width at half maximum of the pulse.

'n is the number of photons required to ionize the atom.
y was chosen so that the MPI rate law joins smoothly to the

simple-atom rate law.
'B(u, v) =I (u)I (v)/I (u +v), Eqs. (3.512.2) and (8.384.1) of
Ref. [19]. 1s

A. Closed-form solutions

The formal solution of Eq. (1) at a fixed point in space

time scale that. is greater than the width of the laser pulse
and any drift time to a detector. We also assume that
ionization occurs sequentially [13]. This model ignores
multiple ionization processes in which two or more elec-
trons detach simultaneously (or almost simultaneously)
from the atom or from the parent ion. Although some
evidence exists for these higher-order processes [14,15],
sequential mechanisms describe the bulk of the ion yield
[7—9, 12,16,17]. The rate equations for sequential ioniza-
tion under collisionless conditions are

dpo

dt ~oPO

po(t) =exp[ $0(t )], —

p I (t ) =exp[ —P&(t ) ]J exp[PI(s ) ]I 0(s )po(s)ds,

p2(t ) =exp[ —$2(t) ] J exp[$2(s) ]I,(s)p, (s)ds,

p. —I(t) =exp[ —0.—i(t) l J expl 0.—i(s) l

XI „2(s)p„2(s)ds,
p„(t)=I I „,(s)p„,(s)ds,

where Pl, is the running integral of I k,

(4)

dP1 = —I g)I+I (go,dt

dpn =I„
dt

Here pk represents the probability that the atom is k
times ionized. The rate coefficients I k depend implicitly
on both space and time, and are given for example by the
dc tunneling formula [11] (which Gibson, Luk, and
Rhodes [8] call the static simple atom cases),

It is generally impossible to solve Eq. (4) beyond po in
closed form because the higher indexed pk are multiple
integrals of po. Figure 1 shows the numerical integration
of Eq. (4) for the laser parameters of I0=3X10' W/cm,
X=616 nm, w0=7 pm, and ~=125 fs. The time evolu-
tion of the ionizing laser pulse, also shown in Fig. 1,
reconfirms Lambropoulos's assertion [12] that the rising
edge of the intense laser pulse creates the lower charge
states.

Figure 1 graphically illustrates the sequential nature of
Eq. (1). The low temporal overlap of the probabilities
means that the charge states exist sequentially in time,
and allows us to simplify Eq. (4). The integrals in Eq. (4)
are difficult to solve because they require the probabilities
of the lower charge states. For example, solving for pk
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FIG. 1. The time evolution of the ionization state of argon at
a fixed point in space with the ionizing laser pulse below. These
curves illustrate graphically the sequential ionization process as-
sumed in Eq. {1). They show that the charge states exist in al-
most nonoverlapping periods of time.

involves the subset of equations for the lower charge
states I k —2, k —3, . . . , 0 I . However, it is not necessary
to use the entire subset because the temporal separation
implies that the probabilities of the adjacent charge states
contain the greatest contribution to pk &. Furthermore
it is sufficient to use only the decaying edge of the lower
charge-state probability. Since pk &

can be accurately
represented by its decaying edge exp( —Pk, ) in the in-
tegrand of pk in Eq. (6), the substitution of exp( —Pk, )

for pk, in the right-hand side of Eq. (4) yields

po(t) =exp[ 0o(t)]
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p„(t)=f I „,(s)exp[ —P„,(s)]ds .

Equation 6 is an exact solution for po and p &
but is an ap-

proximation for the other probabilities.
Equation 6 cannot be evaluated in closed form for an

arbitrary laser-pulse envelope. However, for narrow laser
pulses, a very good representation for the final probability
at the extinction of the pulse is
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1.76
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is the total area under the rate curve. Equation 8 results
from the integration of the dc tunneling rate for the hy-
perbolic secant pulse of Eq. (3) over all time. K& in Eq.
(8) is the modified Bessel function of the order of 1 [18].
Table I—III give the results for the other rate laws. Fig-
ures 2(a) and 2(b) compare Eq. (7) and the results of nu-
merically integrating Eq. (1). We can find no discernible
difference between them, and we show in Appendix A
that the global error in Eq. (7) is exponentially small.

We can understand intuitively how Eq. (7) follows from
Eq. (6) by assuming the rates to be narrow square func-
tions of time. We use r in Eq. (8) as the widths of the
effective square functions, and we use the factors multi-
plying ~ as the heights of the effective square functions.
We may also interpret the height of the effective square
function Hk as the averaged rate for ionizing charge state
k by a square laser pulse of width ~. The substitution
Hk~ for Pk in Eq. (7) would be the result of the substitu-
tion and the integration of these square functions in Eq.
(6). In Appendix B we prove that the value of every pk in

Eq. (7) is between zero and one. Thus we may still inter-
pret pk in Eq. (7) as the probability for the charge state k
to be present at a given laser intensity.

Equation (7), being the solution to the rate equations of
Eq. (1), is a critical formula for two reasons. First, it
reduces the time for calculation of the ion yield. The rate
equations are stiff differential equations because the rate
coefficients differ by many orders of magnitude at each
time and because the rate coefficients are very rapidly
varying implicit functions of time (according to the
laser-pulse envelope); therefore, the numerical integration
of Eq. (1) requires small time steps, and is the most time
consuming part of the calculation for an ion yield.
Second, we can deduce the threshold intensity I,„„,.

For a given point in space, Eq. (7) gives the final ion
balance as a function of intensity. It describes how the
population of charge state k (p&, for example, in Fig. 2)
increases and diminishes with intensity. The intensities
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In this intensity regime, it is also valid to use the asymp-
totic form of Pk+& in Eq. (11). Therefore the saturation
field strength is

tively insensitive to pI, +, (by a factor of a few) because
the defining pk+, value is weakened by the logarithm
function of Eq. (10), and is also outweighed by the
numerator of the logarithm function, which is of order of
10 . Table IV lists the threshold intensities calculated
from Eq. (10) for k=0, . . . , 4. A comparison of the
threshold intensities in Table IV and Fig. 2 demonstrates
the accuracy of Eq. (10).

The threshold field strength defined in the above
manner is diff'erent from the experimental appearance
strength. The threshold field strength is where the ion-
ization probability turns on, but the appearance field
strength is defined pragmatically to be the lowest field
strength at which an experimenter detects a few ions.
Clearly the number of ions detected depends on the am-
bient gas density and the detection eKciency, so it follows
that the appearance field strength does also. The thresh-
old intensity is independent of the ambient gas density
because we define it in terms of the ionization probability
of a single atom or ion.

Similarly, we define the saturation field strength of
pk +, as the field strength where pk +, decreases to the
value of .01. As shown in Figs. 2(a) and 2(b), the satura-
tion intensity is greater than the threshold intensity. In
this intensity regime, P& and Pk+& are both large. How-
ever, Pk is larger than Pk+t, so exp( Pk+&) do—minates
exp( —Pk). For high field strengths, pk is approximately
equal to exp( —Pk) because

Eq. (10) predicts the threshold field strength. This loss of
accuracy in predicting the saturation field strength
occurs because both Pk and Pk+t must be very large for
the approximation of Eq. (11) to be valid, but Pk and

Pk+, are only of the order of a few. Like the threshold
field strength, the saturation field strength is independent
of the gas density because we define it in terms of proba-
bilities and not in terms of integrated ion counts.

Equations (9) and (11) have simple interpretations for
the probability distribution functions shown in Fig. 2(b).
The rising edge of pk+, is Pk, and its decaying edge is
exp( —Pk+&). Furthermore, since Pk is the total area un-
der the 1 k rate curve, Pk represents the degree of ioniza-
tion of charge state k. Until the laser intensity rises
enough to ionize charge state k+ 1, the probability of the
ions being in charge state k+ 1 increases with increasing
laser intensity. Once the laser intensity rises enough to
ionize charge state k+ 1, the probability of the ions being
in charge state k+1 decays like exp( —Pk+, ).

III. ION- YIELD CURVES

To determine the ion yield, we need to integrate Eq. (7)
over all space; integrating over isointensity shells greatly
simplifies the integration. In mathematical terms, we
perform the volume integral by changing the integration
variable from volume to intensity. We can enhance our
physical understanding (i) of how the change of variable
simplifies the spatial integration, and (ii) of the spatial in-
homogeneity of the ionization in the focal region of the
laser. Figure 4 shows the spatial distributions for Ar +

and Ar + produced at the focus of the Gaussian beam
with a peak intensity of 10' W/cm . The ions fall within
borders defined by the threshold and saturation isointen-
sity contours. The laser pulse creates the higher charge
states close to the focus where the electric field is the

2 z, 3/2
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( 6ru pEk + t ) ( 27/ 1 .76 )&7T /2
ln

4.605

(12) 40

Ar'+

Ar4+

The value 4. 605= —ln(0. 01) in Eq. (12) arises from set-
ting pk+, equal to 0.01 in Eq. (11). An inspection of
Table IV and Figs. 2(a) and 2(b) shows that Eq. (12) does
not predict the saturation field strength as accurately as

20

E 0
X

TABLE IV. Argon threshold and saturation intensities for
the simple-atom model calculated using Eqs. (10) and (12). The
parameters used are coo=4. 1X10' sec ', ~=1.25X10 ' sec,
and the Ek's are twice the ionization potentials of argon in

atomic units.
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FIG. 4. The spatial distributions for Ar and Ar + pro-
duced in a Gaussian beam with peak intensity of 10' W/cm .
The focus is for an f number of 5. The ions fa11 within borders
defined by the threshold and saturation isointensity contours.
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V= VoI —', g + 4g —
—,arctan(g)],
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(13)

highest and the lower charge states further from the
focus where the electric fields are lower. The small tem-
poral overlap of the probabilities for a fixed intensity is
apparent in the low spatial overlap of nonconsecutive
charge states such as Ar + and Ar + at the end of the
pulse.

For a Gaussian beam of peak intensity I0, the volume
[9] inside an isointensity boundary defined by I is
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Equation (13) is the change of variable needed for the
spatial integral. We can find the ion yield Nk+, for ion
k + 1 as a function of the peak intensity from

odV
Nk+ ) =p pk+ )dI,

0 dI (15)

where p is the density of the target gas.

A. Low-intensity limit of Eq. (15)
and appearance intensities

) 0-25

g 013
g p15

Intensity(W/cm"

g 016

FIG. 5. The low intensity limit, Eq. I,'16), of N
~ /p, the

density-normalized ion yield for Ar'+, is compared to the nu-
merically calculated results. The two curves diverge at the
theoretical threshold intensity of Eq. (10), whose value in Table
IV is 1.00X 10' W/cm .

Nk+I=(6cooEk) p(m Vo)(Fk+Fk+Fk )
27- 2 3

1.76

1X exp (16)

The ion-yield curve for laser fields below the theoreti-
cal threshold fields calculated from Eq. (10) can be ob-
tained in closed form by substituting Eq. (9), the low-
intensity-field form of pk+„ into Eq. (15) and performing
the integration [19],

The appearance intensity is relatively insensitive to all
the parameters that are in the logarithmic denominator
of Eq. (18). If we want to determine laser intensities from
ion yields, then the appearance yield is a good measure of
intensity because of this insensitivity. On the other hand,
this insensitivity hinders our ability to distinguish atomic
ionization models based on appearance intensities.

The important physics in Eq. (18) is that the appear-
ance field strength is predominantly a —', power law with
respect to the ionization potential and departs from this

where

F =
k 2 E3/2

k

(17) g p17

Figure 5 compares Eq. (16) with the numerically integrat-
ed results. The two curves are numerically identical for
intensities below the theoretical threshold intensity and
diverge for intensities above it.

The experimental appearance field can be derived from
Eq. (16) by finding the field at which Nz+, is equal to a
few. For example the appearance field for N, ions is

2 E3/2
k

(18)
(6co+k )(2r/l. 76)p(vr Vo )

ln

g 016

g 015

g p14

With N, set equal to 1, Fig. 6 shows the appearance in-
tensity calculated from Eq. (18) plotted as a function of
the ionization potential for three gas densities. This plot
illustrates the density dependence of the appearance in-
tensities in Eq. (18). Since density is a macroscopic prop-
erty of the gas, we cannot associate an atomic interpreta-
tion to the appearance intensity.

p1 3
0

I I I I I I I I I I I I I I I I ~ I I

20 40 60 80

ionization Potential(eV)

100

FIG. 6. The appearance intensity as a function of ionization
potential is plotted for the three target gas densities of 3X10,
3X10,and 3X10' cm
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+ oo

cA YcA dt

p

(23a)
g 017

7 CA (23b)
g 016

1 + /3 Pdt exp
p —~ Fk Fk

Furthermore Eq. (23b} can also be expressed as
P

a
ap

(24) g p15
~ l

~

~ n=1

o n=2

A comparison of Eqs. (8) and (24) shows that Eq. (24) can
be expressed in closed form as

P
14

l1=3

o 0-4

n=5
2v

4'cA PcA
1 76

p~ p

with the provision that /3 be set equal to 1 in Eq. (25) after
the differentiation process.

We may also use this method to find the low-intensity
form of the ion-yield curve, which is the volume integral
of Eq. (25). Furthermore cycle averaging is the process of
integrating over the phase of the E field. We note that
differentiation by /3 commutes with both volume integra-
tion and phase integration. Therefore the other formulas
in Tables I—III can be derived explicitly by this integra-
tion method.

V. THE SPECIES DEPENDENCE
OF THE APPEARANCE INTENSITY

13 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I10
0 50 100 150

ionization Potential (eV}
FIG. 8. The appearance intensity of the static complex-atom

model for n =1, 2, 3, 4, and 5. These curves represent the ap-
pearance intensities of He, Ne, Ar, Kr, and Xe. The curves of
lower n values lie above those of higher n values, which is order-
ing observed in the data of Augst and Gibson. The agreement
can be improved by allowing for noninteger values of n

(quantum-defect theory [21]), and by employing nonzero 1 and
m values for the subshell dependence of Eq. (28).

For the convenience of the reader, we reproduce here
from Table II the appearance intensity for the complex-
atom model [5,6],

2E3 /2
k

1 CA( 2r/1 .76 )p( 77 Vo )
ln

(26}

For the complex-atom model, Eq. (26) depends on the
quantum numbers of the valence shell from which the
electron escapes through the factor,

Ek
VCA ~0 Glm Cnl ~

2
(27)

which is the frequency scale of the complex-atom rate
law. For completeness, the G& and C terms in Eq. (27)
are

(2l+1)(l+ im i)! 1

2 (
/
m

/
)!(l —

/
m

[ )! 3
(28)

C2
nl

2'
2e' 32. —i

(2~n )
(29)

Figure 8 plots the appearance intensity calculated from
Eq. (26) as a function of the ionization potential for
different values of n corresponding to the valence shells
of noble atoms He —Xe. We computed these curves with

l and I set equal to zero. The appearance intensities
shown in Fig. 8 separate into a group of curves labeled by
the principle quantum number n. The curves of smaller n
values lie above those of larger n values. This ordering
means that laser fields remove electrons from higher
valence shells more easily than from lower valence shells
(for a fixed ionization potential). This characteristic or-
dering was observed in the data of Augst (Fig. 2 of Ref.
[17]) and of Gibson (Fig. 1(a) of Ref. [8]). We interpret
the observed species dependence to be the principal-
quantum-number dependence as suggested in Eq. (26).
Substitution of the ionic charge Z and effective principle
quantum number n' for the ionization potential yields
the same Z dependence as derived in the barrier
suppression model [7].

The appearance intensity decreases with increasing n
because the y term in the denominator of Eq. (26) is an
increasing function of n (in the range of 1 & n & 5). Our
effective quantum-number dependence of this intensity is
slightly stronger than (n*) . For comparison we point
out that the barrier-suppression model predicts a (n *)
dependence. In Fig. 9, we plot C as a function of n, and
we can see that C is a strongly peaked function of n.
The appearance intensity is sensitive to n because C is
large enough to overcome the weakening effect that the
logarithmic function has on it in Eq. (26). Furthermore
Fig. 9 shows that C peaks for a value of n close to 5.6.
Consequently, Eq. (29) implies that for l=m =0 radon,
which has a valence shell of n =6, should have the same
or a higher appearance intensity than xenon. On the oth-
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for (i) threshold intensities, (ii) appearance intensities, (iii)
saturation intensities, and (iv) the integrated ion yields as
functions of laser intensities. These scaling laws also en-
able us to probe efticiently a large domain of atomic pa-
rameters. For example, we can examine the source of the
species dependence of the appearance intensities for the
inert gases. We predict that the appearance intensity
curve for radon would not lie below the appearance in-
tensity curve of xenon, if the theory [6] of Ammosov,
Delone, and Krainov is correct. Given the validity of the
ionization rates, such closed-form solutions aid in deter-
mining deviations from sequential ionization.

400 ACKNOWLEDGMENTS

200

10 15

FIG. 9. The C term as a function of n. For a free atom, C
decreases monotonically with n from the value of the order of 4.
However, the external field makes C nonmonotonic, and raises
the peak value of C to the order of 1500.

VI. CONCLUSION

The closed-form solution to the rate equations for the
sequential case enables us to extend our understanding of
strong-field ionization of gases by providing scaling laws

er hand, a simple extrapolation of the observed trend in
the measured data would indicate otherwise.

We can understand the physics in the n scalin of the
appearance intensity by recognizing that the C factor
comes from the normalization constant of a free-atom
wave function, as well as the field strength of the laser.
The normalization constant of a Coulomb wave function
is a monotonically decreasing function of n. This de-
crease in C induces an ordering that would be opposite
to the observed ordering. However, the laser field
changes the wave function into an autoionizing state.
This change appears in the wave function through the
normalization constant (Ammosov, Delone, and Krainov
[6]). The laser causes C to lose its monotonicity and to
become a large peaked function of n.

There are two ways to improve the agreement between
Eq. (26) and the measured data. The first is to use the
Ammosov-Delone-Krainov [6] prescription of replacing n

with n* in Eq. (29) to account for quantum defects [21].
The agreement between theory and data can be improved
further by using the appropriate quantum numbers of the
subshell from which the electron is removed in Eq. (28).
There is some ambiguity in the choice of I and m in the
G& term of Eq. (28) because an ion has many
configurations for a given valence. However, averaging
over configurations should give judicious choices for l
and m.
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APPENDIX A: ERROR ANALYSIS OF EQ. (7)

The rate equations in Eq. (1) conserve probability.
Therefore a test of Eq. (7) is its ability to conserve proba-
bility. We write the sum of the expressions in Eq. (7) as

i=o
(A 1)

The sum on the right-hand side of Eq. (Al) is a global er-
ror of Eq. (7). One term dominates the error because for
a given intensity all the p, 's except for one are small (see
Fig. 2). The p; that is large refers to the charge state that
can be created without being ionized by the laser operat-
ing at the given intensity. Let us call this charge state j.
The second sum in Eq. (Al) is then

n —i

p, ((n —1) (A2)

Hence the error of Eq. (7) is like exp( —1/F ), and there is
favorable comparison with the numerically calculated re-
sults.

APPENDIX B: THE RANGE OF VALUES
FOR pp IN EQ. (7)

The values of pl, in Eq. (7) range between zero and one,
which we prove by showing that p& is positive and has
maximum values of at most one. pk is positive because
[exp( Pk, ) —exp(Pk )]/[—gq Pk, ] is always po—sitive.
The maximum value of any pk can be found easily from

At the intensity where p is large, it is appropriate to use
the asymptotic forms of P and P i in Eq. (A2),

n —i y, E7~4

i=i

(A3)
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its maximum with respect to ~. Let Hk be the factor that
multiplies r in Eq. (8), then Eq. (7) can be expressed sim-
ply as

&a/( I —a)
Pk

where

(B2)

exp( H—„,r) —exp( H„—r)
Jk k —1 H —Hk k —1

(B1) (B3)

Solving for dpk Id~=0, we find the maximum value of pk
to be

Therefore pk is less than or equal to 1 for all positive
values of e.
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