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We have studied theoretically and experimentally the e8'ect of a relatively strong magnetic field on
sub-Doppler laser cooling in a one-dimensional optical molasses, We used the operator description of
laser cooling with the Larmor precession frequency uz being much higher than the optical pumping
rate. We found velocity-selective resonances (VSR) in the force at velocities v, = nuz/K, with
n = 0, +j., +2 for both the scattering and redistribution force operators. These depend on the
relative direction of the magnetic field and the polarization vectors of the light beams, Analytical
results for the force on the atom are obtained in two cases that illustrate the efFect of the VSR on
the force. These formulas are compared with numerical calculations of the force. We also discovered
a redistribution mechanism that relies on the gradient of the eigenstates of the light-shift operator,
with eigenvalues that are independent of position so that a "Sisyphus cooling" picture does not
apply. The theory is compared with many experimental results and excellent agreement is found.
We believe that all essential features of laser cooling at low intensity are well described by this
operator theory.

PACS number(s): 32.80.Pj, 42.50.Vk

I. INTRODUCTION

Laser cooling of neutral atoms has been the subject
of many different studies. The experimental discovery of
sub-Doppler laser cooling (SDLC) [1] has spurred very
much attention to this field, and SDLC has now been
studied in many experiments. Early theoretical descrip-
tions [2, 3] attributed the SDLC to polarization gradients
that are always present in three-dimensional optical mo-
lasses. Although these theories are one dimensional, it
is commonly accepted that the polarization gradients in
combination with the multiplicity of the ground state are
indeed responsible for SDLC in three dimensions. In the
one-dimensional lin J lin scheme [2], where the counter-
propagating beams are linearly polarized in the orthogo-
nal directions, atoms are optically pumped between dif-
ferent light-shifted ground states, and the polarization
gradient causes the population of the sublevels of mov-
ing atoms to be mixed. This causes a velocity-dependent
exchange of kinetic and potential energy that produces
a damping force. Experiments were performed that con-
firmed these models [4].

It was also realized that a magnetic field could cause
populations of the sublevels to be mixed and subsequent
one-dimensional (1D) optical molasses experiments pro-
duced SDLC using both low [5] and high [6] magnetic
fields in the absence of a polarization gradient. These ex-
periments led to the velocity-selective resonance (VSR)
picture of SDLC processes [7]. VSR can occur between
two ground-state magnetic sublevels if the energy differ-

ence between them is compensated by the Doppler shifts
of the laser frequencies of the two counterpropagating
laser beams. These VSR's also have a profound effect on
laser cooling experiments that do have polarization gradi-
ents [7—9] and the VSR picture studied in one-dimension
provided a way of unifying the description of all these
processes [7].

We have been studying SDLC processes in a uniform
B field and have developed theoretical models to describe
our experiments [5—7]. Furthermore, we have presented
a more formal description of these experiments that is
valid for arbitrary transition schemes at low B field (e.g. ,
I3 0.1 G) [10,11]. At higher B fields (e.g. , B 1 G) we
find new phenomena such as cooling of atoms to a non-
zero velocity [6, 7, 12]. The magnetic field scale is always
set by the requirement that the Zeeman frequency ~g be
small compared with the excited state decay rate I".

We use our previously described apparatus [5—7] to
produce a thermal beam of natural Rb crossed by a
pair of counterpropagating laser beams transverse to the
atomic beam axis. The atomic-beam profile is measured
with a scanning hot tungsten wire, 25 p,m in diameter,
1.3 m away from the region of interaction with the laser
beam. Three square Helmholtz coil pairs provide a con-
trolled magnetic field B (see Fig. 1).

For small magnetic fields we observed 1D atomic veloc-
ity distributions centered at v = 0 with spreads as low as
2 cm/s when we cooled Rb on the A

—= 2x/K = 780 nm
transition [5] (see Fig. 2). This is much lower than the
one-dimensional Doppler limit vii = (71'/20k~) (= 10
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II. THEORY

A. Force on atoms in the low-intensity limit

LAS

FIG. 1. Schematic diagram of apparatus.

cm/s, for Rb). Here I' = I/7 (= 27r x 6 MHz for Rb)
is the natural width of the excited state At .fields near
I G, we observed cooling of atoms to nonzero velocity
[6, 7). Velocity selective resonances cause the popula-
tion difFerence and coherences between the ground-state
atomic sublevels to change rapidly near the resonance ve-
locity kv„and therefore produce a strong damping of the
atoms to this resonance velocity.

In this paper we present a description of these higher
field processes. We extend the theory of operator descrip-
tion of sub-Doppler laser cooling [ll] to the case of strong
magnetic field. The optical pumping process can then be
treated as a perturbation to the Larmor precession in the
magnetic field. This leads to the identification of velocity
selective resonances, vrhere the optical pumping process
strongly couples two ground magnetic substates. In Sec.
II we present the formalism and derive expressions for the
force for the difFerent resonances. In Sec. III we compare
the results with our measurements.

'R = p,,g
. E+(R,)/5, (2)

which has the dimensions of a frequency. For an atom
of given velocity v, the coupling (2) depends on time
through the time-dependent atomic position R(&) = Ro+
vt.

The gain in the ground-state population from sponta-
neous decay of the excited state is conveniently described
in terms of the reduced dimensionless dipole operator Q,
which has the spherical components

Qp =up Q

In order to Bx the notation we briefly recapitulate the
results of our previous paper [ll]. We consider an atom
moving through a monochromatic radiation field of fre-
quency ~. The Geld drives the transition between a lower
state

~ g) with angular momentum J~, and an excited
state ] e) with angular momentum J„whose energy sep-
aration is huo. The optical electric field is expressed as

E(R, t) =E+(R,)e ' '+E (R)e'

It is convenient to separate the atomic density matrix
into the submatrices 0„for the excited level, azz for the
ground level, and cr,~ and cr~, for the optical coherences
between them. Likewise, the electric dipole operator p,
can be separated in the submatrices p,,~ and gsz, . (The
diagonal parts p„and ps~ vanish when

~
e) and

~ g) have
a definite parity. ) In the rotating-wave and the dipole
approximations, the atom-field coupling is described by
the Rabi operator
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I"EG. 2. The atomic beam pro6le measured vrith the scanning hot vrire in the MILC con6guration. The laser intensity
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with

u y = (X —iY)/v 2, up = Z, uy = —(X+ iY)/V 2

(4)

the spherical unit vectors. The normalization of Q is
fixed by requiring that the matrix elements of its spher-
ical components are Clebsch-Gordan coefIicients as de-
scribed by [13]

(J,M, I Qp I JgMg) = (J,M,
I JgMg;1&),

for P = —1, 0, 1. The values P = kl correspond to two
opposite circular polarizations in the XY plane, and the
value P = 0 corresponds to linear polarization along the
Z axis.

We consider the low-intensity limit, where the rate of
stimulated transitions is much lower than the natural
linewidth I'. Furthermore, we assume that the atomic
velocity is so low that the Doppler shift u~ is small com-
pared with the natural width, so that

(12)

og, (t) = . crgg(t)'R (t).

These coherences determine the net average force F ex-
erted on the atom, which is expressed by the average

F = h(V'R) + h(V'Rt).

From (12) and (13) we obtain the result

(13)

(14)

py = 2 Tr(oggP) =
q Tr(crgg'R 'R) (11)

I'
I' 4+4'

is equal to the total rate of optical pumping.
The optical coherences follow the ground-state evolu-

tion adiabatically, and they are given by the expressions

w~ = K .v (& I'. (6) with W the effective operator
The combined assumption of low intensity and low veloc-
ity is an important ingredient of configurations for sub-
Doppler cooling [2]. Finally, we allow for the presence
of a uniform external magnetic B = Bn, with n a unit
vector. The ground-state Larmor precession frequency
urz corresponding to this magnetic field is assumed small
compared with the natural width, and we have

~z (& r.

I' 2+iX I' 2 —iA

The prescription for calculating the radiative force is now
straightforward. We have to use the efI'ective evolution
equation (8) to evaluate crgg, and the result can be sub-
stituted into (14).

The force operator W can be separated as [11]

As we demonstrated in a previous paper [11], in this
combined limit of low velocity, low intensity, and low
magnetic field the evolution equation for the ground-state
density matrix ~&~ can be given in closed form after adi-
abatically eliminating the excited state. The result can
be expressed in the form

6
rTgg = gal—gg

—(P+RS)o'gg —0'gg (P—tS) —lMz [Jg 'll& 0gg]

~ = ~red + ~sc

into a redistributive part

'R V'R+ (V"R )'RI' 4+6' .
and a scattering part

I' 4+6' .

(16)

(18)

with

gogg ——
2 ) Qp'RoggR Qp

r
+

(8)
The force W„has a dissipative nature, and results from
the scattering of photons into the vacuum. The redis-
tributive force W„g has a conservative nature, and de-
rives from the gradient of the light shift according to

and 6—:u —ao the detuning of the laser from atomic
resonance. The Hermitian operators P and 8 are defined
by

W„d = —hV'S. (19)

This force W«d arises from coherent transfer of photons
between plane-wave modes.

'P+iS = . 'R 'R.I' 2 —xd
(10) B. Strong magnetic field and velocity

selective resonances
The operator hS in (8) plays the role of an efFective
Hamiltonian, describing the perturbation by the radia-
tion Beld of the energy levels of the ground state. Its
eigenvalues are the light shifts.

The effect of optical pumping is described by a master
equation, where Q is the gain term resulting from feeding
of the ground state by optical pumping, and 'P is the
loss. These two operators have a dissipative nature. One
readily checks that

p~ (&az && I, (2o)

and the evolution equation (8) remains valid. The Lar-

We wish to specialize further by considering a magnetic
field that is suKciently strong that the Larmor precession
frequency cuz is large compared with the pump rate p~,
while remaining small compared with the inverse lifetime
I'. Thus cuz obeys the double inequality
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mor term is then the dominant term and

Ho = ~zJg n (21)

serves as the dominant part of the Hamiltonian. Its
eigenstates are separated by the Zeeman level splitting.
The light shift and the optical pumping can be treated
as time-dependent terms driving transitions between the
Zeeman eigenstates. The time dependence arises from
the motion of atoms in a standing wave.

We expand the radiation field in plane waves, accord-
ing to the equation

E+(R) = ) E,+exp(iK, R). (22)

The corresponding expansion of the Rabi operator R is
expressed as

bitrary polarizations in the presence of a magnetic field.
The Larmor frequency obeys the inequalities (20). Since
the magnetic field gives the strongest coupling, it deter-
mines the quantization axis, and we select the Z direction
parallel to the magnetic field. The Rabi operator (2) is
then separated as

iK ~ R+~ —iKR (26)

with the plane-wave Rabi operators

'R, =2As, Q (27)

for i = 1 or 2. 0 is the effective Rabi frequency for a
single traveling wave and the two polarization vectors
are indicated by s, . The Zeeman substates

~
M) are now

the eigenstates of Jgz . Transitions between two Zeernan
substates of the ground state and the excited state with
AM = a. are driven by the polarization components

R = ) 'R, exp(iK, K),

with

'R, = p, ~ E+/h.

(23)

(24)

in 6i ' ll

so that

ei ' g = ) &inQa~

(28)

(29)

After substituting (23) in the evolution equation (8), we
note that the coupling terms between the Zeeman sub-
states have a time dependence that is composed of har-
monic terms oscillating at frequencies (K, —K~) v that
arise because R, = Ro+vt. Since the strength of the driv-
ing perturbation is small compared with the level shifts,
we expect resonant enhancement of the coupling when
one of these effective frequencies coincides with the fre-
quency separation between two coupled Zeeman levels.

Near such a resonance, each term 'R R, in P or 8i
only couples two Zeeman states

~
M) and

~

M') with
az(M') az(M) = (K—, —K~.).v. This reduces to (M'—
M)wz = (K, —K~.) v, if the Zeeman splitting is much
smaller than the fine and hyperfine splitting. A similar
resonant selection in the feeding term g in (8) leads to
coupling between matrix elements of the density matrix
o~g with a difference (M —M') in the Zeeman state by an
amount of the order of (K, —K~) v/cuz. In general we
may expect velocity selective resonances corresponding
to transitions between Zeeman levels. These resonances
in the radiative force arise for velocity classes obeying the
relation

i (K, —K, ) v —nu)z [« cuz, (25)

for n = —2, —1, 0, 1, 2. This condition (25) indicates the
velocities where laser cooling may be enhanced by VSR.
Since the number n corresponds to the difference of the

value of M for two states coupled by 'R . 'R, , its allowed
values will depend on the value of the angular momentum
J~ and on the polarizations of the plane waves. This will
determine which velocity classes will be cooled in any
actual configuration.

where the quantities u are defined in Eq. (4). The
velocity component of the atom in the direction of K
is denoted as v. From (25) we see that we may expect
velocity-selective resonances for velocities v obeying the
condition

~

2Kv —nuz ~&& az (3o)

for n = —2, —1,0, 1, 2. We now give a separate discussion
of these various velocity-selective resonances. In each
case we will see that B dependence of the force arises only
through the atomic variables, not through the radiation
operators.

n=0:He~0
For n = 0, the resonance condition (30) reads

i
2Kv

i
« u)z.

For these small velocities the time dependence of the op-
erators g, 'P, and 8 on the right-hand side of (8) is weak
compared with the Larmor precession frequency wz, and
we only have to include the coupling between matrix el-
ements with the same off-diagonality M —M'. This is
clear if we transform the rapid Larmor precession away
by introducing the ground-state density matrix po for
n = 0 in the rotating frame

pp(t) = exp[iwz J~zt/h]o~g(t) exp[ —iaz Jgzt/h]. (32)

We substitute (32) into (8), and neglect the terms oscil-
lating rapidly at the precession frequency. This implies
that, after substituting Eqs. (26), (27), and (29), we re-

tain only terms diagonal in the index of Q~ and Q~. The
resulting equation is

C. Two counter propagating plane waves

For the rest of the paper we focus on the case of two
counterpropagating plane waves of equal intensity and ar-

d—Pp(t) = go(t)Po(t) —[&p(t) + i~p(t)]Po(t)
dt -po(t) [&o(t) —~o(t)]

where the operators gp, Pp, aiid Sp 'are defined by

(33)
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and

g p ) ) ]C er'Kvt+e e iK-vt
~2

p

xQpQ poQ Qp (34)

the dipole force in the case of a two-level atom in a non-
saturating traveling wave.

In the special case of a standing wave, where E] = E2 ——

e, the operator (40) disappears, so that the force is purely
redistributive. We obtain from (39)

(43)

xQ Q,
with sp the ofF-resonance saturation parameter

]0]2/2
62 + I'2/4'

(35)

with

+0 = +O, red + +O,sc. (38)

If we substitute (23) and (24) into Eqs. (17) and (18),
and retain only the diagonal parts, we arrive at explicit
expressions for the redistributive and the scattering part
of the force operator. We find

+O, red = ifred (~irr~2rre C2c Clcre ) Qrr Qn

and

&O,sc = fsc ) .(I ~i~ I' —
I

e2 I') Q~ Q~. (40)

Here we introduced

f„(A,A) = hKspl'/2 (41)

These expressions demonstrate that the spherical compo-
nents cx of the total field contribute to the evolution in an
additive way, and that the phase relation between these
components is immaterial in the present case of nearly
zero velocity. The time dependence of the evolution op-
erator arises from the time dependence of each separate
spherical component. If pp is diagonal in M at the initial
time zero, it will remain diagonal at all times. Further-
more, the steady-state solution of (33) is diagonal, so
that pp and oz~ are identical. This implies that only the
diagonal parts of the contributions (17) and (18) to the
force operator (16) contribute to the average force. This
average force can be written as

Fp(t) = Tr[pp(t)&0(t)]

However, it is obvious from (33)—(35) that the entire evo-
lution expressed on the right-hand side of (33) is propor-
tional to cos (Kvt). This implies that the steady-state
solution of (33) is independent of time. Hence the expec-
tation value of the force near zero velocity vanishes after
averaging over a wavelength in the case of a standing
wave.

We emphasize that these expressions for the force oper-
ator near zero velocity are independent of the value of the
magnetic field. The dependence of the force on B arises
purely through the density matrix and is illustrated in
several plots below. B should only be strong enough so
that the inequality (20) is justified.

n = 1: K'v a ~z/2

Now we turn to the resonance at the velocity obeying
the condition

(44)
i

2Kv —cuz I« ~z.
We eliminate the strong Zeeman term in the evolution
equation by a transformation to a frame rotating about
the magnetic Beld, and we introduce the density matrix

pi(t) = exp[2iKv J~zt/h]crgg (t) exp[ —2iKv J~zt/t'i].

(45)

Equations (8)—(10) determine the evolution of pi. Again
the rapid oscillations in the evolution operator can be
neglected. If we expand the operators 'R in (9) and (10)
as a sum over 'Rl and 7Z2, and substitute (27) and (29),
we only have to keep the terms where the oscillation due
to the operators exp[+2iKvJ~zt/5] is compensated by
the plane-wave factors. The terms containing products

of Q and Q, arising from the same traveling wave sur-
vive only if n = a'. lf Q~ arises from beam 1, and

Q, from beam 2, the rapid oscillations disappear only
in the case that o.' = o. + 1. These terms correspond to
Raman-type couplings between Zeeman substates that
are Doppler shifted into resonance for the velocity group
under consideration. We arrive at the evolution equation

and

f„d(E,A) = hKspA, (42)

G—pl (t) = ——(Mz —2Kv) [Jgz ~ Pl (t)] + 01pl (t)
dt h,

—[&1 + iSl]pl(t) —pi(t) [P, —iS,], (46)

which represent, respectively, the radiation pressure and
I

) ) (I ~i
I

+
I

~2
I )QpQ P1Q QP + el e2 +iQpQ pl Q +1Qp + t2 +lei QpQ +ipiQ Qp

Sp?' t
a P

(47)
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'pg+iSg = ——+iA
I ) (I eon I

+
I

&~n I )QnQn+e&n~~n+iQn+iQn+ &n+~ &n n +
so Il

2 2
(48)

Note that these operators gq, 'Pq, and Sq do not depend
on time. Thus the density matrix pq is also indepen-
dent of time in the steady state. On the other hand, this
steady-state solution does depend on the velocity compo-
nent of v parallel to K. Off-diagonal matrix elements be-
tween the Zeeman substates arise from the terms in (47)
and (48) that contain mixed products of components of
both polarization vectors. They represent the resonant
Raman-type couplings.

A corresponding transformation must be performed on
the force operators, in order that the average force is
determined by

+ (t) = Tr[p (t)P, +&, )]. (49)

—'2 +i'~nQn+iQ ]

and

&~,- = f-).(l &i I' —
I

~2 I')Q Q .

(50)

The operator (50) for the redistributive force is deter-

It is noteworthy that the resonance in the force, which de-
rives from the density matrix and not from the operator,
simply displaces with the resonant velocity v = wz/2K
when the magnetic field strength is varied [14]. Ignoring
rapid oscillations, we arrive at the expressions

+1,red = ~fred ) [ &yn&2 n+1QnQn+1

mined by the difference in the transfer of photons from
beam 1 to beam 2 and vice versa. The scattering-force
operator (51) is identical to the scattering force Xo „near
zero velocity, and it disappears for a standing wave. The
redistributive force only probes the coherences between
the Zeeman substates with AM = +1 .

8. n=2: Kv ~uz

Finally we treat the resonance at the velocity given by
the condition

I
2Kv —2~z I(( ~z, and we follow a sim-

ilar method as in previous cases. The dominant part of
the Larmor precession is eliminated by the transforma-
tion

p2(t) = exp[iKv Jszt/h]crss(t) exp[—iKv Jszt/h].

(52)

Then only a weak precession term remains. In the evo-
lution equation for pq we neglect the rapidly oscillating
terms. Now only the Raman-type couplings between Zee-
man sublevels with 6m = +2 survive, which are resonant
for the present velocity class. The effective evolution
equation takes the form

d

dt p2(t) = ——(cuz —Kv) [Jgz P2(t)] + gqp2(t)

—[p2 + 282]p2(t) p2(t) [P2 —i82], (53)

with

) .) (I &in
I

+
I

&2n I )QpQnp2QnQp+ &in~2 n+sQpQnp2Qn+2Qp+ &2n+2~znQpQn+2p2QnQp
soI'

n P

(54)

&2+&~2=
2 I 2+» I) (I&&n I +I&2 I )Q Qn+&&n&an+2Qn+2Q +&2n+&&z QnQn+2

sp ('I'

2 (2 (55)

with

2( ) = Tr[p~(t)(&~...d + &2...)], (56)

+2,red &fred ) [ Cyn62 n~gQnQn+2

and

—
&2 n+2&~n Qn+g Qn] (57)

Obviously, since n can only attain the values —1, 0, 1, in
the last terms of (54) and (55), which contain products
of spherical components of the two polarization vectors,
only the summand with a = —1 contributes. The force
near v = ~z/K is expressed as

&2,ee = fe. ) .(I ~in I' —
I ~~ I') Qn Qn. (58)

In Eq. (57) for the redistributive force, only the term
with o; = —1 contributes. We only kept the present
form in order to stress the analogy with Eq. (50). The
redistributive force probes the Zeeman coherence with
LM = +2, and can therefore only arise when J~ & 1.
Furthermore, it is only sensitive to the polarization com-
ponents normal to the magnetic field. The scattering
force operator is given by the same expression as for the
other resonances. Therefore the scattering force is zero
for a standing wave.

The results of this subsection demonstrate that the
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and m see the caption of Fig. 3.

magne ic e strength 6 = 1 and the laser
ances (n =,+1,+2) are present in this case as

e aser detuning A = —1.5F. For the definition of b, )

O, red = ~fred[ (&1Z&2ZR —&2Z&ize Q, Qo
~1( —2iKvt+ 2 (S1Ye2Ye —s & &2iKvt)2Y lY&

x(Qi Qi + Q iQ i)] (63)

)II

1,red = ~fred [ &] Z&&2Y QO Ql/V 2 &&1Ye2Z Q 1 QO/V 2

—e2zitiYQo Q —1/v 2

+te2Y s1z Qi Qo/v 2],

2,red = ~fred &1Y&2YQ i Ql/2 &2Y&lYQ1Q —1/2

(65)

the
Obviously, i „d is determined by the Z component f
he Geld of one beam, and the Y component of the field

0

of the other beam. %2 „d depends only on the Y com-
ponents of both traveling waves. This is understandable
from the picture of the velocity-selective resonances, as
illustrated in Fig. 3(b).

When the two polarization vectors are orthogonal, they
obey in addition to the normalization condition (60) the
orthogonality relation

iZ&2Z = —6&Yt-'2 (66)

If we substitute this relation in Eq. (63) for Xq „d, we
obtain the result

+0 red = ifred (&iz&2ze —&2Z& ) A )

so that it probes the alignment of the grou d t t, '

as e scattering force. Since the phase relation between
the Z component and the Y component of the field is ir-

ve oci y is t e samere evant, the resulting force near zero l 't
in the cases ei = (Y + iZ)/V 2, e2 = (Y —iZ)/V 2 (oppo-
site circular polarizations, 0+—cr ) and ei = (Y'+Z)/v/2,

CY —Z 2I lin w'
)/V (orthogonal hnear polarizations lin

in with the same magnitude of optical electric field
parallel to the B field). In these cases, the Y component
and the Z component of the field constitute two standing
waves with the locations of the nodes and the antinodes

thes
interchanged. The scattering fore X d'

ese cases, and the force is purely redistributive.
The conclusions are summarized on th l ft 'd fe, which shows when the force operator vanishes for

the difFerent resonances (n = 0 +1 +2' ' thin e case of
a standing wave of constant polarization or in the case
o orthogonal polarization (polarization gradient). For
those cases where the force operator does t h, Tno vanis, a-

the corn
e s ows schematically how the resonan d dnance epen s on
e components of the polarization vector alon the Zr aong e

To illustrate the case of transverse magnetic field two
examples are given in Figs. 3 and 4 where we show nu-
merical calculations for the force with the r dwi e proce ure as
ou ine in ~l l~. The method relies on calculating the
density matrix by expansion of its elements in a F
series.

s in a ourier
' s. The resulting set of coupled linear relations be-

tween the Fourier coefficients is then solved numerically
as a function of velocity. In Fig. 3 we have chosen one of
the polarizations along the magnetic field (ei = Z) and
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the other perpendicular to the magnetic field (eq = Y).
From Table I we can infer that in this case only the
(n = +1) resonances for the redistribution force will re-
main. In Fig. 4 we have chosen circular polarization and
each light beam now contains both Z and Y components.
In that case all resonances remain, as can be seen in Fig.

E. Longitudinal Field

Next, we consider the case of two counterpropagating
plane waves of equal intensity in the presence of a strong
longitudinal magnetic field. This implies that the propa-
gation direction of the beams coincides with the magnetic

field, which is the Z axis, as shown in Fig. 5. We decom-
pose the polarization vectors in their circular components
as

&& = &i+~y+ t'i (68)

for i = 1, 2. The polarizations have no component along
the magnetic field, and the radiation fields induce no 7r

transitions. Therefore, the operators P and 8 in (8)
cannot couple Zeeman substates

~
M) and

~

M') with
M' —M = 1. This means that the Zeeman resonances
predicted by (25) for n = +1 are absent for a longitudinal
field.

The resonance near v = 0 is described by the evolution

TABLE I. Summary of the results obtained in Sec. II. Each cell entry in the table indicates in
order: (1) The value of the angular momentum Jg for which the VSR resonance occurs, (2) if the
resonance depends on the alignment A of the ground state, (3) the dependence of the resonance
on the polarization components of the two beams (i, j)=(1,2), (4) the equation number with the
force operator for this particular resonance, and (5) the figure with the calculation of an example
for which this resonance is present. A single zero indicates when the force becomes zero, which is if
either the force operator is zero or when the force becomes zero after averaging over a wavelength.

Trans. magn. field
BJ K

Long. magn. field
H/fK

Force
stand. wave orthog. pol.

61 J- 62

stand. wave

61 = 62

orthog. pol.
lin 4 lin cr+

Fo sc Jg&1
oc A

Eq. (60)

Fo,.ed Jg&1
oc A
izejz

Eq. (66)
Figs. 2,5

Jg & 1/2

cia cjoy
Eq. (68)

~ ~(4

2K Fi,sc Jg&1
oc A

Eq. (60)
Fig. 1

F1,red Jg & 1/2

Ciz Cj Y
Eq. (63)

Fig. 4

EiZei Y
Eq. (63)
Figs. 1,2

F2,se Jg&1
oc Q

Eq. (60) Eq. (69)
Fig. 3

F2, red

6iY6~ Y
Eq. (64)

CiYC)y
Eq. (64)

Fig. 2

Cig6jy
Eq. (64) Eq. (64) Eq. (64)

Fig. 3
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equation (33), where now the ex ressi
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O' R' t)Q Q

+(e*, e, e-"I'"' 6] 6

and

(69)
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I

&z+ I')QiQi

+(I ~i- I' —
I
ez- I') Q~ Q (70)

or linear polarizations, all circular corn on

~ ~ m 1o.oci y vanishes. On th
two opposite circul 1ar po arizations the

H
' th'

th
is case the evolution

e incoherent comb t
'

n of pp is simply

hand circularly p 1

ina ion of a ri ht-'g -hand and a left-

the average force F
po arize pump of e uaequal strength. Then

tl fro
rce p vanishes corn let

cuss below.
me ry consideratiotions. This we shall d'

Foror n = 1theforcenear Kv = ~ 2
df = h fo

ff t' d
tio (53 Th

' ymatrix p2 which
e operator for the red' t 'bis ri utive force

whereas Ez „is equal to Eo „.
s for a longitudinal field ar

h i h id of T bla e I, which shows
her re onances can bcan e observed in the

s an polarization of
o1 to (1 J 1'),

( — A h

e turn to the explicit case of o o 'case o opposite circular polar-

field takes the form of a heli
Tll t}1 ff t, of t}1 '

H

id ti 1 to th 5 t of
A

t t fth 1r inear po arization with a gula velocity

fi ld
'

t}1 Z d'
can e compensated

p ecession frequency —Kre
e irection, leadin

cy ~z ——K v. The
ci y v in this additional

om at rest without th'
e exp icitly by consid g

a rix p2 t, as defined in .
'

i y
h kdthtth ff tee ective evolution o e

8, ' th t of + po
e operators P

d (1.O) t t'ime zero. Hence the e velocity-induced time

(a) (b)

X

FIG. 5. The red d f

—0.03:
uce orce ~ on a

magnetic field B = B"
atoms as a function of

b V
zfora J~=lto J, =

ion o the reduced velocit mo, = 2 transition. As ca b t o t t thAM=M—s can e seen in b
+ —o case with a ion i

ions s own are for a reduced Beld 6 = 0 an
ce [14] according to the VSR conditiocondition v„= cuz/K for (n = 2). For



4170 P. van der STRATEN et aI.

dependence of these operators is eliminated by the trans-
formation (52) to a rotating frame. The Coriolis forces
resulting from this transformation are expressed by the
term K v that is subtracted from the Larmor frequency
wz in (53). Hence the time-dependent density matrix p2
for a given velocity v in a magnetic field with Larmor fre-
quency uz is identical to the density matrix og~ for zero
velocity, in the reduced magnetic field with the Larmor
frequency ~z —K v. For the average force as a function
of the velocity and the I armor frequency we find

F(U~~Z) = F(O, ~Z —Kv) = F(v —~z/K, O). (72)

F. Examples

This equality shows that the effect of a magnetic field is
simply to shift the force as a function of the velocity. In
the absence of a magnetic field and for negative values
of the detuning 4, the o. —a.+ configuration leads to
cooling to zero velocity. Imposing a magnetic field then
leads to cooling to the velocity cuz/K [14]. The v = 0
resonance in the absence of the field is simply shifted,
and leads to the resonance indicated by (30) for n = 2.
The other values of n do not lead to resonant behavior in
this special case. We have illustrated this example with
a numerical calculation of the force in Fig. 5.

d
p++ =

dt
s,r iAsp

(P --P++) +
6 (P+ - P +-)

d
~]P—— (74)

d—p+ ———i(~z —2Kv) p+dt
i iso+

3 (~++ —~--)

s,r
18 (5a+- —a++ —

C --)

(75)

Fi = f-d(-~ + —-~+-)re (76)

In the steady state, we obtain as the final result for the
force

—p(v —v, )
1+ [(v —v„)/v, ]2 ' (77)

where P is the effective velocity damping constant
24AI'

25r2+ 30a2
and the critical velocity v, is determined by

(78)

with p~ ——p'+, p = 1 —p++. The equation (49) for
the average force yields in the present case

tlY &2Y 1/v 2
~ &lz &2Z —&/v 2. (73)

We denote the matrix elements of the 2 x 2 density matrix
pi as p~~, p+, p ~, and p for (1/2 + 1/2

~ pi ~
1/2 +

1/2). After these substitutions the evolution equation
(46) for n = 1 takes the explicit form

We will now turn our attention to a few specific exam-
ples with a transverse magnetic field that illustrate the
results of See. IID. Depending on Jg, J„and the laser
beam polarizations, we can determine which velocity-
selective resonances between Zeeman sublevels of

~ g) can
cause force resonances simply by inspection of the force
expressions. These predictions will be compared with nu-
merical calculations for the force, which have been out-
lined in a previous paper [11].

The first example is a J~ = 1/2 ~ J, = 3/2 transition
in a standing wave with right-hand circularly polarized
light [see Fig. 6(a)]. The scattering force, which is de-
scribed by the operator (61) for all resonances, must be
zero, since the ground state can have no alignment. The
(n = 0) resonance in the redistribution force, which is de-
scribed by the operator (63), is proportional to the align-
ment operator A in the case of a standing wave, so that
it also vanishes. In addition, the (n = +2) resonance in
the redistribution force must also vanish for the consid-
ered transition, as has been explained following Eq. (57).
Hence only the redistributive (n = +1) resonances can
produce a cooling force on atoms, and we shall explicitly
evaluate this force.

The evolution equation is given by (46)—(48), and the
force operator by (64). Explicit expressions are obtained
if we substitute the polarization components

25r'+ 306' . (79)

The resonant velocity is v„= wz/2K. Cooling to this
resonant velocity takes place when P is positive, which is
the case for negative values of the detuning A.

The shape of the (n = —1) resonance follows from
this result (77) if we use parity invariance. Since both
the magnetic field and the polarization are invariant for
parity transformations, we obtain the identity

F(—v) = F(U), — (80)

so that F is an odd function of the velocity. It follows
that both resonances lead to cooling for negative values
of the detuning K. The (n = +1) resonances for the
force as a function of the velocity have a simple disper-
sion shape. The critical velocity v, is.proportional to the
intensity, but the damping constant P is independent of
the intensity. Equation (76) demonstrates that the force
is sensitive only to the eoherences between the Zeeman
sublevels as expected for a redistributive force.

In Fig. 6 we have compared our analytical result from
(77) with the result of numerical calculations. The small
discrepancies between the analytical and numerical re-
sults are caused by the fact that in the numerical calcu-
lation we do not impose a limit on the optical pumping
rate, as is done in order to obtain the analytical result as
indicated in Eq. (20).

Redistributive forces discussed so far were explained
in terms of gradients of the light shift [2, 3, 5]. We wish
to emphasize, however, that in the present case the light
shifts are constant, and a Sisyphus picture does not apply.
As indicated by (19), the force can be expressed in terms
of the gradient of the light-shift operator. Notice that
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FIG. 7. The reduced force p on atoms as a function of the reduced velocity m for the lin L lin case with polarizations

„—sr~+„with a transverse magnetic field B = Bz for a Jg = 1 to J, = 0 transition. The calculation is for reduced magnetic

field 6 = 1 and detuning A = —1.5I'. Since both circular polarizations have components parallel and perpendicular ta B, each

light beam can induce cr~, a, and n transitions. In (b) we show the transitions that lead to the (n = 0) resonances. In (c) a

calculation of only the (n = 0) resonance is shown and a comparison is made between the analytical result and the numerical

result for this case. For the definition of b, P, and ur see the caption of Fig. 3.

(86)

(+o) = Pt', — (85)
with the damping constant

95K'4
4r

Damping occurs for positive detuning in this case. In
Fig. 7 we show a numerical calculation for the force in
this particular case. As can be seen, damping occurs for
positive detuning and the width of the resonance is again
on the order of the optical pumping rate p~ (x soI'. The
straight line through the origin indicates the result of the
analytical calculation.

The physical picture of this cooling mechanism is
straightforward. The strong magnetic field averages out
the optical coherences between the Zeeman sublevels.
The atom is basically driven by two mutually incoherent
linearly polarized standing waves with equal strengths,
one polarized in the Z direction, driving the transition
from the M = 0 sublevel, and one polarized in the
Y direction, driving the transition from the sublevels
M = +1. The nodes of one of the standing waves coin-
cide with the antinodes of the other. For positive values
of the detuning, the light shifts are positive. The light
shifts vary periodically over half a wavelength, and the
maximal shift of the M = 0 state is twice the maximal
shift of the M = +1 states. The light shift of the M = 0

Z/4 X/2
Position Z

M=+1
aM

3X/4

FIG. 8. The "Sisyphus" picture for the vr, „—7r~+„case
with a transverse magnetic field for a Jg = 1 to J, = 0 tran-
sition [see Fig. 7(a) for the geometry]. The standing wave of
o. polarized light is out of phase with the standing wave of vr

polarized light and therefore the light shifts for M = +1 are
out of phase with the light shifts for M = 0. Since the atoms
in the nodes of the m polarized light are pumped towards
M = +1 and the atoms in the nodes of the o polarized light
towards M = 0, atoms are preferentially pumped to states
with a smaller light shift. Cooling can then only be achieved
if the detuning is positive, for which this picture is drawn.
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state is maximal in the nodes of the Y component of the
field, where the atom tends to be pumped towards the
M = +1 states. One notices that the atom always tends
to be pumped towards the state with minimal potential
energy, which is the basis of the Sisyphus picture. This
is illustrated in Fig. 8.

An essential ingredient of this resonance at zero veloc-
ity is the fact that the nodes of the two standing waves
corresponding to the Y and the Z component of the field
are displaced with respect to each other, so that the
pumping scheme reverses periodically. The phase rela-
tion between the two standing waves is immaterial as a
result of the rapid Larmor precession. Exactly the same
result for the force arises in the case of two opposite circu-
lar polarizations of the counterpropagating waves. How-
ever, in the absence of a magnetic field, these two differ-
ent configurations of orthogonal linear polarizations and
opposite circular polarizations give completely different
results for the forces.

III. EXPERIMENTS

A. Low-Beld experiments

We first review our results obtained for low magnetic
fields for which the theory is described in a previous paper
[11] and briefiy outlined in Sec. II A. In this low-field
regime we set both laser beams to have the same circular
polarization and apply a magnetic field perpendicular to
the direction of the laser beams [5]. As pointed out in
[11], only one of the four components of the force, in
this case the dipole force, can be nonzero. The force is
caused by a coherent exchange of photons between the
two laser beams. In the absence of a magnetic field and
in the limit of low intensity, the density matrix becomes
independent of the position in the standing wave and
no net force on the atoms results. Thus the cooling is
induced by the magnetic field and this scheme is therefore
called magnetically induced laser cooling (MILC).

Since the force is purely redistributive, the scheme can
be described in a "Sisyphus cooling" picture, as was done
for the lin J lin scheme [2]. The main physical idea is
based on the optical pumping between differently light
shifted magnetic sublevels of the atoms. Because the
light is tuned below resonance, the light shifts are neg-
ative for ground-state sublevels. Thus atoms near the
antinodes of the standing wave are optically pumped to
the lowest sublevel (highest M~) because of the circu-
lar polarization, and in this process, they absorb light
with lower frequency than they fluoresce, thereby losing
internal energy. To sustain the cooling process, atoms
must be redistributed among the sublevels when the light
shifts are smaller or reversed, and this is done the Lar-
mor precession induced by the weak transverse magnetic
field when an atom moves into a node where there is no
optical pumping.

Moving towards the nodes increases the atomic inter-
nal energy because the negative light shift is smaller, and
this increase must come at the expense of kinetic energy.
Thus atoms traveling across the standing wave are opti-
cally pumped to the lowest-energy sublevel near an anti-
node, and redistributed among the higher sublevels near

a node by Larmor precession. Of course, atoms make
these transitions at a specific point in the standing wave
determined by the balance between the effects of optical
pumping and Larmor precession. This point is symmet-
ric with respect to the nodes of the standing wave for
atoms at rest, but moving atoms respond to the changes
of the optical field amplitude in the standing wave with
a certain time lag. Therefore they make transitions at
a later point in their travel along the spatially depen-
dent light shift produced by the standing wave. Thus
they lose more energy than would atoms at rest on the
descending part of the potential where the light shift is
increasing, and gain less energy than would atoms at rest
for the ascending part where the light shift is decreasing.
On one cycle they lose more than they gain, and are
therefore cooled. This is analogous to lin i lin polar-
ization gradient cooling [2], but here the Larmor preces-
sion causes the redistribution of atoms among differently
light-shifted states instead of a polarization gradient.

At low fields and red detuning, the process described
above cools atoms towards zero transverse velocity (see
Fig. 2). If we zero the magnetic field, no cooling signal
is observed as expected. If we increase the intensity of
the laser, the signal increases and broadens. The mea-
surements are in qualitative agreement with the results
of numerical calculations that can be performed as de-
scribed in our previous paper [11].

B. High-field experiments

At larger magnetic fields, the picture involving opti-
cal pumping and Larmor precession breaks down because
these rates are no longer comparable. We arrive in a sit-
uation described in Sec. IIB, where the pumping rate
p~ is small compared to the Larmor precession rate ~z,
which in turn is small compared to the natural decay rate
I'. Sub-Doppler cooling at large fields is still observed,
but it occurs around nonzero velocities +v„proportional
to the Zeeman splitting uz of the ground-state sublevels,
as indicated by Eq. (25). The theory describing the re-
sults in this section is outlined in Sec. II D. We will still
use a standing wave of constant circular polarization and
a magnetic field transverse to the laser beams. As can
be seen from one of the examples shown in Sec. II F, the
theory predicts two resonances with v„= +wz/2A:.

Our experimental results are shown in Fig. 9. The
data shown in Fig. 9(a) are obtained for low magnetic
field and show cooling to v = 0. For increasing magnetic
field we observe a broadening of the peak, and eventually
for high magnetic field we see two separate peaks whose
splitting increases with increasing field. The transverse
velocity difFerence between the two peaks Av„ for several
detunings and intensities for both naturally occurring iso-
topes of Rb fits very well to Av„= 2v„= tuz/k with the
appropriate g~ factor for each isotope [6]. We see excel-
lent agreement between the predictions of the model and
our measurements.

We also point out that for blue detuning (lower part of
Fig. 9), slower atoms are cooled at high fields but heated
at low fields. This arises because the rapid Larmor pre-
cession establishes a coherence between the ground states
and is analogous to the optical coherence established be-
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FIG. 9. A series of hot wire measurements of the atomic beam profile. The laser intensity I = 0.25I, t and the detuning
4 = —4 MHz for the top row and 6 = +4 MHz for the bottom row. The magnetic field values were (a) 57 mG, (b) 114 mG, (c)
230 mG, (d) 400 mG, (e) 570 mG, and (f) 1.14 G. The solid lines are data and the dashed lines are the numerical calculations.

tween ground and excited states by a high-intensity op-
tical Beld that also produces cooling for blue detuning
[161. However, we emphasize that the present cooling is
caused by ground-state coherence and is a low-intensity
effect.

The dashed lines in Fig. 9 represent a theoretical cal-
culation of the expected signal, where we averaged the
intensity of the laser light over its Gaussian beam pro-
B.le. In this way we can calculate both the force and the
diffusion on the atoms for a fixed ratio between the Lar-
mor precession rate and the optical pumping rate, which
simpliB. es the calculation significantly. The velocity dis-
tribution is then calculated by numerically integrating
the Fokker-Planck equation, and transforming the cal-
culated velocity distribution to a spatial distribution for
comparison with the measured signal. Despite the rather
crude approximation of a constant intensity the agree-
ment between experiment and theory is excellent.
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C. Polarization gradient experiments

&. &ongitudinat magnetic fie$d

Cooling to finite velocity can also be observed if the
polarization vectors of the two light beams have opposite
polarization. In this section we will discuss our results
when the magnetic field is in the direction of the laser
beams. For an optical molasses made from opposite cir-
cular polarizations (cr~ —o ), the theory outlined in Sec.
IIE applies. We expect that the atomic beam will be
deflected and cooled to the transverse velocity given by
v„' = 2e„= cuz/k. Reversing the magnetic field defiects
the atomic beam to the opposite direction. Figure 10(a)

I I I I I I I I I I I I I I I i I I I

—1.0 —0.5 0.0 0.5 1.0
Tra n s verse ve I o city (m/s)

FIG. 10. Velocity distributions of Rb atoms after pass-
ing through the optical molasses, as determined from the spa-
tial profile measurements. The upper trace in each part is for
B g 0 and the lower one is for B = 0. (a) o+ —o molasses
and the magnetic field B along the laser axis, (b) lin J lin and
B along the laser polarizations, and (c) lin J lin and B along
the bisector of the laser polarizations. The laser parameters
in all cases are I = 3I, ~ and A = —12 MHz.



47 LASER COOLING AT LOW INTENSITY IN A STRONG. . . 4175

shows the velocity distribution of atoms cooled to v = 0
(lower trace) and to finite velocity (upper trace) deter-
mined by a

]
B

]
= 2 G parallel to k. Figure 2 of Ref.

[7] shows a full set of such cooling and deflection peaks
using the velocity-selected Rb beam for various values
of

]
B ], and Fig. 3 of Ref. [7] shows the displacement

Av of those peaks vs
]
B ~. The data fit the straight line

Av = uz/k to within experimental error (270).

2. Z&nnsuerse magnetic field

We also transversely cool the atomic motion by an op-
tical molasses formed by two laser beams with orthogonal
linear polarizations [7]. In this case we apply the mag-
netic field perpendicular to the laser beams and parallel
to one of their polarizations. The results of Sec. II F show
that atoms are cooled to v„= +cuz/2k, which is the same
as in the sr+ —o+ case, and one-half of v„' as found in the
o+ —o. case. Note, however, that in this special case
the force is no longer an odd function of velocity [10,11].
The asymmetry is determined by the direction of B; ro-
tation of B by 90' about the laser axis reverses it. This
is clear since reversing the atomic velocity and rotating
B by 90 leaves the geometry unchanged.

Figure 10(b) shows the velocity distribution of atoms
cooled to v = 0 (lower trace) and to finite velocity (upper
trace) determined by a

]
B

]
= 2 G parallel to one of the

laser polarizations. Figure 4 of Ref. [7] shows a full set of
measured beam profiles for various values of B. The data
show two asymmetric peaks of unequal height. Figure 5
of Ref. [7] shows the position of one of the deflected peaks
vs B. Again, the data fit the VSR condition Av = uz/2k
to within experimental error. We emphasize that the
atoms are not simply deflected, but are always cooled to
v„with a width well below the Doppler limit.

The resonances discussed in this experimental part so
far involve transitions between different Zeeman ground
states [see, for instance, Fig. 3(b)]. In a polarization
gradient and strong B Geld, it is also possible to have
VSR that return an atom to its original Zeeman ground
state, and transfer a photon from one beam to another
[Fig. 7(b)]. This leads to the resonant condition v„= 0,
as is discussed in Sec. IIC1. We have observed this
by applying B at 45' to both laser polarizations in the
lin J lin configuration. Figure 10(c) shows the velocity

distribution of atoms cooled to v = 0 (lower trace) and to
v = 0 as well as +v„ for B = 1.93 G (upper trace). Figure
6 of Ref. [7) shows more of these multivelocity traces
with sub-Doppler spread for B g 0. The two side peaks
correspond to the type of VSR shown in Fig. 3(b) and
the center one, which does not shift with B, corresponds
to the type shown in Fig. 7(b), and satisfies v„= 0.

IV. CONCLUSIONS

We have shown that adding a magnetic Beld yields
completely new phenomena previously unobserved in
sub-Doppler laser cooling. We have provided a formal
theoretical description of these phenomena that is valid
for any angular-momentum scheme. Furthermore, we
have observed these phenomena and compared our mea-
surements with both the formal calculations and our sim-
ple VSR model, and have found excellent agreement. The
VSR picture can be used to predict the effects for the de-
flection and cooling the atoms for a given direction of the
magnetic Geld and the polarization of the light beams.

The role of the polarization gradient in previously
studied cases of sub-Doppler cooling with B = 0 [1,8, 9, 4]
can now be discussed in terms of the VSR picture. With
B = 0, the ground-state sublevels are nearly degenerate,
mixed polarizations permit resonant two-photon transi-
tions to be driven by photons from different beams, and
v„= 0 . We point out that coherent population trapping
in a three-level A system that cools below the recoil limit
[17] is the limiting case of VSR with vanishing width.
At resonance, atoms are in a coherent superposition of
atomic ground states that cannot absorb light.

Finally we propose some applications of cooling to non-
zero velocity. If the deflection is applied to a decelerated
beam, it is a superb method for extracting or steering a
well-defined cold beam. Also, one could imagine building
an atomic storage ring based on this deflecting and cool-
ing technique that could provide a beam that is ideal for
precision spectroscopy, the study of cold collisions, and
collective effects of cold atoms.
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