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Atoms in strong crossed electric and magnetic fields:
Evidence for states with large electric-dipole moments
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This paper reports on the evidence for large permanent electric-dipole moments of Rydberg atoms
in crossed electric and magnetic flelds. It was found that the dipole moments have a large value if
the scaled electric-field strength e = E B ~ has the value e 0.75 (with electric- and magnetic-
field strengths E and B in atomic units). The experimental technique employed to determine the
atomic dipole moment was to add a slight inhomogeneity to the electric field and to measure the
deflection of the atoms, this deflection being proportional to the field inhomogeneity and the atomic
dipole moment. In order to discuss the experimental results, difFerent theoretical approaches to the
E x B problem are reviewed. The occurrence of Rydberg atoms with large dipole moments can be
explained as being caused by a distinct type of classical orbit.

PACS number(s): 32.60.+i, 32.30.Jc, 35.10.Di

I. INTRODUCTION

Rydberg atoms in external microwave and static fields
as well in magnetic or electric fields, or in combinations
of the two, have been of great interest recently since the
classical treatment of those systems shows chaotic be-
havior in certain field regions; it is therefore interest-
ing to look for indicators of this chaoric behavior in the
observed spectra. In the present article we would like
to concentrate on atoms in strong external crossed elec-
tric and magnetic fields. Crossed fields occur rather fre-
quently, for example, in a plasma confined by a mag-
netic field or on the surface of neutron stars. Rydberg
atoms are suited for laboratory experiments, since the
experimentally achievable field strengths are comparable
to the inneratomic Geld acting on the Rydberg electron,
and therefore the strong-field regime can be achieved eas-
ily. Moreover, due to the correspondence principle, semi-
classical approximations are justified for Rydberg atoms.
Due to the lack of quantum-mechanical calculations on
Rydberg atoms in strong crossed fields at high excitation
energies, such a simplified treatment is the only way to
interpret our experimental results.

Rydberg atoms in weak magnetic and weak crossed
electric and magnetic fields were investigated theoreti-
cally by Solov'ev [1—3] and Braun [3, 4] using perturba-
tion theory. Based on this work Liberman, Pinard, and
co-workers explained the low-field spectra of lithium in
weak magnetic fields and weak parallel electric and mag-
netic fields [5—10]. Gay and co-workers [ll, 12] and Kore-
vaar and Littman [13] investigated alkali-metal Rydberg
atoms in weak crossed fields theoretically as well as ex-
perimentally.

Classical chaos is observed in higher external fields
when the infiuence of the external fields becomes com-
parable to that of the internal Coulomb field; this is
the regime which is of particular interest for the present

work. In experiments with Rydberg atoms in the clas-
sically chaotic regime it was found that the excitation
spectrum shows sinusoidal modulations of the spectral
intensity. The most pronounced modulations in the so-
called quasi-Landau (QL) region were first discovered by
Garton and Tomkins in 1969 [14]. The maxima observed
are separated by about 1.57iio, (io, is the cyclotron fre-
quency). Above the ionization limit the separation ap-
proaches bio, . These resonances were explained by Ed-
monds and Starace. using a WKB approximation [15,16].
Later highly excited alkali-metal atoms were investigated
in external magnetic fields using high-resolution laser
techniques. Approaching the zero-field ionization limit,
strong lines appear which were interpreted by Klepp-
ner and co-workers as QL resonances which were found
to emerge from single quantum-mechanical states [17].
For higher excitation energies and higher magnetic fields
these resonances are broadened and appear as sinusoidal
modulations, the maxima of which follow WKB quanti-
zation in the plane perpendicular to the magnetic field
[18, 19]; they were in agreement with the original QL
spectra of Garton and Tomkins. It should be mentioned
that there are also measurements performed on lithium
Rydberg atoms in strong magnetic fields which exhibit
QL resonances (for a review see Ref. [10]).

Further systematic experimental studies of QL spectra
of hydrogen in strong magnetic Fields were carried out by
Welge and co-workers. They identified many new reso-
nances in the Fourier transform of the spectra in addi-
tion to the one showing a spacing 1.5hio, [20—22]. It was
possible to interpret these as arising from classical trajec-
tories. In addition to the orbit which generates the QL
resonances observed by Garton and Tomkins, and which
only spreads out in the plane perpendicular to the mag-
netic field, other orbits extending in the magnetic-field
direction were also observed. Recently Kleppner and co-
workers investigated high-resolution lithium spectra in
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strong magnetic fields in an energy region above the ion-
ization limit [23]. The spectra were explained very well
by Gay and Delande using the complex-rotation method
[241

The influence of classical trajectories on oscillator
strength, level density, and wave functions was inves-
tigated theoretically by Gutzwiller [25—29], Berry [30],
Reinhardt [31], Wintgen, Friedrich, and Hoenig [32—35],
Wunner and co-workers [36], Heller [37], and Bogo-
molny [38]. A semiclassical theory developed by Du and
Delos describing the average oscillator strength allows
a quantitative comparison between experimentally ob-
tained Fourier spectra and properties of classical trajec-
tories [39, 40]. The theoretical results important for this
paper are summarized in Sec. III. In crossed electric and
magnetic fields an interesting class of electron trajecto-
ries spinning around the classical ionization saddle point
was found [41]. In principle recurring trajectories which
contain an arbitrary number of cycles around the clas-
sical ionization saddle point exist as well [42]; however,
due to the lack of stability the existence of detectable QL
resonances associated with those orbits is quite unlikely.

The question which we want to address is whether clas-
sical trajectories not only lead to QL resonances in the
spectra of highly excited Rydberg atoms in strong fields,
but also allow interpretation of other properties of the
atoms which can be determined experimentally. In this
paper we directly measure a very fundamental property:
the permanent electric-dipole moment. As shown in an
earlier paper [42] the excitation spectra of rubidium in
crossed fields can be decomposed into well-defined inten-
sity modulations associated with classical trajectories. In
Sec. IV the Fourier transforms of a few of those spectra
are presented, and the Fourier components are related
to classical trajectories. Since in Sec. II the importance
of the paramagnetic term is discussed it should be men-
tioned for the sake of clarity that all trajectory calcula-
tions in this paper include the paramagnetic term, i.e.,
the results derived from these calculations are gauge in-
dependent. The properties of trajectories which display
a large dipole moment are discussed in more detail, as
individual wave functions may be scarred [35] by these
trajectories and may thus lead to large dipole defiections
observed in the experiment. The discussion of these or-
bits is the basis of our interpretation of the presented
experimental results.

Section II reviews the theory of the hydrogen atom
in crossed fields. When describing highly excited and
in particular ionized atoms in crossed fields it is possi-
ble to obtain a Hamiltonian for the relative motion via
a pseudoseparation. This Hamiltonian gives rise to wave
functions localized in a two-dimensional-oscillator min-
imum displaced from the Coulomb center. The oscil-
lator potential reproduces the fact known from classi-
cal electrodynamics that two E x B—drifting particles
keep a fixed average distance when the motion is av-
eraged over a time larger than the cyclotron period of
the heavier particle. However, the experiments presented
here are performed below the ionization energy. In the
infinite-mass approximation of the proton the Hamilto-
nian of hydrogen in strong crossed electric and magnetic

fields consists of the kinetic energy, the paramagnetic
term, and three terms describing different potentials: the
Coulomb potential, the electric potential, and the dia-
magnetic potential. Since the diamagnetic term scales
like B2, whereas the paramagnetic term simply depends
on B, one is tempted to omit the paramagnetic term,
thus reducing the Hamiltonian to the dynamics of a par-
ticle in the sum potential. In the symmetric gauge this
sum potential exhibits a feature which in recent years
was discussed in several papers, for example, in Refs.
[43—45]: For any value of the magnetic field there exists
an electric-field strength, which, when exceeded, causes
an outer minimum in the sum potential. Contrary to the
oscillator potential mentioned above this outer potential
minimum is a gauge-dependent artifact which is clearly
unphysical. However, there is numerical evidence that
below the ionization energy the potential in the symmet-
ric gauge gives a reasonable estimate of the space region
which is covered by classical trajectories launched at the
Coulomb center. This feature is discussed in Sec. II B.

Experimentally it has already been demonstrated that
in crossed Gelds Rydberg atoms with large electric-dipole
moments exist [45]. In this paper improved experiments
are presented, which are performed with a more sophisti-
cated experimental setup than the one described in Ref.
[42]. Using the electric-dipole defiection in an electric
field with a well-defined field inhomogeneity the electric-
dipole moments of the atoms in crossed fields could be
studied.

The possibility of measuring dipole deflections requires
some special features in the experimental setup. The
beam of rubidium atoms, which must be parallel to the
magnetic-field lines, needs to be velocity selected. The
electric Geld must have an adjustable inhomogeneity, and
the electric and magnetic fields have to be well defined
not only at the excitation point, but also along the entire
defiection region. Furthermore, the field ionization and
the detection of the ejected electrons must be position
sensitive, therefore it is necessary to ensure that the drift
motion of the electrons ejected in the Geld ionization re-
gion does not influence the observed deflection pattern
in an uncontrollable way. Since the number of defiected
atoms is relatively small, it is necessary to be certain
that no spurious signals are produced by uv-generated
photoelectrons or by electrons originating from Rydberg
atoms ionized before they reach the field ionization zone.
In Sec. V the experimental setup which fulfills these re-
quirements is described.

Since the relative number of strongly deflected atoms
is very small it is necessary to confirm the results by dif-
ferent experiments, thus excluding systematic errors. In
Sec. VI results obtained in two diferent types of dipole-
deflection experiments are shown. The first method was
to integrate the atomic-beam image for a long time, keep-
ing the laser excitation energy and the field values fixed.
This type of experiment minimizes the statistical fluc-
tuations originating in the dark counts of the detection
system. A second technique was to sample the dipole-
deflection signals at fi~ed field values as a function of
the excitation energy. The statistical fluctuations in this
type of experiment are larger, but the defiection patterns
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agree with the first type of experiment and thus increase
the confidence in the results.

The experimentally found Rydberg atoms exhibiting
large dipole moments are interpreted in Sec. VI quanti-
tatively utilizing classical orbits as discussed in Sec. IV.
The semiclassical explanation of the dipole-deflection ex-
periments represents our current interpretation of the
experimental results. There is the hope that increas-
ing computer capabilities will allow one to perform exact
quantum calculations so that a better and more accu-
rate comparison between theory and experiment will be
possible.

II. ONE-ELECTRON SYSTEMS IN STRONG
CROSSED FIELDS: THEORETICAL ASPECTS

The systems of interest in this paper are hydrogenlike
Rydberg atoms in strong crossed electric and magnetic
fields (rubidium in our case). The electric field alone
lowers the ionization energy W;» of the atoms by an
amount following fairly well the value derived classically

W;,„=2v E— (1)
with W; „and the electric-field strength E in atomic
units. We find experimentally that an additional mag-
netic field increases the ionization energy by only a
few wave numbers. Classical trajectory calculations in
crossed fields as well as quantum calculations in the
pure electric-field case suggest that crossed fields sup-
port states with large dipole moments only in the en-
ergy range near the classical ionization energy Eq. (1).
Therefore Eq. (1) in connection with the zero-field ion-
ization energy of the 5Sigz ground state approximately
yields the laser frequency which has to be used in the
experiment, as a function of the electric-field strength E.
The magnetic-field-. free quasienergy levels can be calcu-
lated numerically employing the fact that the combined
non-Coulombic alkali and electric potential deviates from
the corresponding separable hydrogenic case only within
the core region [47]. Due to the high level density in
the vicinity of the ionization threshold, even a small ad-
ditional magnetic field brings the system into a regime
where the cyclotron frequency cu, exceeds the level spac-
ings without magnetic field. This regime is called the
"strong-field-mixing regime" in the electric field-free case
(see Ref. [48] and references therein). Since in our exper-
iments the inQuence of the Coulomb force, the electric
field, and the magnetic field on the Rydberg electron
are of the same order of magnitude, perturbation the-
ory based on the field-free eigenstates is not adequate
and a treatment starting from a more fundamental level
is necessary.

In the theoretical description of the system a major
question is whether it is accurate to assume an infinite
mass of the positive particle. This infinite-mass approx-
imation cannot be applied when dealing with states in
the E x B—continuum, which can be considered as ion-
ized atoms in crossed fields. This regime is discussed in
Sec. II A. In our experiments we deal with highly excited
Rydberg atoms below the ionization limit. In this case,

which is discussed in Sec. II 8, the infinite-mass approx-
imation is reasonable.

A. Ionized atoms in crossed Belds

Many authors emphasize that due to the nonconserva-
tion of the total canonical momentum of two interacting
particles in a magnetic field as well as in crossed fields
a complete theoretical description of such systems must
originate in the genuine two-body Hamiltonian [49—51]
which is written according to the principle of minimal
coupling as i

H = [p, + eA(r, )] + [p„—eA(r„)]
mQ 2mp "

e2
+eE (r, —r„)— (2)4n.eo[r, —r„i

g(+ r) Q i(r)ei(ps+ qBxr) R/a (4)

which are eigenfunctions with eigenvalue P„ofoperator
P& [Eq. (3)]. Inserting Eq. (4) in the Schrodinger equa-
tion with H [Eq. (2)] yields the Hamiltonian governing
the relative motion (RM) [49]:

pz e6 e2
H„i= + B (rxp) (Bxr)

2p 2p 8p,

e2e+ (P„xB) r+eE r-
4mpr

/2

whereM=m, +m» p= M", 6 ™M
Since the c.m. motion enters the equation of the RM

via the coupling term M (P„xB) r, which contains P„,
Eq. (5) is not really separated from the c.m. motion but
is coupled to it by a conserved quantity. This is called a
pseudoseparation.

The Hamiltonian in Eq. (5) displays two interesting
differences with respect to the Hamiltonian which is ob-
tained by just adding electric- and magnetic-field terms
to the undisturbed RM Hamilton operator of hydrogen:

with vector potential A, electric field E, and subscripts e
and p referring to the electron and the positive nucleus,
respectively.

The invariance of this Hamiltonian with respect to
translations is generated by a generalized momentum op-
erator which contains not only the sum of the individual
canonical momenta, but also a term performing a gauge
transformation which shifts the vector potential accord-
ing to the desired particle translation. Choosing the sym-
metric gauge, the generalized momentum takes the form

eP„=P—-Bxr,
2

where P is the total canonical momentum, which in the
quantum-mechanical description is -",. &R with center-of-
mass (c.m. ) coordinate R, and r = r, —r„.

In neutral systems like the one considered in this paper
the components of the generalized momentum commute
with H [Eq. (2)] as well as with each other. The eigen-
functions of H [Eq. (2)] can be chosen in the form
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into the Schrodinger equation with H«t [Eq. (5)] yields
another Hamiltonian for the transformed wave function
~ [49]:

eh 2

H„t= "+ B (r„xp„)+ (B xr„)
2p 2p 8p

e p2 p/2
+

4meo~r„+ ro~ 2M 2M (6)

with P„'= P„+~~M B x E and ro =,~, B x P„'.
This is the Hamiltonian of a two-dimensional harmonic

oscillator with an additional paramagnetic term and a
Coulomb perturbation sitting on the side of the oscillator
potential.

If one considers the classical system, two Ex B—drifting
particles, the physical interpretation of the oscillator po-
tential in Eq. (6) becomes clear: Due to the particle-
independent drift velocity & the oscillator potential de-
scribes the oscillation of the RM coordinate between two
noninteracting E x B—drifting particles about their aver-
age separation [equal to ro in Eq. (6)]. Thus, wave func-
tions located in the oscillator minimum plotted in Fig. 1
correspond to an E.x B—drifting two-particle system with
negligible Coulomb interaction between the particles.

The oscillator potential results solely from the local-
izing effect of the external fields on both constituents of
an ionized atom. The wave function associated with the
shifted RM coordinate r„may be localized in the oscil-
lator minimum (see also Fig. 1). Now we ask the ques-
tion when is it allowable to plot the sum potential as in
Fig. 1? Clearly this is allowed if the paramagnetic term
in Eq. (6) is conserved. This is the case for wave func-

(i) The g factor of the angular momentum deviates
from the value 1 by the factor g = b = "M™,this
being a very small deviation due to the large nuclear
mass. This correction was also found in Ref. [52] for the
pure magnetic-field case.

(ii) The generalized momentum is connected to the
c.m. velocity and the relative coordinate r by P„
MV —e(B xr). Therefore the contribution M(P„xB) r
in Eq. (5) which looks like a potential in a constant elec-
tric field M(P~ x B) is essentially composed of a mo-
tional electric field V x B and an additional "virtual"
field —

M (B x r) x B. Since only the sum of the exter-
nal electric field and the P„-induced field enters the RM
equation, many different systems having just the same
net electric field E„,t ——E,„&„„i+ M (P„xB) exhibit the
same RM dynamics. A net electric-field value in Eq. (5)
may result exclusively from an actual applied external
field, from a large c.m. velocity V perpendicular to B,
or also from a large relative coordinate r which can be
chosen arbitrarily via the initial conditions (at least in
theory). For example, all net (crossed) electric-field val-
ues E„etcan be realized without applying any external
electric field by taking particles at rest, i.e. , (v, ) = 0, and
bringing the centers of their wave functions (r, ) to two

Mlocations differing by r = —&', E„,t.
Inserting the transformation

&sr„.p' /2s

Exa-Orift Notion of an Electron and o Positive Particle with 100me
X

E=30000—

Ener gy (a.u. )

Coulomb
Center

10000ao
I

Xr

tions localized in the oscillator minimum of Fig. 1 which
do not overlap with the Coulomb potential: for such un-
perturbed Landau states both the z component of angu-
lar momentum l, and the paramagnetic term in Eq. (6)
would be conserved. Thus, talking about low-lying wave
functions in the potential plotted in Fig. 1 makes sense.
However, if a wave function calculated in the potential
plotted in Fig. 1 overlaps signi6cantly the Coulomb po-
tential, the cylindrical symmetry is broken and thus l, is
no longer conserved. With increasing temporal variation
of l, the wave functions deduced from the potential terms
alone lose their physical significance. Thus, the answer to
the above addressed question is in the parameter range
where wave functions in the oscillator potential do not
overlap with the Coulomb potential, the potential curve
plotted in Fig. 1 is of physical significance. Adopting
a gauge which is not as well adapted to the symmetry
of the problem would change the situation: in the case
of an asymmetric gauge the paramagnetic term would
not be conserved in any parameter range. Neglecting the
paramagnetic term and considering the dynamics in the
remaining potential terms would be wrong. Thus, due
to the cylindical symmetry of the non-Coulomb part of
the Hamiltonian Eq. (6) the diamagnetic potential in the
symmetric gauge is of physical significance (in a certain
parameter range), diamagnetic potentials in an asymmet-
ric gauge are useless if the corresponding paramagnetic
term is neglected.

If the parameters are chosen such that a Landau-type
wave function in the diamagnetic potential is only slightly

FIG. 1. Unperturbed E x B—drift motion of an electron
and a positive particle with mass 100m„both particles hav-
ing no energy in the z direction (upper part of the figure).
The mass of the positive particle was chosen as 100m, so
that the cyclotron motion could be displayed on the figure.
The relative motion in (z„,y„)is localized in space, thus it can
be described via the. two-dimensional oscillator potential de-
picted at the bottom of the figure. The system is quasibound
via the external fields, but it does not behave such as an
atom: An inhomogeneous electric field separates the particles
due to different drift velocities E/B. A truly bound system
such as an atom, however, would be deflected as a whole. If
the parameters would be chosen in such a way that the two
particles would come close together, the Coulomb interaction
would couple states with different l, ; the description of the
dynamics by the potential alone would be no longer sufficient.
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perturbed by the Coulomb potential, the influence of the
Coulomb interaction can be treated as a perturbation
acting on the Landau states of the potential plotted in
Fig. 1, as was done by Gor'kov and Dzjaloshinskii [49]
for excitons in crossed fields.

B. Stable R,ydberg atoms in crossed fields

As discussed, Eq. (6) is the natural way to describe by
perturbation theory the dynamics of E x B—drifting par-
ticles weakly interacting via a Coulomb potential. There
is another limit: For atomic systems in the regime where
the Coulomb force is still strong enough to bind the elec-
tron strongly to the positive ion, the wave functions are
located in the outer minimum which in Fig. 1 is called
the "Coulomb center. " Due to the strong nonconserva-
tion of /, in that case the oscillator potential plotted in
Fig. 1 is unphysical. Though correct, the Hamiltonian
H«i [Eq. (6)] does not provide any advantage in this case,
since with the conservation of /~ the reduction of the dy-
namics to a potential problem is lost as well. However,
now it is possible to make the infinite-mass approxima-
tion for the positive ion. This can be concluded from the
experiment: we are dealing with Rydberg atoms passing
a crossed field region which does not change the c.m. mo-
tion. (The electric-dipole deflection which occurs if the
electric field is slightly inhomogeneous is independent of
the Ex B—drift motion discussed here. ) No change of the
c.m. momentum essentially means the positive par tic1e
does not change kinetic momentum, i.e., infinite mass of
the positive particle can be assumed. In the infinite-mass
approximation Eq. (6) makes no sense; thus it is neces-
sary to use H«i [Eq. (5)], which in the limit m„~oo
yields the Hamiltonian commonly used when consider-
ing the hydrogen atom in external fields and which will
be written in the following form for convenience, with
B = Be, and E = —Ee~:

p2 ~ ~2B2 g2
h = + Bl, + (x'+ y') —eEx-

2me &me 8m' 4'

d'or
(7)

This Hamiltonian accurately describes the stable Ryd-
berg atoms observed in our experiments. However, when
writing down this Hamiltonian one has to keep in mind
that, as follows from the preceding section, the infinite-
mass approximation for the positive ion completely loses
its meaning as soon as the atom is ionized into the E x B
continuum.

h [Eq. (7)] has no continuous symmetries, but there are
two discrete symmetries which can be employed to find
classical recurring or periodic trajectories of the system
(see Sec. IV) and which allow one to draw conclusions
concerning the dipole moments of stationary wave func-
tions:

(i) P, symmetry. For nondegenerate energy levels (in
this system degeneracies are accidental) the wave func-
tions have the property @(x,y, —z) = +@(x,y, z); thus
(z) = 0 (no dipole moment in the z direction).

(ii) TP& symmetry. The wave functions have the
property g(x, —y, z) = +Q'(x, y, z), and thus (y) = 0.

This coincides with the experimental observation that
no states exist with an electric-dipole moment in the y
direction: Since divE(x, y) = 0, a field inhomogeneity
I in the x direction implies an inhomogeneity I —in the
y direction, acting on y components of dipole moments.
However, as mentioned already, a deflection in the y di-
rection has never been observed.

In analogy to Fig. 1 the potential terms in h [Eq. (7)]
give a total potential

~2B2 g2
U(r) = (x + y ) —eEx-

8m, 4' eor
(8)

which exhibits an outer potential minimum, if the electric
field fulfills

r/3
27e'

~
256rn2, n co )

(9)

i.e. , the scaled electric-field strength e = E B 4~s is
larger than 0.75 (with E and B in atomic units).

In contrast to Fig. 1 and Eq. (6), where for large E and
P„=Othe displacement between Coulomb and oscillator
minimum ro —,, is proportional to the total mass, in
the case of Eq. 8 it is now determined by the much
smaller electron mass ro

The most exciting question about the potential in
Eq. (8) is whether, as in the case of the oscillator mini-
mum displayed in Fig. 1, the "small scale" oscillator min-
imum also leads to real electronic states. The answer is
no: If one assumes an electron sitting in the outer mini-
mum of the potential given by Eq. (8), not the Coulomb
field but the external fields E and B would determine its
motion, i.e. , the electron would immediately be ionized
into the E x B—continuum. This ionization cannot be
described by the potential Eq. (8) since the description
of the E x B—drift requires the paramagnetic term. For-
mally the situation is clear: The potential in Eq. (8) does
not have cylindrical symmetry, thus t, is not conserved
and especially the outer potential minimum has no phys-
ical meaning at all. Thus the following considerations
are strictly restricted to situations where the atom has
not been ionized. If the electron has passed the classical
ionization saddle point none of the statements found in
the following paragraphs hold.

In the following the possibility of obtaining some physi-
cal information in the sum of electric and diamagnetic po-
tential Eq. (8) will be discussed. The necessary condition
for an approximately constant paramagnetic term in the
symmetric gauge is that the potential should have cylin-
drical symmetry in the region where the wave function's
amplitude is large. This symmetry is approximately ful-
filled if at the considered electron energy (and thus wave-
function extension) the magnetic field or the Coulomb
field is strongly dominating. The case of dominating
Coulomb Geld can be treated by perturbation theory. If
the magnetic Geld dominates then the influence of the
weak electric field can be treated by perturbation theory
also. However, the Grst-order perturbation is zero, and
for the second-order perturbation one needs in principle
the wave functions of the pure magnetic-field problem for
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all t, manifolds being not easily obtainable. As the im-
portance of the electric field increases the paramagnetic
term becomes more and more time dependent. Espe-
cially, for an electric-field strength close to the ionization
limit (this was the usual situation in our experiments)
the paramagnetic term is highly nonconserved.

It has been mentioned in the literature [41] that the
potential in Eq. (8) is gauge dependent. In the elec-
tric field-free case the paramagnetic term is conserved by
choosing the symmetric gauge, which allows the study of
the system by considering a static potential without para-
magnetism (see, for example, [46]). Unfortunately, for
stable Rydberg atoms in crossed fields in the parameter
range where all forces (Coulomb, external electric, mag-
netic) are comparable no gauge yields an approximately
conserved paramagnetic term; thus it is not possible to
study the system by simply considering a certain poten-
tial. However, if one is only interested in very rough
information on the atomic dipole moments, one could
try to choose the gauge which minimizes the time depen-
dence of the paramagnetic term. The following equation
shows the potentials U(r), the corresponding paramag-
netic terms U~m(r, p), and the classical time derivatives

of the paramagnetic terms '&~
'~ for the symmetricdU, (r,p)

gauge A =
2 (—y, x, 0) [Eq. (10a)] and the asymmetric

gauges A = B( y, 0, 0) [E—q. (10b)] and A = B(0,x, 0)
[Eq. (10c)] in atomic units:

U(r) = ———Ex+ (x +y ),
1 B
r 8

B
U, (r, p) = 2(*»y —up*),

d B
tN 2
—U~ (r p) = ——Eu,

1 B
U(r) = ———E~+ ~' U (r, p) = B—up*,r 2

(10a)

(—Upm(r, p) = B—Ey —p py+dt '

(
* " r' (10b)

1 B2
U(r) = ———Ex+ z, Uy (r, p) = +B~p„,

(

eyed

—Uprn(r, p) = B papy-
dt

(10c)

Due to the difFerent gauges the canonical momenta p are
different in the three equations. In quantum mechanics,
according to Ehrenfest's theorem, the time derivative of
the paramagnetic term U~ is given by

—(UI, ) = —([H, UI, ]),

which yields the same expressions as those given in
Eqs. (10a)—(10c), but the bras and kets have to be added.
Thus, in order to estimate the order of magnitude of
the temporal changes of the paramagnetic term in differ-
ent gauges, it is possible to calculate the time-dependent
paramagnetic energy for some classical trajectories with
initial conditions r; and p, which are known to influ-
ence the system [42]. Here we have in mind that a wave
packet with initial conditions (r) = r; and (p) = p, fol-
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Fga. 2. variations of the paramagnetic term in the data sets explained in the text. For the indicated parameters the
probability distributions of finding a certain paramagnetic energy (divided by the magnetic field B) are plotted for three
difFerent gauges and three values of the scaled electric field vs that quantity. The excitation energy which has been used in the
trajectory calculations was just below the experimentally observed ionization limit. The figure shows that the variations of the
paramagnetic energy are minimized by adopting the symmetric gauge, even for quite large scaled electric field.
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lows more or less the classical trajectory within a certain
time. This was done for some of the trajectories shown
in Fig. 5. As expected, in all three gauges the param-
agnetic term changed strongly, whereby the changes in
the symmetric gauge were smallest. Especially for orbits
which do not extend too far in the y direction the changes
of the paramagnetic term are moderate, as can be seen
from Eq. (10a), which for y = 0 yields a constant para-
magnetic term. In the limit E - 0 only the symmetric
gauge allows one to neglect the paramagnetic term [see
Eqs. (10a)—(10c)].

In Fig. 2 the results of a more general numerical test
are shown. Classical electrons were launched radially
from the Coulomb center in directions covering the whole
4m sphere. The fields and the energy have been chosen
to match the experimentally observed ionization thresh-
old. The trajectories were integrated for about 15 cy-
clotron periods. The electron position and momentum
were recorded about ten times per cyclotron period. Ad-
ditionally each point where the trajectory passed a max-
imum distance from the core was recorded. On evalu-
ation of the data the paramagnetic energy was calcu-
lated using Eqs. (10a)—(10c). Since trajectories starting
in many directions-were integrated for a quite long time
the obtained spread is a measure of how well the difer-
ent gauges conserve the paramagetic energy (which in the
investigated gauges initially is zero for trajectories start-
ing radially at the center). The described procedure was
performed for difFerent values of the scaled electric field
s = EB ~s. Figure 2 shows the obtained probability
distributions of the paramagnetic energy in atomic units,
divided by B. Obviously the variation of the paramag-
netic term is minimized by the symmetric gauge, even
in the case of quite strong electric fields. Again it must
be emphasized that this holds only if the atom is not
ionized As the. electron goes beyond the classical ion-
ization saddle point the paramagetic energy spreads out
dramatically.

Since in the experiment electric-dipole moments were
measured, it is quite interesting to check whether it is
possible to get estimates on the fraction of the configura-
tion space which is actually covered by trajectories start-
ing from the core. We were surprised to find that even
for quite large electric fields the equipotential surface of
the potential Eq. (8), taken at the actual excitation en-
ergy, quite accurately coincides with the surface which
limits the configuration space region which is accessed
by trajectories starting at the core. It is also interesting
that the potential surfaces obtained by the asymmetric
gauges give extremely bad estimates of the actually ac-
cessed space region. Again it should be noted that this
observation is not valid for ionized atoms; one only finds
this behavior if the energy is chosen below the experi-
mentally observed ionization energy. Especially the outer
potential minimum in the potential Eq. (8) is clearly un-
physical and requires no further discussion. The men-
tioned numerical calculation was restricted to the space
inside the classical ionization saddle point where the po-
tential Eq. (8) has no fixed point. The results are dis-
played in Fig. 3. The data were the same as those also
used for Fig. 2. The displayed projections of x and y
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FIG. 3. Projection of the data which are evaluated in
Fig. 2 onto the space coordinates x, y (z is not interesting
since the diamagnetic potential has no z component). On
the left-hand side of the figure the projections of the data
points onto the (x, y) plane are shown. The curves corre
spond to equipotential lines of the electric potential (solid),
and of the electric potential plus the diamagnetic potential in
the symmetric gauge (dash dotted), the gauge A = Bye„—
(dashed), or the gauge A = Bze„(dttoed). The energies
of the equipotential lines are equal to the specified excitation
energies. For clarity in the planar projection at B = 1.0 T no
lines have been drawn inside the accessed space region. How-
ever, by continuation of the curves plotted outside that region
it is easy to identify to which gauge the open lines inside the
covered region correspond. The open line which has no con-
tinuation outside corresponds to the symmetric gauge. The
spatial scale factor is determined by the indicated position of
the classical ionization saddle point (ISP). On the right-hand
side of the figure the probability of finding a data point with
a certain value x (y) is plotted vs z (y). The scale factor
again is determined by the indicated position of the ISP. The
difFerent arrows pointing at certain locations on the scales in-
dicate the positions of equipotential lines associated with the
following potentials: arrows labeled with e refer to the elec-
tric potential, and those labeled with s, x, y refer to the sum
of electric potential and diamagnetic potential in the sym-
metric gauge (s), the gauge A = Bxe„(x)or the the gauge
A = By e„(y).The ter—minus (all) simply means that the
equipotential lines cannot be resolved. It can be recognized
that especially in the x direction the sum of the electric po-
tential and the diamagnetic potential in the symmetric gauge
describes the extension of the accessed configuration space
best. For e —+ 0 this statement is trivial, however, there is
also quite good agreement in the case of high scaled electric-
field e.
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e2B2 qe2
~liqHe = +

«6pl~l
(12)

Except for a factor of 4 which occurs in the diamag-
netic term, the potential occurring in Eq. (12) is equal
to that in Eq. (8) with y = z = 0. Rau et aL calculated
by a WKB method energies of electron states trapped
in this exotic type of surface potential. However, due
to the fundamental differences discussed above, those re-
sults cannot be expected to show any agreement with
atomic systems.

III. INFLUENCE OF CLASSICAL ORBITS ON
SPECTRA AND WAVE FUNCTIONS

In recent years it was shown experimentally as well
as theoretically that classical closed orbits inHuence
quantum-mechanical properties, especially of highly ex-
cited systems which are supposed to approach the clas-

values which are plotted in Fig. 3 show that the sum po-
tential in the symmetric gauge gives the best estimate of
the configuration space region which is covered by tra-
jectories starting at the center. One also can recognize
an asymmetry in the x distribution which increases with
increasing scaled electric field e.

In summary, the aim of these considerations was not to
show that the potential obtained in the symmetric gauge
describes the system well. It is clear that no potential
model does so. Quantitative classical as well as quantum-
mechanical calculations based on Eq. (7) require one to
include the paramagnetic term. Especially the two fixed
points of the potential Eq. (8) occurring when Eq. (9) is
fulfilled are in a space region where Eq. (8) is meaning-
less anyway. We found that below the ionization energy
in a space region with radii lrl well below those of the
mentioned fixed points the symmetric gauge results in
the smallest variations of the paramagnetic term. We
also found that below the ionization energy the potential
Eq. (8) gives a fairly good estimate of the configuration
space volume which is accessed by classical trajectories
starting at the center. Therefore the potential Eq. (8)
may allow one to estimate the dipole moments of excited
states better than the corresponding potentials obtained
with asymmetric gauges.

It should be mentioned that a similar system exists in
which the question. about whether it is justified to neglect
the paramagnetic term or not does not arise: electron lay-
ers on helium surfaces. In this system the force between
the electron and its image plays the role of the Coulomb
force, the electric field is directed into the helium bulk,
and the magnetic field lies in the surface plane. This sys-
tem has two simplifications with respect to a free atom:
(i) it is a one particle system, and (ii) the "Coulomb
force" depends only on the coordinate perpendicular to
the surface.

As shown in Ref. [43] these differences allow one to
choose an asymmetric gauge in order to reduce the prob-
lem to one dimension without making any approxima-
tion. The resulting one-dimensional Harniltonian with
efFective image charge Qe is [43]

sical behavior. Gutzwiller derived a semiclassical ap-
proximation of the average level density which displays
a feature common to semiclassical approximations of
quantum-mechanical properties: the semiclassical for-
mulas exhibit modulations which are related to classical
closed orbits (Refs. [25—29] and references therein).

In the experiments described in this paper, not the
level density but the oscillator strength between ground-
state and Rydberg levels is measured. The oscillator
strength exhibits modulations as well. The most prorni-
nent example are the quasi-Landau resonances discov-
ered by Carton and Tomkins [14] in the photoabsorp-
tion spectra of Rydberg atoms in strong magnetic fields.
Other types of QL resonances were found by Welge and
co-workers in more sophisticated experiments [20—22].
As derived by Du and Delos these modulations can be
explained quantitatively using the ground-state quan-
tum numbers, the polarization of the exciting radiation,
and purely classical properties of trajectories starting at
the Coulomb center and returning to it. As shown in
Refs. [39, 40] the energy-averaged oscillator strength in
the vicinity of the field-free ionization limit can be ap-
proximated by

f(W) = fp(W) + ) C isin(T iW+ 6 i),
cl

where fp(W) is the field-free energy-averaged oscillator
strength. The sum is taken over all recurring trajecto-
ries, where "recurring" does not mean periodic but only
starting and terminating at the nucleus. T,i is the time of
traversal and L,~ is a trajectory-dependent phase. The
data on laser polarization, ground state, and stability
of the trajectories are contained in the modulation am-
plitudes C,i, calculated in Refs. [39, 40]. Equation (13)
shows that the Fourier transforms of ordinary spectra
recorded as a function of the excitation energy at con-
stant field values yield the times of traversal of the clas-
sical trajectories inQuencing the spectra.

As explained in Ref. [42], not ordinary spectra but
recordings of scaled excitation spectra as a function of
B 1/3 are best suited for the identification of QL rnod-
ulations in crossed fields. Scaled spectra require one to
change the externally applied electric- and magnetic-field
strengths E and B as a function of the energy of the
excited Rydberg atoms W in order to keep the scaled
parameters e = EB /' and w = R'B /' constant. It
is possible to write Eq. (13) in a form which facilitates
comparison with experimental scaled excitation spectra:

f(B—1/3) f (B—1/3) + Bl/6 ) ~ ~ (B—1/3g )
cl

(14)

C, c~ are complex, scaled modulation amplitudes,
which also contain the Maslov indices. The C, ,~ remain
constant during the whole scaled sean as do the scaled
action values S, ,~ of the trajectories. The modulation
strength depends weakly on B via the factor B /6 in
Eq. (14). As can be recognized from the argument of
the sin in Eq. (14), the Fourier transforms of long scaled
spectra yield accurate values of the scaled actions S,,,~ of
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the modulating trajectories.
The question of how the modulations of the oscilla-

tor strength are related to the electric-dipole moments
of the atoms arises. The answer is given by Bogomolny,
who shows in Ref. [38] that for systems exhibiting unsta-
ble periodic orbits and fulfilling semiclassical conditions
anywhere in configuration space, the slightly space- and
energy-averaged quantum-mechanical probability distri-
butions can be semiclassically approximated by a mean
part plus contributions resulting from periodic orbits:

(lg(~)l') = po(~)+ &"'

x ) Im(Apo(x) e&~ ~~+» * ~ j) .
PO

(15)

Here n is the dimensionality of the system, and x and
y, are related to coordinate systems where the 2: axis is
taken along the periodic orbits and the y, in the trans-
verse direction(s). The () denotes the averaging process
in space and on the energy scale. The mean part po(q) is
the projection of the classical microcanonical distribution
onto the configuration space.

Equation (15) shows that the average probability dis-
tribution is enhanced in the neighborhood of classical pe-
riodic orbits. The strength of this enhancement depends
on the stability of the orbits via Apo(x) and WPO (2:)
in Eq. (15) which'follow from the classical stability of
the periodic orbits. In agreement with Eq. (13) it was
found experimentally [42] that atoms are also influenced
by recurring orbits which are not periodic. This is due to
the Coulomb singularity in atomic systems which has no
counterpart in the billiard problems considered in [38].

Since in the experiments discussed in this paper Ry-
dberg atoms are excited via transitions from a ground
state localized at the Coulomb center, only wave-function
enhancements generated by trajectories approaching the
Coulomb center influence the excitation probability. This
can be more directly seen from Eqs. (13) and (14), where
only trajectories starting and ending at the Coulomb cen-
ter contribute. Thus the average electric-dipole moments
of the excited states should be connected to the dipole
moments of recurring orbits which strongly modulate the
spectrum.

There are different experimental possibilities to deter-
mine the electric-dipole moment of atoms. In ordinary
Stark energy-level maps the atomic dipole moment is
given by the slope of the level energy plotted versus the
electric field &". However, for parameters used in the
experiments presented in this paper the level density is
very large (due to the high excitation energy and the
hyperfine-structure splitting of the ground state). For
that reason in most cases it is not possible to associate
slope values &" with excited atomic states. But in anal-
ogy to the determination of electric-dipole moments from
Stark energy-level maps it is possible to derive an electric-
dipole moment from the shift of the QL structure in the
spectra when changing the electric field. The obtained
dipole values, which are a collective property of many
electron states, coincide with the dipole moments of the
classical orbits associated with the QL resonances (see

Ref. [42]).
In this work we follow the more direct method of mea-

suring the atomic dipole moments: The results of the
dipole deflection experiments allow one to measure di-
rectly the charge separation in individual atomic states
(see Sec. VI). Since individual wave functions may be
influenced predominantly by one classical trajectory, the
dipole deflection experiments are interpreted in Sec. VI
by properties of classical trajectories modulating the
excitation spectra and having large electric-dipole mo-
ments.

IV. QUASI-LANDAU MODULATIONS IN THE
SPECTRA OF RYDBERG ATOMS

IN CROSSED FIELDS

Since we want to interpret the appearance of large
dipole moments by the properties of classical trajecto-
ries which influence the excitation spectra, some results
concerning the QL resonances in the spectra of Rydberg
atoms in crossed fields are presented. The largest dipole
deflections were experimentally observed at the ioniza-
tion energy, which essentially depends on the electric-
field strength according to Eq. (1), and which is only
slightly increased due to the additional magnetic field.
Therefore all the Fourier transforms of scaled spectra
shown in Fig. 4 are taken slightly below the ioniza-
tion limit. Figure 4 demonstrates that it is possible to
separate the excitation spectra into well-defined Fourier
components, each corresponding to one or more classi-
cal trajectories. It turns out that especially the reso-
nances labeled by C, in Fig. 4 are associated with orbits
which may exhibit extraordinarily large electric-dipole
moments. Therefore these resonances will be discussed
in what follows in more detail.

Figure 5 shows the C; orbits for parameters corre-
sponding to those of the Fourier spectra displayed in
Fig. 4. The size of the scaled trajectory dipole moments
b, [see Eq. (18)] and the squares n of the modulation
amplitudes calculated according to Refs. [39,40] are also
given. The trajectory having the largest dipole moment
is the Co orbit. However, below the ionization energy
W~~„,which in Fig. 5 was chosen to be —50 crn i, this
trajectory exists only if the scaled electric field exceeds
the value e = 0.66. For those parameters, however, the
modulation amplitude of the Co orbit is rather low, and
it may be possible only for parameters as in Fig. 4(e) that
the Ca orbit generates a weak QL resonance.

In all Fourier spectra shown in Fig. 4 the Ci reso-
nance shows up as one of the strongest resonances, ex-
cept Fig. 4(a) and, 4(c), where the Ci orbit influences
the excitation spectra relatively weakly. The low the-
oretical resonance strength for r = 1.148 explains why
the Ci resonance shows up so weakly in the experiment
[Fig. 4(a)]. The relatively weak Ci resonance in Fig. 4(c)
at first glance contradicts the quite large theoretical res-
onance strength indicated in Fig. 5. However, the values
given in Fig. 5 have to be compared to those valid for
other types of trajectories which are of minor interest in
this paper. For parameters corresponding to Fig. 4(c) the
modulation strength of the Cq resonance, for example, is
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larger than that of the Ci resonance (see Fig. 5). Fur-
thermore it was observed that the QL resonances show a
specific ionization behavior: As the excitation energy ap-
proaches the ionization limit, the different QL resonances
are attenuated differently by signal loss due to photoion-
ization. For parameters corresponding to Fig. 4(c) the
A resonance is attenuated less than the other QL reso-
nances when approaching the ionization energy. This is
the reason why the A resonance dominates the Fourier
spectrum in Fig. 4(c).

In many Fourier transforms of scaled spectra, one res-
onance strongly dominates the Fourier spectrum; for
example, the C~ resonance dominates the spectrum
Fig. 4(b). This effect is also encountered far below the
ionization energy, thus it cannot be explained in general
by the particular ionization behavior of QL resonances.
The reason for that phenomenon becomes clear if the
modulation strength associated with different orbits is
considered as a function of the excitation energy. Fig-
ures 6 and 7 show the results obtained for the Co and
Ci trajectories. These data on the resonance strengths
and corresponding plots for other orbits reproduce the

observed strengths of the QL resonances reasonably well.
The most outstanding feature of the plots in Figs. 6 and
7 is the appearance of pronounced maxima in the mod-
ulation strengths at certain energy values. These max-
ima are important with respect to the interpretation of
the dipole deQection experiments. Detailed investigation
of these peaks reveals that they are in fact singulari-
ties. Their nature can easily be seen in Fig. 8, where
for parameters close to a singularity of the Co resonance
strength several trajectories are depicted. It can be eas-
ily recognized that all trajectories leaving the core region
within a certain angular range are focused back to the
core region. In other words, the groups of trajectories
have a focal line in the vicinity of the core region. In
the formalism described in Refs. [39,40] this fact leads to
a very large modulation amplitude associated with that
trajectory. Actually, if the focus of the trajectories lies
on the surface on which the trajectories terminate, the
modulation strength calculated according to Refs. [39,
40] becomes infinite. Although this infinity is, as men-
tioned in Refs. [39,40], an artifact due to the failure of the
lowest-order semiclassical approximation of the Green's
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I"IG. 4. Experimental Fourier spectra of
scaled scans for different scaled electric-field
strengths e = EB at the ionization en-
ergy and for laser polarization parallel to the
electric field (a)—(e). The resonance A is
caused by the simplest closed orbits of the
system which are described in Ref. [42). As
the magnetic field is increased, i.e. , as one
moves from spectrum (a) towards (d), the
perturbation of the atom increases more and
more, and the resonance group B shifts to
smaller action values. This is due to the fact
that the trajectory type responsible for those
resonances (which in Ref. [42] is called the 2
7r trajectory) reduces in action as the mag-
netic field is increased. The resonances most
important to this paper are labeled by t, .
The parameters of spectrum (e) are the same
as in (b), except for a slightly increased ex-
citation energy. Actually the average count-
ing rate observed during the recording pro-
cess of spectrum (e) was about 10' of that in
spectrum (b). The main difFerence between
(b) and (e) is that all QL resonances except
the Ci resonance disappear at the ionization
energy, indicating that a specific ionization
behavior of difFerent QL resonances exists
Spectrum (e) may additionally exhibit a Co
resonance. The spectra (f) and (g) are taken
at the same parameters as (b) except for the
laser polarization. Comparison between (b),
(f), and (g) nicely demonstrates the polariza-
tion dependence of the QL resonances, which
is described by the formalism of Du and Delos
[39,40]. The resonance strengths are normal-
ized to the total counting rate in the particu-
lar experiments, i.e. , it is possible to compare
different plots in the figure quantitatively.
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function close to conjugate points, the actual modula-
tion amplitude becomes extraordinarily large for those
parameters. How these focal lines, which enhance the
resonance strength enormously, evolve as the scaled en-
ergy is changed is illustrated in the following examples.

In Fig. 9, where the scaled electric Geld is the same
as in the spectrum of Fig. 4(b), one can clearly see
three singularities. At the first one, which occurs at
W = —51 cm i, the Maslov index increases by 1 with
increasing R', corresponding to a new conjugate point
along the orbit. Figure 9 shows that the new conju-
gate point emerging from the terminal surface is a focal
line of the trajectory which is parallel to the magnetic

field, i.e. , the trajectory is focused in the Po degree of
freedom. As the energy is increased further, the modu-
lation amplitude decreases, refiecting the increasing dis-
tance between the terminal surface of the trajectories and
the focal line. At W ——49 cm, however, the focus
turns back and approaches the terminal surface again.
At W = —47.7 cm i it disappears again (the Maslov in-
dex changes by —1.), thus producing another singularity
as the focal line crosses the terminal surface of the tra-
jectories. At an energy of W = —44.9 cm i the Maslov
index increases again by 1 since a new focal line emerges
from the terminal surface of the trajectories. This fo-
cal line lies in the plane perpendicular to the magnetic
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FIG. 5. Trajectories with large dipole moments for different scaled electric fields ~. If no energy value is indicated the
trajectory is calculated for the ionization energy R'; „=—51 cm . For e = 0.224 and 0.134 the Co orbit is also shown for
higher excitation energies (above the ionization limit) in order to show the evolution of the 92 into the Co orbit. The figure
also indicates the scaled dipole moments b, of the orbits [see Eq. (18)] and the modulation strengths n in the same units used
in Figs. 6 and 7. For scaled electric fields t ( 0.7 the CD orbit only exists for energies above the ionization limit, which are not
accessible to the experiment discussed in this paper. It evolves continuously from the S2 orbit, as shown for e = 0.134 and 0.224.
There is no energy range where both orbits Co and S2 coexist. For e ) 0.7, the Co trajectory and the S2 orbit, which are nearly
degenerate in action, coexist within a certain energy range which covers the ionization energy. If a resonance at that action is
observed, it is necessary to determine by classical stability calculations whether the S2 or the Co orbit causes the resonance.
Usually the modulation strength of the S2 orbit is larger than the Co modulation strength. It must be mentioned that the
value n 5 x 10 for the Co orbit for scaled electric field e = 0.668 is very unstable; if one of the parameters W, E, or B is
slightly changed the Cp modulation strength rapidly drops (see also Fig. 6). The Ci trajectory exists at the ionization energy
over the whole examined scaled electric-field range. In comparison with other trajectories it exhibits a large resonance strength
leading to a quite dominant signal in the Fourier spectra. The C2 trajectory is depicted for t = 0.224, where it modulates the
spectrum stronger than the Cz orbit. For the orbits C; not only the symmetric orbit type exists, but also asymmetric types
with nearly equal action, each having a certain complex modulation amplitude. As an example, the three C2 orbit types are
depicted at the bottom of the figure (see also Fig. 8). The total resonance strength is obtained by taking the square of the
modulus of the complex sum over the individual modulation amplitudes of all trajectories having the same action.
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FIG. 6. Resonance strengths of the Co orbits for different
scaled electric fields. The plotted values in Figs. 6 and 7 do
not include the influence of the laser polarization (although
can easily be calculated) since in this paper the major interest
is in the intrinsic classical stability behavior of the orbits. The
left-hand parts of the curves for e = 0.134 and 0.224 actually
are modulation strengths of the Sz trajectory, which evolves
continuously into the Co orbit as the energy is increased. As
in Figs. 7, 11, and 12 the ionization energy is indicated by a
broken vertical line.
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field and corresponds to the focusing in the Hc degree of
freedom.

A kind of limiting case occurs in Fig. 7 for e = 0.409,
where instead of a singularity, a smooth bump appears
at an energy of W ——48 cm . Figure 10 illustrates
that as the energy approaches that value from any side,
a virtual focus in the $0 coordinate (labeled in Fig. 10 by
a v) approaches the terminal surface of the trajectories,
but does not reach it. Therefore no singularity occurs,
only a bump.

Now we turn to the dipole moments of the trajectories
which are displayed in Figs. 11 and 12. It can clearly
be seen that large trajectory dipole moments and large
modulation amplitudes coincide at a scaled electric field
e —0.7 in the vicinity of the ionization energy. Fig-

FIG. 8. Visualization of the resonance strength maximum
of the Co orbit encountered at; W = —48.5 cm and e =
0.668. At those parameters the symmetric type as well as
the asymmetric types of Co orbits cause focusing back to the
core region. This is demonstrated by launching trajectories in
several directions (here differing by 0.07') close to the central
trajectory, which returns with zero angular momentum and
which is enhanced in the figure.
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FIG. 7. Resonance strengths of the Cq orbits for diBerent
scaled electric fields. Similarly to Fig. 6 at low scaled electric
fields there is a continuous transition between the Cq orbit
and another trajectory with negative dipole moment.

Modulation Singularities of the C1-Orbit at g=0.668

FIG. 9. Stability behavior of the Cz orbit at e = 0.668.
The resonance strength is approximately proportional to the
inverse product of & and &~, leading to a singularity if theBeo 4o '
trajectory is focused back to a line in the 8 or P directions.
As also indicated on the figure, the Maslov index changes by
1 if a singularity is passed.
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ures 4(b) and 4(e), which are taken at these parameters,
exhibit a strong Cq resonance in agreement with the quite
large theoretical modulation strength given in Fig. 5. As
can be seen from Fig. 12 the dipole moment of the Cq
trajectory decreases rapidly as the scaled electric-field
strength is reduced. On the other hand, as the scaled

C1 Nodulation Strength Naximum ot g =0.409

FIG. 10. Stability behavior of the Cz orbit at e = 0.409.
As is clear from Fig. 9 the modulation maximum of the Cq
orbit at W ——47 cm is due to the minimum of ~ at8gp
that energy. The upper part of the figure shows that there
are difFerent conjugate points (labeled by small squares in
the figure) determining the Maslov index: the left pair of
trajectories consists of the central trajectory (bold) and a
neighboring trajectory differing only in Pp. It can be seen that
there are four foci and one caustic in the plane perpendicular
to H. The three-dimensional plot in the upper right of the
figure shows the central trajectory (bold) and a trajectory
difFering only in 80. One can recognize four foci in the B
direction.

electric field is increased, the modulation strength related
to the Cq orbit decreases far below the values associated
with competing QL resonances. Therefore the Ci or-
bit is expected to favor atomic states with large dipole
moments for a scaled electric field of e 0.7. As shown
above (Fig. 9) for this value of the scaled electric field the
modulation amplitude of the Ci resonance is extraordi-
narily enhanced by three focal lines which successively
hit the terminal surface of the trajectories when the ex-
citation energy is varied around the ionization energy.

Similarly Fig. 6 shows that at the ionization energy
the Cp orbit exists only for e ) 0.7. The correspond-
ing QL resonance, however, may be observable only in a
narrow range on the scaled electric-Beld scale since the
modulation amplitude rapidly decreases as e is increased
from e = 0.7 (see Fig. 6). Only the Cp('?) resonance in
Fig. 4(e) may be due to the Cp orbit. Despite the small
Cp resonance strength at e = 0.7 a few atomic states may
be accidentally scarred by the Cp orbit.

From the discussion of the QL resonances it can be
concluded that atomic states with large dipole moments
should occur for e = 0.7 in the vicinity of the ioniza-
tion limit. Wave functions having large dipole moments
should be influenced in the sense of Eq. (15) by the tra-
jectories Ci and perhaps Cp.

V. EXPERIMENTAL SETUP
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FIG. 11. Dipole moments of the trajectories belonging to
the Cp orbit.

The experimental setup is shown in Fig. 13. The ex-
periments have been performed with rubidium Rydberg
atoms, since these are much simpler to investigate than
hydrogen atoms. The only difference compared to hydro-
gen is the modified potential close to the nucleus caused
by the influence of the core electrons. The core poten-
tial does not affect the considerations with regard to the
expected dipole moments of the atoms. Also the QL res-
onance structure which allows one to find the classical
trajectories influencing the system is not changed signif-
icantly, as has been shown by O'Mahony for difFerent
alkali atoms in strong magnetic fields [53].

The atomic beam efFuses from an oven having a tem-
perature of about 630 K. The velocity of the atoms fol-
lows a modified Maxwell distribution or a supersonic dis-
tribution, depending on details of the oven (for example,
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FIG. 14. Demonstration of the performance of the veloc-
ity selector. The time-of-Bight distributions prove that there
is no slow velocity sideband leading to a group of strongly
deAected atoms and thus simulating large dipole moments.
Thus it is ensured that the observed large deAection of a part
of the atoms must be due to their large electric-dipole mo-
ment.

FIG. 13. Experimental setup. The velocity-selected
Rydberg atoms are excited by a rhodamine 6G dye laser
which contains a frequency-doubling ammonium dihydrogen
arsenate (ADA) crystal at an auxiliary focus of the laser
cavity providing the uv radiation. After the deHection the
Rydberg atoms are field ionized. The field electrons are de-
tected with a position-sensitive microchannel-plate (MCP)
detector.

are connected to the electric-field strength and its first
and second derivatives in the x direction (see Fig. 15) at
the center of the arrangement. The voltages which have
to be applied in order to get certain fields and inhomo-
geneities (the second derivative was usually set to zero)
can be easily calculated via a system of linear equations.

About 200 ps after the excitation, all Rydberg atoms

the nozzle diameter). Since the dipole defiection depends
on the atomic velocity ( v ) the atomic beam must
be velocity selected. This was achieved by a mechanical
velocity selector consisting of ten slotted disks mounted
with well-defined spacings and torsion angles on a motor
driven axis. The velocity selected beam has a full width
at half maximum of 8'%. Owing to the small number of
strongly deBected atoms the velocity distribution of the
atoms should not exhibit side maxima at small veloci-
ties. This is shown in Fig. 14, where time-of-Bight data
on the velocity distribution are displayed. The relative
transmission ratio in the center of the selected velocity
band was close to 0.5.

The excitation of the rubidium Rydberg levels was per-
formed by the frequency-doubled radiation of a dye laser
(rhodamine 6G). The interaction region between laser
and atomic beams is located in the middle of the elec-
trode arrangement producing the electric field and in the
homogeneous part of the magnetic Beld. The laser beam
crosses the atomic beam at right angles. The residual
Doppler width amounts to 15 MHz. In order to avoid a
motional electric field (v x B contribution) the magnetic
field which is generated by a superconducting pair of coils
must be parallel to the atomic beam. The electric Beld
can be chosen to be homogeneous, as needed for spectro-
scopic measurements, or to be slightly inhomogeneous,
as necessary for dipole-deflection measurements. The ge-
ometry of the six electrodes used to produce the electric
Beld is shown in Fig. 15. The three voltages Vo, Vj, V2

Arrangement of Electrodes: Electric Field Lines.

-Vp

QAtanic Beam(i Bi

;—3.3mm 4

I
/

Loser Beam

j)

~without Field Inhomogeneity

I

with Field Inhomogeneity
I

Laser Beam

Vt V2

I v2

E„,SE„ISx,S2E„/bx2-- :-Vo, Vt, V2

FIG. 15. Electrode arrangement producing the electric
field. Using the three potentials Vp, Vj, and Vz, arbitrary
field values and field inhomogeneities can be chosen. Since
the electrodes are very long in comparison to their separation
the electric field drops to zero within a small distance on the z
scale, providing well-defined conditions during the defiection
process.



47 ATOMS IN STRONG CROSSED ELECTRIC AND MAGNETIC. . . 433

are field ionized, and the stray magnetic field deflects the
field electrons onto a microchannel-plate (MCP) detec-
tor. The ionization field and the magnetic-field strength
have to fulfill certain conditions to guarantee that the im-
age of the atomic beam is not distorted and smeared out
by drift effects occurring in electric and magnetic fields.

Since the dipole moments are deduced from the dipole
deflection the atomic beam image in the detector plane
must be well defined; thus the spread of the atomic beam
due to its own divergence and diameter must be min-
imized by using good collimation. This is also neces-
sary in order to achieve the optimum performance of the
velocity selector. Furthermore the spread of the elec-
tric field across the atomic-beam diameter must be kept
small. All these precautions have to be taken without
diminishing the average counting rate significantly in or-
der to keep the integration time and the fraction of dark
counts within reasonable limits. Taking these considera-
tions into account the experimental parameters were set
in a manner allowing measurements of atomic dipole mo-
ments with an accuracy of about 25—30%%uo.

The laser frequency, the voltages determining the elec-
tric field, and the magnetic field are controlled by a com-
puter which is also used to integrate the signal counts for
the ordinary or scaled spectra, and to sample the two-
dimensional images produced by the microchannel plate.
Different evaluation programs were used to Fourier trans-
form the spectra, yielding the revolution times or action
values of the orbits influencing the spectra. In addition,
the programs were used to perform operations on the
atomic beam images, for example, averaging and rotat-
ing, necessary to prepare the images for the evaluation
of the atomic dipole moments.

VI. EXPERIMENTAL RESULTS

Before the results of the dipole deflection measure-
ments are presented and discussed it is necessary to un-
derstand what is measured in the experiment. The sirn-
plest model would be to assume fixed dipole moment,
field inhomogeneity and velocity of the atoms. In that
case the electric-dipole moment d could be calculated
from the observed deflection Ax in the following way:

(az. &

1 [(L i/2) + I iL~)
E ~*)

Ax v (16)

with atomic mass M and velocity v (Ax, Ii, 12 are
explained in Fig. 16). However, the assumption of a fixed
dipole moment is not necessarily fulfilled. During the
time the atom passes through the apparatus the following
events take place:

(i) An atomic state is excited by the laser within well
defined crossed fields at time t = 0 (location 1 in Fig. 16).

(ii) The Rydberg atom experiences a force F(t)
7'[d(t) E(t)] and is accelerated. It is a good approxi-
mation to consider only the 2: component of the motion,
F~(t) =

& d(t). . The field inhomogeneity can be as-
sumed to be constant. The electric field acting on the
Rydberg atom, however, changes as a function of time,

thus the electric-dipole moment determining the deflec-
tion force also changes according to the energy-level map.

(iii) The Rydberg atom reaches level crossings (and
anticrossings). The levels accidentally cross (Poisson
statistics) or repel each other, as observed in classically
chaotic quantum systems. Depending on that behavior,
the atoms prefer the diabatic or adiabatic passage, re-
spectively (location 2 in Fig. 16).

(iv) At a time T the atoms pass a region in which the
electric field is switched off as fast as possible, i.e. , the
electrodes are designed so that the error due to uncon-
trolled deflection is minimized (location 3 in Fig. 16).

(v) The atoms reach the detection zone with a deflec-
tion Ax which is proportional to the momentum kick
they experienced due to the electric-dipole force (loca-
tion 4 in Fig. 16).

Thus the quantity which can be derived from the mea-
sured deflection Ax is

1

T 0
d(t')dt',
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FIG. 16. Investigation of the deflection process. For sim-
plicity the structure of the electric field is not the same as in
Fig. 15. The figure shows that due to the dynamical character
of the deflection the observed deflection patterns only allow
one to determine an average dipole moment, not &" for the
excited energy eigenstates. The average dipole moment de-
pends on the level-crossing behavior at point 2.

i.e. , the average dipole moment the atom takes as the
deflection process goes on is measured. This implies two
important conclusions:

(i) The actual maximum value of the electric-dipole
moment d is larger than the measured one.

(ii)The measured dipole moment depends on the path
the atom takes in the level scheme. An entrance space
distribution of excited atoms W;„(Ax) is mapped onto
a distribution W«q(Ax) in a way governed by the level
scheme and the Landau-Zener formula.
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FIG. 17. Dipole-deflection patterns at B = 0.7 T, E =
17000 V/m, and W-= —80 cm, which is close to the ion-
ization energy. The deflection at point 3 (Fig. 16) amounts
to about 0.13 mm for

&
——6 x 10 V/m, corresponding

to an electric-field change of about 800 V/m. Knowing the
dipole moment of about 250eA (see below), where A=1 A,
the energy change of the atom during the deflection turns out
to be about 0.15 cm = 4.5 GHz. As is clear from excitation
spectra taken in this parameter region, the number of levels
coupled to the ground. state within that energy range is at
least on the order of 50; thus it follows that the atom passes a
large number of level crossings during the deflection process.
The observed proportionality between and the deflection
shows that the dipole moment of the atom does not change
dramatically during the deflection, thus the level crossings are
passed diabatically.

The simplest method to decide whether the atoms pass
diabatically or adiabatically is to measure the dipole de-
fection as a function of the field inhomogeneity, i.e. , the
range in the level scheme relevant for the deflection is
changed. The result of such a measurement done with
E = 17000 V/m, B = 0.7 T, and excitation energy close
to the ionization limit is displayed in Fig. 17. The ob-
served proportionality between deflection and field inho-
mogeneity allows one to conclude that the atoms perform
a diabatic passage.

Since the knowledge of the passage behavior is a cru-
cial point in this work, another type of measurement
to answer that question was performed. We measured
the dipole deflection at constant electric field and con-
stant excitation energy just below the ionization limit
as a function of the magnetic field in the range from 0
to 3 T. The obtained deflection patterns are shown in
Fig. 18. It can be recognized that the dipole deflection of

the atoms starts with quite large values at low magnetic
fields. As the magnetic field is increased the dipole de-
flection passes a minimum, then rises to a maximum, and
decreases again at very high magnetic fields. It is known
from the literature [54] that at excitation energies used
for the measurements shown in Fig. 18 and an electric
field E = 0 the classical dynamical behavior of the elec-
tron becomes gradually chaotic in magnetic-field ranges
of B = 0.8—3 T and B = 2.0—7.4 T, corresponding to the
left and right columns of Fig. 18, respectively. Provided
that similar magnetic-field values are valid if the electric
field is added, it might be concluded that due to the level
repulsion in classically chaotic quantum systems at the
right end of the deflection patterns shown in Fig. 18, pre-
dominantly adiabatic passage takes place (labeled by 3
in Fig. 18). The expected deflection pattern would give
quite large dipole moments, since in the level scheme
the atom would pass a considerable number of "steep"
paths. In a transition region between diabatic and adia-
batic passage, strong Huctuations in the observed dipole
moments should occur since there should be comparable
fractions of atoms passing diabatically and adiabatically.
The maximum in the standard deviations of the dipole
deflection at magnetic-field values labeled by 2 in Fig. 18
can be explained by such a transition. For lower mag-
netic fields (region 1) atoms should predominantly pass
diabatically. In general it must be expected that the os-
cillator strengths of states exhibiting low dipole moments
are larger than those of high dipole moment atoms. Since
in the diabatic-crossing regime the average dipole mo-
ment during the deflection is essentially determined by
the dipole moments of the atoms immediately after ex-
citation, we expect quite small dipole deflections in the
diabatic regime (region 1). Thus the observed decrease
of dipole deflection as the magnetic field changes from
region 2 to 1 can be explained by a decreasing fraction of
atoms altering their initially rather low dipole moment
to a large one via adiabatic passages.

The features observed in Fig. 18 can be explained by
assuming a change of the crossing behavior from diabatic
to adiabatic. Particularly for the scaled electric field
e = 0.7 at the ionization limit we expect that the atoms
prefer to cross diabatically during the deflection process,
resulting in measured dipole moments which should not
deviate much from the actual atomic dipole moments im-
mediately after the laser excitation. It should be men-
tioned that the conclusions from Fig. 18 are drawn from
the behavior of the majority of the atoms, which exhibit
relatively small dipole deflections. The reason Fig. 18 ex-
hibits no strongly deflected atoms, as found in the mea-
surements which follow below, is simply that in Fig. 18
they would appear at magnetic field values as small as
B = 0.16 and 0.38 T, respectively. At low magnetic
fields, however, the applied imaging technique from the
field ionization zone onto the MCP does not operate well
enough to separate the strongly deflected atoms from the
dominating fraction of weakly deflected atoms. However,
if the weakly accelerated low dipole moment atoms pass
diabatically, then the strongly accelerated high dipole
moment atoms do so as well.

The atomic-beam images presented in Fig. 19 are the
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most important results obtained by the dipole-deflection
method. The measured deflection distance allows one
to calculate the average electric-dipole moment during
the deflection according to Eq. (16). So that the re-
sults for difFerent excitation energies can be compared to
each other it is convenient to calculate the scaled electric-
dipole moment d, given by

d, = diWf

with energy W and electric-dipole moment d in atomic
units. d, describes the charge separation distance be-
tween the nucleus and the electron in units of 1/~W~,
which under field-free conditions is the maximum dis-
tance between a classical electron and the nucleus at en-
ergy W. To get a feeling for the size of d, we note that an
electron localized at the classical ionization saddle point
would have a scaled electric-dipole moment d, = 2. In
Fig. 19 the axis showing the deflection distance is trans-
ferred into a scale giving the scaled electric-dipole mo-
ment. Figure 19 shows the observed deflection patterns
at energies of —90.5, —78.5, and —69.7 cm i. The veloc-

ity of the atoms selected by the Fizeau velocity selector
is indicated on top of the three columns. The upper-
most pattern in each column shows the undeflected beam,
which is obtained by switching off the field inhomogene-
ity. In all of the following dipole-deflection patterns the
scaled electric field was tuned to the ionization limit in
order to obtain the largest dipole deflections. The scaled
electric field values are indicated in Fig. 19 together with
the magnetic field on the left-hand side of the pictures.
The unscaled electric-field strength in atomic units can
be calculated by E = eB ~, B taken also in atomic units.
As the magnetic field increases, the unscaled ionizing
electric field strength also slightly increases, indicating
that the magnetic field slightly increases the stability of
the atoms with respect to ionization. However, it was ob-
served that at a certain magnetic-Geld value larger than
those applied in the experiments shown in Fig. 19 the
ionization electric-field strength drops again.

Now we discuss the dipole deflection shown in Fig. 19.
First the behavior of the central peak is examined, this
corresponding to the main body of the atoms considered
also in Fig. 18. As the magnetic field is increased, the
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FIG. 18. Dipole deflection at the location of the MCP as a function of the magnetic field for constant electric field and
excitation energy close to the ionization energy (two measurements). The number of counts in the pixels increases from yellow
to black in a logarithmic scale. The upper images are taken without electric field inhomogeneity, the lower ones with the
indicated values of the field inhomogeneity. The deflection as a function of the magnetic field is obtained by subtracting the
zero-inhomogeneity atomic-beam position from the average location with applied field inhomogeneity (dots). The solid curve
gives the deQection averaged over ten pixels on the B axis. The standard deviation o. is obtained by evaluating the deflection
distribution N(x, B) for each magnetic-field value B with respect to x. The interpretation of the increase of the deflection aud
the standard deviation at certain magnetic-field values is given in the text.
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deflection and thus the scaled electric-dipole moments
are reduced. This can be easily seen in Fig. 20, which
contains the evaluated data of Fig. 19. The decrease of
the dipole moments with increasing magnetic field is the
expected behavior since the first guess is that the diamag-
netic potential should reduce the extension of wave func-
tions perpendicular to the magnetic-field direction. Espe-
cially in classical trajectory calculations it can clearly be
seen that at larger magnetic fields, trajectories starting
at the Coulomb center extend less in the plane perpen-
dicular to the magnetic field.

Now we turn to the strongly deHected atoms. It is not
as easy as in the case of the central peak atoms to asso-
ciate a dipole moment with them, because their number
is relatively small and the broadening of the deflection
value amounts to about 30Fo. The reasons for the total
deflection broadening are the residual velocity spread (ca.
8'%%) leading to a relative deflection spread of about 17%,
and the spread of the undeflected pattern (ca. 0.2 mm
at the field ionization zone) which is due to the diameter
of the laser beam at the excitation point, the divergence
of the atomic beam, and the imperfections of the imag-
ing process from the field ionization zone onto the MCP
surface. The latter spreading mechanism especially re-
duces the image quality at low magnetic fields. Due to
the large deflection spread even atoms with a fixed large
dipole moment lead to a broad, weak deflection signal

W=-69.7cm W=-78.5crn" W=90.5cm
-1

E
C3

CU

CL
Cl

pili ) iI
0 ~

1l 2I

Scaled Electric Field 6

FIG. 20. Evaluation of the deflection data (Fig. 19). The
three sets of measurements are distinguished by the bar struc-
ture. The error in the c direction is negligible, the error of the
average scaled dipole moment amounts to about 25% mainly
due to the velocity spread of the atoms. Each deflection pat-
tern of Fig. 19 corresponds to two bars: one bar indicating the
average dipole moment of the main part of the atoms (black
regions in Fig. 19) and one bar associated with the atoms
showing the strongest deflection. The outstanding features
of the plot are that the deflection of the central maximum
increases with e, and that strongly deflected atoms are found
for e 0.75.
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F)G. ]9. Three sets of measurements showing the dipole-deflection pattern as a function of the scaled electric field at constant
excitation energy, each image taken at the ionization limit. The images show the color-coded two-dimensional deflection patterns
on the MCp surface, the color code being normalized to the maximum count number per pixel. The number of detected atoms
increases from yellow to black in a logarithmic scale: one color covers a range of 0.477 on the logic(n&„„&),where ni » is the
number of counts in pixel (2:,y). The uppermost rom of images gi's the reference position of the undeflected beam. If a field
inhomogeneity is applied, the atoms are deflected in the opposite direction to the electric field, which is directed from left to
right. The x axis gives the scaled electric-dipole moment following from the deflection value. Et must be emphasized that this
value corresponds to the average dipole moment of the atom during the deflection process (see Eq. 17).
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which can only be separated from the broadened central
peak if the deflection exceeds a certain value.

The mentioned difliculties lead to rather large error
bars for the measured dipole moments of the strongly
deflected atoms in Fig. 20. In spite of this, a clear state-
ment can be drawn from the measurements: The dipole
moment as a function of the magnetic field has a pro-
nounced maximum in all three series at s —0.75.

Since the relative number of strongly deflected atoms
is small, we performed another experiment to check our
interpretation of the observed deflection patterns. For
this purpose the frequency of the laser was tuned over
a convenient range, and the dipole deflection was plot-
ted versus the frequency. Thus a two-dimensional image
is achieved. Figure 21 shows the experimental results
for three difFerent scaled electric fields, corresponding to
scaled electric fields above, at, and below the value re-
sulting in maximum dipole deflection. For a laser scan
width of —1.8 cm the excitation spectrum correspond-
ing to the total counting rate which follows from the color

coding in Fig. 21 shows several maxima indicating short-
scale QL resonances. The overall decrease in the counting
rate as the laser frequency increases indicates the neigh-
borhood of the ionization limit. The upper two measure-
ments in the leR column of Fig. 21 use a larger value for
the inhomogeneity of the electric field (3xl0s V/m2);
therefore the dipole scale is different from the others,
where the inhomogeneity is 2 x 10s V/m2. The following
observations are made from Fig. 21:

(i) At scaled electric-field values above the one with
maximum dipole deflection no strongly deflected atoms
are observed (upper measurement in the right column of
Fig. 21).

(ii) For scaled electric fields well below that value quite
a large number of deflected atoms appear (lower measure-
ment in the right column of Fig. 21). The corresponding
dipole moments are moderate, in agreement with Fig. 20.
It can also be observed that the number of deflected
atoms is not correlated with the intensity of the central
part of the deflection pattern, proving that the signal due

vo =490 s E =0.798 +=-76.0cm ds B=05T 49()m g =1.328 +=-81.2cm "

Jl A

A

V
A D„

A A

N'q A"

,»

AA »
A

(mrs(-+) (cm 1)

A

» Sf ISS it

A ti %$

'lriil;s n"~ ir'i
'il

0,. 1SR~%4~1'!l~ t tt a

ii
A A

~
'

A%AA:~" "' .ii&78
A St)'A

A

A A ~A +A!II»
A A,

A I A

1.5

At N

sr Ai

I

. A

iA D

D 11

1,,
» Ai » SIID»»

» D
i%» '!ID IS»»» St

p$ f)Irs +Q ''I4P 1 II »i St 'qA»
— ~ i ~fia

pea SSSP D D

i r ' D~'j fly& N~ DDS

D ~»D
SD D»NS„»St@

It
SS 5

(+- &o) (cm 1) 1.5

ds B=0.7T e =0.802 )ri(o--76.0cm ds B=10T v,=490-, g =0.527 ~-76.0cm
-1

1
IS »

» a » » »
» iS» »» I

»D "» D
» A!St D

I St SMI »
D

[t't'ai IA ~J(iiDDta

I»

St St D

»
», » »

(W-&~ ) (cm 1)

IA

»

R CR !
D i

ill D
ill It » SSD»» iQ »

D »W »
A!

"'"""=-'+IrYA +'-m!'ilWR ' ~ ".s'~Sf~
SS

SI »
DD

0 (8-Sstlo) (cm ")

ds B=0.7T vo =490'fA Wo=-81.2cm ds =Sea(ed Dipole Moment

IA D A!
ttt tt it » »

St I)''Es~ .~
"s"~'Ks. i! flii 'll Pi'iAI ii, 'l, it 'l

f&-&o) (cm")

i ((((i!I i
6~&nd-5tate HF5 Sp(itting
(Paschen-Back-Regime )

I IG. 21. Sealed average electric-dipole moments as a function of the excitation energy lV for difI'erent scaled electric fields
(color-coded images: the number of detected atoms increases logarithmically from red to black, one color covering a range of
0.477). The deflection spectra are taken very close to the ionization limit. At the large scaled electric field no strongly deflected
atoms occur. For e = 0.53 (right column, lower picture) a fairly high fraction of moderately deflected atoms appears. For

0.8 a few atoms are strongly deflected (left column), the relative number clearly increasing with increasing energy. The
width of the bunches of strongly deflected atoms on the energy scale coincides with the width of the ground-state Paschen-Back
pattern of the hyperflne structure, being shown in the figure with the same energy scale as the deflection patterns. Some groups
of strongly deflected atoms are not correlated with a large counting rate for weakly deflected atoms. This independent behavior
ensures that the signals for strongly deflected atoms are not just caused by noise.
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to the strongly deflected atoms is not the result of atoms
in the wings of the spatial distribution for the weakly
deflected atoms.

(iii) For the situation with maximum dipole deflection
we show three measurements (left column in Fig. 21),
all exhibiting a reasonable fraction of strongly deflected
atoms. The scaled dipole moments which follow agree
quite well with the other experiments shown in Figs. 19
and 20.

(iv) At several locations in the left column of Fig. 21,
strongly deflected atoms appear where the number of
weakly deflected atoms is small. This demonstrates again
that the strongly deflected atoms are not correlated with
the central maxima.

(v) The strongly deflected atoms appear in bunches
having a width on the energy scale of 0.25 + 0.07 cm
This is clearly due to the ground-state hyperfine-
structure splitting which in the Paschen-Back regime
encountered in our measurements corresponds to a B
independent splitting pattern with 0.17 cm i width (see
also Fig. 21). Thus one bunch of strongly deflected atoms
should essentially correspond to one electronic state.

The presented data should convince the reader that the
strongly deflected atoms really correspond to atoms ex-
hibiting extraordinarily large dipole moments. In the fol-

lowing we give a semiclassical explanation of the strongly
deflected atoms. The dipole-deflection maximum oc-
curs for all experiments at the same scaled electric field

(e = 0.75) and the same scaled energy (u = —1.7), there-
fore a semiclassical interpretation of the phenomenon
should be possible. (The scaled parameters are derived
from the classical Hamiltonian and are therefore intrinsi-
cally classical variables. The quantum Hamiltonian does
not allow a similar scaling. ) As explained in Sec. III we
expect that the wave functions are influenced by classi-
cal trajectories. In order to interpret the appearance of
the large dipole moments we must consider the QL orbits
which were found to influence the excitation spectra and
which exhibit large dipole moments. By comparing the
experimental results just presented and the results con-
cerning the modulation strengths and dipole moments
presented in Sec. IV it is found that the maximum of the
electric-dipole moment results from the inHuence of the
Ci and possibly Co orbits (Fig. 5) on the wave functions:

(i) If the magnetic field is low (e ) 0.75), the orbits Co
and Ci exist but their modulation amplitudes are so low
that they do not influence the excitation spectra. Due to
their instability they do not influence the wave functions
strongly enough to lead to a large dipole moment, which
is inherent to Co and C~ orbits.

(ii) If the magnetic field exceeds the value where max-
imum dipole deflection is observed (e ( 0.75), the Co
trajectory no longer exists at the ionization energy. The
modulation amplitude of Ci, however, is fairly high.
Thus individual wave functions should be strongly in-
Huenced by the Ci orbit (this leads to a considerable
fraction of strongly deflected atoms, for example, see
lower right of Fig. 21). However, the dipole moment of
Cz becomes relatively small for low scaled electric-Geld
strengths (see Fig. 12). This is in agreement with the

moderate dipole values which are found experimentally
at small scaled electric fields.

(iii) At scaled parameters where the maximum dipole
deflection occurs (e —0.75) the Co orbit still exists, but
exhibits only a moderate modulation amplitude. There-
fore an influence of the Co orbit on wave functions is quite
unprobable. However, the Cy orbit exhibits for those
parameters three successive modulation maxima leading
to constantly large modulation amplitudes over a wide
parameter range (see Fig. 7). Therefore the observed
strongly deflected atoms should correspond to wave func-
tions with dipole moments determined by the inHuence
of the Cq orbit.

The preceding discussion shows that the large dipole
deflection at e —0.75 can be explained by the influence
of classical trajectories on wave functions. Since these
are usually influenced simultaneously by many trajecto-
ries, the dipole moment of a wave function is in most
cases much less than that following from the trajectory
exhibiting the largest dipole moment. Thus the dipole
moment resulting from the deflection measurement has
to be smaller than that of the Co and Ci trajectories. A
comparison between measured dipole moments and tra-
jectory dipole moments enables us to estimate how strong
individual wave functions may be scarred by the high
dipole moment trajectories. Figures 20 and 21 show that
the maximum scaled electric-dipole moment is 0.70+0.15,
which is to be compared to the scaled electric-dipole mo-
ment of the Ci orbit, being 1.0 (see Fig. 5). Thus the
measured dipole moment is about two-thirds of the Cq
trajectory dipole moment. This estimate must be seen as
a lower limit since in the experiment the measured dipole
moment may be smaller than the maximum dipole mo-
ment taken during the deflection process [see Eq. (17)j.
From the fact that the measured dipole moment reaches
two-thirds of the Ci trajectory dipole moment, it follows
that the probability for an electron to be found along the
Ci trajectory is equal or larger than two-thirds, i.e. , that
individual wave functions must be scarred predominantly
by the Ci orbit.

Finally the experimental results are briefly dicsussed
with regard to the numerical calculation which was done
in connection with the potential Eq. (8). With increas-
ing magnetic field the plots in Fig. 3 which are discussed
in Sec. IIB become more and more symmetric and are
reduced in size. The contraction of the space which is
accessed by trajectories starting at the core reflects the
fact that orbits of the Cq type as well as all others con-
tract more and more as the magnetic field is increased.
The average electric-dipole moments obtained from the
(gauge-independent) data sets evaluated in Figs. 2 and 3
agree quite well with the dipole moments of the weakly
deflected atoms which correspond to the main body of
the deflection patterns shown in Figs. 19 and 21. This
statement implies that the averaged electric-dipole mo-
ment obtained from the numerical analysis exhibits no
maximum at e —0.8. The weak deflectio results from
wave functions which are influenced in the same order of
magnitude by many classical orbits; thus the numerical
dipole moment averaged over many, including nonrecur-
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ring, trajectories should more or less agree with the ac-
tual dipole moment of the weakly deflected atoms. How-
ever, when interpreting the observed maximum dipole
moments, one should not worry too much about Fig. 3.
Figure 3 tells nothing about the stability of trajectories
nor about the actual dipole moment of individual trajec-
tories. Moreover, the averaging of data over many trajec-
tories disregards the scarring phenomenon which is the
central point in our semiclassical analysis: A wave func-
tion may be influenced predominantly by a few of many
classical orbits. Thus the observed maximum dipole mo-
ment may exceed the value averaged over all orbits by a
large factor. Therefore Fig. 3 only allows one to make the
statement that with increasing e, nonionizing trajectories
are present which show increasing extension towards the
classical ionization saddle point.

VII. CONCLUSION

In this paper experimental proof is presented that in
crossed fields Rydberg atoms with extraordinarily large
electric-dipole moments exist if the external Gelds and the
excitation energy are properly chosen. For parameters
yielding strongly deflected atoms the electric forces and
the magnetic forces acting on the electron at the classical
ionization saddle point have the same order of magnitude.
The occurrence of Rydberg atoms exhibiting large dipole
moments is explained semiclassically by the properties of
classical orbits having large trajectory dipole moments.
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