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Recoil-induced resonances in pump-probe spectroscopy including effects of level degeneracy
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Theoretical calculations are presented for the probe absorption spectra of atoms having magnetically
degenerate ground states which are subjected to weak pump fields that produce spatial polarization gra-
dients. Apart from the Raman resonance contribution to the spectrum which has been observed experi-
mentally, we predict that additional resonant structures should appear as a result of the atomic recoil
that occurs during the absorption or emission of radiation by the atoms. The width of the atomic recoil
resonances is directly related to the Doppler width associated with the driven transition. For sub-

Doppler cooled atoms, the width can be much narrower than the optical pumping rate that determines
the width of the Raman signal.

PACS number(s): 32.80.Pj, 32.70.—n, 42.50.—p

I. INTRODUCTION

The field of sub-Doppler laser cooling of neutral atoms
has progressed to such a level that it is now possible to
obtain atomic vapors at very high density (-10' cm )

and extremely low temperature (-2 pK) [1]. Since the
Doppler and transit broadening are greatly reduced in
these systems, such cold and dense samples provide ideal
environments for carrying out many nonlinear spectro-
scopic experiments. Moreover, one might expect some
new and interesting results which are absent or nonob-
servable at normal temperatures. For example, the width
of the velocity distribution of atoms at room temperature
is much larger than the photon recoil velocity Ak/m,
where k is the wave vector of light and m is the atomic
mass. As a result, effects associated with changes in
atomic velocity upon absorption or emission of a photon
can generally be neglected when considering the spectros-
copy of thermal atoms. However, when the distribution
width itself is of the order of several Ak/m as in the case
of sub-Doppler temperature atoms, such recoil effects
may not be negligible. It has already been shown that the
inclusion of recoil effects leads to new resonance struc-
tures in the nonlinear spectroscopy of an ensemble of
"two-level" atoms cooled to sub-Doppler temperatures
[2]. The resonances are centered at 5=0, where 5 is the
frequency detuning of a probe field from a pump-field fre-
quency. The width of the resonances is characterized by
the Doppler width of the ensemble ku =kpo/m, where u

is the most probable atomic speed and po =mu character-
izes the momentum distribution width. For many atom-
field interactions, the two-level approximation is not sa-
tisfactory. This is especially true in sub-Doppler laser
cooling where the magnetic degeneracy of the ground-
state levels plays a central role in the cooling process.

In this paper, we extend our previous calculations to
allow for the magnetic degeneracy of the atomic levels.
The inclusion of magnetic-state degeneracy introduces a
new dimension in the problem. In both pump-probe and
four-wave mixing spectroscopy involving magnetically
degenerate atoms, it is possible to observe narrow reso-

nances centered at 6=0, whose width is characterized by
the rate I" at which the ground-state sublevels are opti-
cally pumped by the fields [3]. It is not obvious that the
recoil-induced resonances, characterized by a width ku
assumed to be much smaller than I", are not obliterated
by the optical pumping resonances. It turns out, howev-
er, that the recoil-induced resonances persist in the pres-
ence of optical pumping and lead to narrow resonant
structures superimposed on the line shapes obtained
when recoil effects are neglected. Such narrow reso-
nances may have been already observed experimentally
[4].

To be specific, we consider the absorption of a probe
field having frequency 0+6 in the presence of a pump
field having frequency A. Generally speaking, the probe
absorption is proportional to ground-state density-matrix
elements. In addition to the ground-state population, the
absorption also depends on differences in population
among difFerent magnetic sublevels, as well as magnetic-
state coherence. Such quantities are conveniently ex-
pressed in an irreducible tensor basis as po(g), po+i(g),
and po+, +2(g), where po(g) is proportional to the
ground-state total population, and p&(g) and p&(g)
represent ground-state orientation and alignment, respec-
tively. Under the low-field-intensity approximation to be
defined below, one can adiabatically eliminate the
excited-state quantities and obtain a set of equations in-
volving only ground-state density-matrix elements [3,5].
As a direct result of these equations, po(g) remains con-
stant in the absence of recoil while p&(g) (TWO) decay at
rates characterized by the optical pumping rate
I '=(I ~y~ )/[(I /2) +b, ], where y is a pump-field Rabi
frequency, I is the excited-state population decay rate,
and 6 is the pump detuning from the atomic resonance
frequency. As a consequence, one might expect that the
nonlinear pump-probe signals should have a width at
least of order I" in the absence of recoil or some other
motional narrowing effects.

To take into account recoil efFect, one needs to quan-
tize the atomic center-of-mass momentum and write the
density-matrix elements as p(p, p'). As a result of the
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recoil shifts, the momentum-integrated off-diagonal ma-
trix elements jpo(p, p+bp)dp for Ap&0 is not con-
served. Assuming the initial po(p, p ) is diagonal in p
space, then owing to the interaction of the atoms with the
pump and probe fields, off-diagonal elements of po(p, p')
are generated, which are responsible for the recoil-
induced signals.

The recoil-induced probe absorption or amplification is
most easily understood in terms of Raman transitions be-
tween atomic center-of-mass momentum states, as men-
tioned at the end of Ref. [2]. We want to show here in
some more detail that there exists a close analogy be-
tween Raman process between internal atomic states and
Raman process between external momentum states. As
an example of the former, consider the three-level system
shown in Fig. 1(a). The two ground states a and b are
separated by some finite-energy splitting 5EI„&0. The
frequencies of the pump and probe fields are given by 0
and O' =0+5, respectively. Both frequencies are as-
sumed to be detuned far from the resonance frequency
between state a or b and the excited state c; therefore, the
population of state c is negligible, and states a and b are
connected by stimulated transitions involving both pump
and probe fields. Assume that p, & pb, where p, and pb
are the populations of states a and b. For 5&0, there is
more absorption of probe photons and emission of pump
photons than the other way around; as a result one has a
net probe loss [see Fig. 1(a)]. By the same token, for
5 & 0, one has a net probe gain.

Now consider the case of a Raman-type transition be-
tween the atomic momentum states. Assume that the
atomic system has some momentum distribution centered
at p=o whose width is on the order of several Ak, as

ic&

Ib&

fa&

shown in Fig. 1(b). The probe and pump propagate in the
+k and —k directions, respectively. If the initial atomic
momentum in the k direction is p, then after absorption
of one probe photon and emission of one pump photon,
the final-state momentum is p+2A'k. The resonance con-
dition of such a process obtained from conservation of
energy involving the center-of-mass degree of freedom is
given by

6 — —4o) =0,2k@
m

where cok=h'k /2m is the recoil frequency. Assuming
that the momentum distribution remains unchanged dur-
ing the course of interaction, the resonance width is
essentially determined by the interaction time with the
fields. When 6&0, the initial momentum obtained from
Eq. (1) satisfies p ) —A'k; consequently, the final momen-
tum is (p+ 28k ) )Rk. As one can see, the initial momen-
tum state is more populated than the final momentum
state, resulting in a net probe loss. Similarly, when 6 &0,
the initial momentum state is less populated than the final
momentum state and one has a net probe gain. When
6=0, initial and final momentum state have the same
population; there is no net probe gain or absorption. One
can analyze in the same way the other process of going
from p to p —26k by absorption of one pump photon and
emission of one probe photon and it leads to the same
conclusion as above. The whole effects are related to the
difference of populations between two momentum states
differing by 24k, therefore one would expect that these
effects will become significant for the signal generation
only when the atomic momentum distribution width is of
the order of several haik. Also from the above analysis, it' s
easy to see that the signal has a width of order ku as one
tunes 6 across the momentum distribution. The magni-
tude of the recoil-induced signal is proportional to the
quantity haik /(poku ) —cok /(ku) . Since the magnitudes of
the background signals having width of order I ' are pro-
portional to 1/I", the dimensionless parameter that
determines the amplitude of the recoil-induced signal to
the resonance having width I ' is of order

FIG. 1. (a) Energy diagrams for a three-level atom. The Ra-
man transitions are between the two ground States

~
a ) and

~
b ),

whose energies are separated by an amount 5Eb, . (b) The
center-of-mass momentum distribution of atoms. Raman tran-
sitions occur between momentum states p and p+2Ak via ab-
sorption of a probe photon and emission of a pump photon.
Based on conservation of energy, arrow (i) corresponds to 6 & 0
(p & —Ak ), and arrow (ii) to 5 &0 (p & —Ak ).

As will be discussed below, this quantity can be compara-
ble to unity.

As a specific example, we consider the case of a
J = 1 —+J, =2 transition driven by two pump fields hav-
ing o.+ and o. polarizations and a o. probe field. For
this type of pump-field configuration, the atomic distribu-
tion function is uniform in space, owing to the fact that
the energy shifts of the atomic ground-state sublevels are
space independent [3]. Therefore, any spatial localization
effects of the atoms can be neglected. These effects can be
important for some other situations, such as with two
perpendicularly polarized pump fields, and they can in-
troduce further complications into the calculations. We
shall address these other pump-field configurations at the
end of the article. This paper is arranged as follows. In
Sec. II, we derive the generalized optical Bloch equations
[6] for the atomic density-matrix elements, and invoke
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the low-field-intensity and low-energy approximations.
Then, in Sec. III, we calculate the probe absorption sig-
nal, which includes the contribution of the recoil-induced
resonances between the atomic center-of-mass momen-
tum states, and that of the Raman resonances between
the atomic ground-state sublevels. Finally, in Sec. IV, a
discussion of our results and some other situations with
different pump-field configurations is given.

(a

II. GENERALIZED OPTICAL BLOCH EQUATIONS

2 2

+itious g lem &(em I+ v,
2rn m = 2

(4)

The atomic level scheme, along with the relative
strengths of the transitions (Clebsch-Gordan coefficients
associated with the transitions) is shown in Fig. 2(a). The
ground and excited states have angular momenta Jg 1

and J, =2, respectively. The incident-field configuration,
shown in Fig. 2(b), is as follows: the two pumps fields
propagate in the +z directions, having o.+ and o. polar-
izations, respectively. The probe field is ~ polarized,
propagating in a direction opposite to that of the o.

pump. The total field can be written as

E—t
( g & eikz —int+ g & e

—ikz —int+e+e
ikz —in't)+

where e+=+(I/&2)(x+iy), and x and y are unit vec-
tors in x and y directions, respectively. This pump-field
configuration is known to lead to sub-Doppler cooling
I:3].

The Hamiltonian for the atomic system including the
center-of-mass motion is given by

0

A
X
I)

A
4 Eh

(b)
FIG. 2. (a) The atomic level scheme of a Jg = 1~J, =2 tran-

sition, along with the Clebsch-Gordan coefficients associated
with various transitions. (b) The incident-field configuration
for the Jg =1—+J, =2 transition. The forward and backward
pump fields, both having frequency 0, are o.+ and o. polarized,
respectively. A probe field of frequency 0+5 is o. polarized
and propagates in the same direction as the o+ pump.

where p is the z component of the atomic center-of-mass
momentum, and co is the atom. ic resonance frequency. In
the rotating-wave approximation, the interaction Hamil-
tonian V in the combined basis of magnetic substates
Ig, m & (m = —1, . . . , 1) and Ie, m'& (m'= —2, . . . , 2),
and the atomic center-of-mass momentum state Ip & can
be written as

V=+ Rg+e ' ' le2,p+A'k &(gl,pl+ —le 1,p+irik &(gOp + —leOP+A'k &(g —l,pl
2 6

+g I &y —e ' 'le —2,p —A'k &(g —l,p I+ttiy'e ' 'le —2,p+tiik & (g —l,p I

P

+ —(iris' e '"'Ie —l,p —&k &(gO,p I+&y'e '"'le —l,p+&k &(gO, p I)
2

+ —(itiy e ' 'IeO p —A'k &(gl,pl+fig'e ' 'IeO, P+fik &(gl,pl)]+H. c. ,
6

(5)

where

er, @+ er,~D'

2&5tri 2&5iri
(6)

p=g p.,p(p»p')I~ p &(»p'I
a,P

where a,P= Ig, m &, I e, m '
&. Introducing an interaction

representation defined by

and r, is a reduced matrix element of the dipole moment
operator. In deriving Eq. (5), the property

e+—'"'Ip
&
= lp+A'k &

of the atomic center-of-mass position operator z has been
used. The atomic density matrix is expanded as

p...(p p') =P...(p»p'»

Pgm, em'(P ~p ) Pgm, em'(P~P

one can use the Schrodinger equation with the Hamil-
tonian (4) to obtain a set of generalized optical Bloch
equations for p &(p,p'). For example, one finds
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2 &2

Pg —l, e —2(p p ) Y+ Pg —l, e —2(p p ) i+—e IPe —2, e —2(p ~k p ) Pg —1,g —1(p p +~k )]

i—y'*e' '[p, z, z(p+A'k, p') —pg, , (p,p' —A'k )], (10)

where

@=I /2

I

where we have assumed that g+ =g =y, and the quan-
tities on the right-hand side of the above equation are
defined by

is the electronic state coherence decay rate, and

A=A —co, 6'=0' —co=A+6 .
p("(p,p+2A'k ) =p, "(p,p+2A'k )e

(11)
where

(15)

We now invoke a low-field-intensity and a low-energy
approximation [6]. In the low-field-intensity limit

1

p, (p,p') = g p, (p,p'), (16)

y+i «I, ib, i, (12)
and

quasi-steady-state solutions for the electronic state coher-
ence and excited state density-matrix elements can be ob-
tained in terms of ground-state density-matrix elements.
For example, the approximate solution of Eq. (10) is
given by

p,",'=e ' 'f p "(p,p+2A'k)dp,

p,',"=e ' 'f p,)'(p, p+2A'k)dp,

p, ,,—(p p)dp(1) —i6t -(&)

(17)

pg-), , -~(p p')=
2 &2

y+~. a+~
2mB

where

2 lP, ),,)(P P ') —0, —), —l(P P"') ]

Xpg ) g )(p,p'+6k)
Eggke lk t

+
P.)(»p'')=

6 lp (, )(p p')+p, -),, -)(p p"')
(18)

2 g2

y+~ a+~
2m A'

Xp, ,(p,p' —Rk) .

When substituting similar expressions for p „p, , and p„
into the evolution equations for ground-state quantities,
one obtains a set of equations involving ground-state
density-matrix elements only. Furthermore, we assume
the atomic center-of-mass energy is sufficiently small to
allow us to neglect the kinetic-energy term
(p —p' )/2m%' in comparison with ~A (or ~b, '~). Both
the low-Geld-intensity and low-energy approximations are
generally valid in regimes appropriate to sub-Doppler
cooling, assuming, as we do in this paper, that ~A~ ) I .
With these two approximations, one obtains a set of
simplified Bloch equations for the atomic ground-state
elements. They are given in the next section.

Using the low-field-intensity and low-energy approxi-
mations, we solve for the probe absorption coefficient to
all orders in the pump-field strength and to first order in
the probe-field strength. As shown in Appendix A, the
pump-field modified probe absorption is related to an
atomic coherence p „which can be expressed in terms of
the ground-state density-matrix elements as

pg, =—,fp,")(p,p+2A'k)dp

—2p, o,,o(p p')] .

The superscript (1) of various p's or p s in Eqs. (15) and
(17) indicates that these quantities are proportional to y'*
(in the resonance or rotating-wave approximation, there
is no contribution to p, which is proportional to y ).
Also in this paper, unless specified otherwise, a super-
script (0) of a density-matrix element indicates that this
element is zeroth order in probe-field strength, while a
density-matrix element without any superscript means
that it is both zeroth and first order in probe strength.

Before going into the details of the calculation, it is
helpful to identify various terms in Eq. (14) with diFerent
physical processes that contribute to the signal. The first
term, p,'", represents the signal that is related to the
probe-induced spatial modulation of the total atomic
population. Such a contribution has not been considered
before in similar contexts. As we will see below, it is a
signal due to the recoil-induced resonances involving
both the probe and the pump fields. The term p,",' deter-
mines the nonvanishing component of the ground-state
orientation, while p,'&' and p&

'
&

determine difFerent com-
ponents of the atomic ground-state alignment. In the
limit that ~A~ ))I, they represent the signal due to Ra-
man processes between the atomic ground-state sublevels.
Both contributions are analyzed in the next section.

5V2 iX* ()) 1 ())
por 5~3 pa)

(&)
p1., —1

(14)

III. CALCULATION
OF THE PROBE ADSORPTION SIGNAL

In this section, we derive in detail the probe absorption
coefficient given by Eq. (14). Our calculation is based on
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the generalized optical Bloch equations described above.
In the low-field-intensity and low-energy approximations,
and keeping terms to first order in y'* only (and dropping

terms proportional to y' which do not contribute to p,
to linear order in probe-field strength), the equations for
the ground-state density-matrix elements are given by

2 I2

P, -i,,-i(p p')= — r, +i
2 & P, -i,, -i(p,p')+r, p,'-'i, ,-i(p,p') ——',1"p,-i,, -i(p, p')

2 2

p i i(p+2Ak, p') — . p i i(p,p'+24k)
6y —ib, 6 r+ia

+ I '
dq X q p, , p+Ak+Aq, p'+Ak+Aq

+ f dq No(q)psoso(p+fik+Aq, p'+fik+A'q)
I"

pl+ f dq N+(q)[pg, s, (p fik+f—iq, p' —fik+Aq)+p, ,(p+fik+Rq, p'+fik+A'q)

+ps, g&(p
—irik+A'q, p'+fik+A'q)+p, , (p+A'k+iriq, p' —A'k+4'q)]

XX XXpg, s, (p+2fik, p') — . , p, ,(p,p —2irik )lk y+iA'

~XX"e'" i st
+ i z f dq N (q)ps, g, (p+fik+A'q, p —A'k+6'q) — . , pg, ,(p,p')

y2+ Q2 6 r+i.~

rx'y'*e+ f dq No(q)Pso so(P+ A'k+ iriq, P
' —A'i+A'q )

4(y +6 )

)5t
+ f dq N+ (q)[pg, g, (p+A'k+4'q, p' A'k+6'q )+—ps, g, (p fik+A'q, p' ——fik+fiq )],

36(y +b, )

(19)

2 &2

P,o,,o(p»p')= r, +i —
2 & P,o,,o(p p')+r, S",'o',,0(p p') f"p,o,,o(p —p')

+ f dq N (q)p 0 0(p+Rk+Aq, p'+fik+fiq)+ f dq N+(q)p oso(p Ak+Aq, p' fi—k+Aq)—r'

I

+ f dq No(q)[p, s, (p Ak+Aq, p' Ak—+Aq)+p, g—,(p+Rk+Aq, p'+Ak+fiq)

+p, &(p
—fik+fiq, p'+iiik+iriq)+pg, s, (p+fik+fiq, p' —fik+Aq)]

XX gX"e' '

2 y ib, —pso go(p+2A'k, p') — . , p 0 0(p,p' —2iiik)
2 r+ib, '

I &&"e'"
+ f dq N (q)p o o(p+fik+A'q, p' —A'k+fiq)

4(y +6 )

i5t
+ f dq No(q)[pg, g, (p+fik+fiq, p' fik+Aq )+pg & s, (p haik+—fiq, p' fik+A'q )],——

9(y +b, )
(20)
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2 I2

P, i,,i(P»P')= —y, +i
2 „P,l, ,l(P P')+y, p",'i', ,i(P P') —'. ~'P, i,,i(P P')

2 2
X I & X Ipg, g, (p —2', p ) — . pg, g, (p,p —2fik)

I

+I"f dq N+ (q)pg, g, (p —llik+lliq, p' —A'k+fiq )+ f dq No(q)pgo go(p
—ltik+fiq, p' A—k+fiq )

r'+ f dq N (q)[p, ,(p Ak+—Aq, p' Ak+—Aq)+p, ,(p+fik+fiq, p'+Ak+Aq)

+pg l gl(p
—Ak+fiq, p'+A'k+Aq )+p l l(p+A'k+iliq, p' —Rk+fiq )]

++~eei5t ge i6t

p ,g, (p+2A'k, p),p, , (p,p' —2&k)

re+, , dq N (q)[p„„(p+llki+Aq, p' ll' k—i+A'q)+p (p —A'k+Qq, p' —Qk+Qq)],
36(y +b, )

(21)

2 &2

Pg —1 gl(P~P ) yg+ i p. .., (p,p')+ y,p,",„(p,p') —-', r'p, , „(p,p')

2 2

pg, g, (p + 2ilik, p') — pg, , (p,p' —2A'k )6y —ih 6 y+ib,
r'+ f dq N (q)[p, ,(p+fik+Aq, p' lk+Aq)+p— , ,(p+A'k+Aq, p'+Ak+fiq)]

r'+ f dq N+(q)[pg, g, (p+Rk+iliq, p' —liik+A'q)+pg, g, (p —Rk+iliq, p' —A'k+fiq)]

+ f dq No(q)pgo go(p+A'k+fiq, p' fik+Aq)—r'

g~l 4e 15l ~~~ t ei5t
pg, g, (p+2fik, p')—,p, , (p,p' —2liik )

6 y+ib, '

r+
2 z f dq N (q)pg, g, (p+fik+Aqp' A'k+fiq), —

6(y +5 )
(22)

2 &2

Pgl, -l(P P"')= — y, +i
2 & P, l,, l(P P"')+y,p,-, (P»P') ', ~'P—, , (P P')—

2 2

.&) p —
g

—(p —2&k,p ) . pg, g, (p,p +2fik)

+
6

dq N —(q)[P —l, —l(p &k+'Iiq, p'+ Ii—k+&q)+p, (p+&k+Aq, p'+fik+A'q)]r

+ f dq N+(q)[pgl gl(p fik+fiq, p'+8k+—Aq)+p l l(p —pk+Qq p' —pk+Qq)]
I'

r i5t Ig
+ f dq No(q)pgQ go(p A'k+fiq, p'+4k—+fiq ) — p l l(p, p') — p (p p')

4

XX'*e' ' i5t

pg, g, (p+2A'k, p') —
pg, g, (p,p' —2A'k )6y —tg g 6 y+ib, '

+ ry~'*e
6(y +b, )

dq N (q)[p, , (p fik+A'q, p' —llik—+A'q)+p (p+A'k+Qq, p' —Qk+pq)]

i5t
+

2 z f dq N+(q)pg, g, (p Rk+Aq, p' —fik+A—'q)
6(y +b )

r+
z f dq No(q)pgogo(p —A' kA+'q,

' —ppk+fiq) .
4(y +b, )

(23)
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ancl

pg 's (p,p)=p~ 's (p), m= —1,0, 1,

p~, +0'„+,( p+~ k, p+k) =p",'+', ,+,(p) .

(24)

(25)

Note that the atomic momentum distribution function in
the absence of the probe is defined by

In the above equations, y is an effective ground-state de-
cay rate, which could be determined, for example, by
transit-time effects, and p

'
~ are the values of

ps s,(p,p') to zeroth order in probe-field strength. In
our calculation, we assume that the pump fields have
created an equilibrium state before the addition of the
probe field. Therefore ps

' (p,p') are the equilibrium
values of the atomic density-matrix elements in the pres-
ence of the two pump fields only. If the atomic density
matrix is diagonal in momentum space before the pump
fields are turned on, then it is easy to deduce from the
above equations, when y'=0, that the only nonvanishing
density matrix elements are given by [3]

A. Recoil-induced signal

To calculate the recoil-induced signal, one has to ob-
tain the solution for p, (p,p+2irik) [see Eq. (14)]. In or-
der to analyze the effects of the pump fields on the signal,
it is convenient to use the momentum-family notation in-
troduced in Ref. [3]. For example, the ground states that
belong to the same family V(p) are Igm, p +m irik ),I= —1,0, 1. The stimulated processes involving the
pump fields do not change the momentum of a given fam-
ily. However, the addition of the probe field can induce
stimulated transitions between different momentum fami-
lies, a process that leads to the recoil-induced resonances.
Later in this paper, we will discuss another situation
where the stimulated transitions involving the probe and
the pump fields do not change the momentum of a family.

In the momentum-family notation, we define the
ground-state density-matrix elements that are related to
the recoil-induced signal as

p (p)=ps g (p+mfik, p+mAk+2fik),
1

p,"(p»)= X p,",, (p»p») .
m= —1

(26)
ancl

m = —1,0, 1 (30)

cok «ku = kpo «I ' . (27)

In this paper, we assume that the width of atomic
momentum distribution, which is of order po =mu,
satisfies the following condition:

p+, +,(p)=p +, —,+(p+fik, p+fik+2A'k) . (31)

Furthermore, the ground-state population, and orienta-
tion and alignment components are similarly written as

1

p, (p) = g p (p),
The above inequality implies that po ))Ak.

Finally, N+ o(q) in Eqs. (19)—(23) are the probability
densities for emission of a spontaneous photon having a
certain polarization (o +— or ir) and a z component of
momentum equal to Aq. They are given by [7]

m= —1

1
p.,(p) = —[pi(p) —

p —i(p) ]
2

1
p i(p) —[pi(p)+p i(p) —2po(—p)] .

6

(32)

=3 ' =3N+(q) = 1+, No(q) = 1—
8k k2 ' ' 4k

(28)

In the present calculation, the results are insensitive to
the detail of the functions N, (q) (@=+0)as long as they
satisfy the relation

qN, q dq=0, (29)

which they do. In the following, we use a single normal-
ized probability function N(q), which also satisfies Eq.
(29), in describing the momentum distribution of a spon-
taneous photon.

Since the only nonvanishing density-matrix elements to
zeroth order are given by Eqs. (24) and (25), the terms in
the above definitions are all first order in the probe-field
strength. We have omitted the superscript (1) for con-
venience. The recoil-induced signal is now proportional
to the integral of

p, p dp = p,
"p,p+2Ak dp,

as is evident from Eq. (14). We now proceed to obtain
the equation for the evolution of p, (p).

First, p+, +,(p) are obtained from Eqs. (22) and (23) as

p —i, i(p)=— g Pl(p)+ + .g P i(p)—5I" y —Eh y+ih
+ —,

' f dq N(q)[p, (p+irik+iriq )+p, (p —fik+fiq )+—3po(p+A'q )]
I6t i6t

5r'(y+ i b, ') p
' »(p —A'k, p+A'k )—, p ', ,(p+ A'k, p+ 3irik )Sr(q —i~) s-'"

i5t
+ i z f dq N(q)p~ ', ,(p+A'q, p+2A'q+A'q),

5I '(y +b, )
(33)
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1 x' 2

Pl, —1(P) $1 .gp 1(P—)+ + /Pl(P)

+ —,
' f dq N(q)[p, (p+fik+Aq )+pl(p —

fik+ltiq )+ &po(p+Aq )]

p ', 1(p+irik, p+A'k ) p,', (p+Ak, p+fik )+sr' y+iA

pg1's, (p+3fik, p+A'k ) p, ,(p+Ak, p —irik )

y —iA y+ih
5t

+ [p~,'s, (p+liiq, p+iriq)+p ', g, (p+iliq, p+fiq)sr (y'+a')
+p 1',(p+2Ak+fiq, p+fiq)+ 3p o, o(p+iriq~p+&q)l ~ (34)

where we have neglected y, 5, and the kinetic-energy term (p —p' ) /2m A' in comparison with I ' [see inequality (27)].
Substituting Eqs. (33) and (34) into Eqs. (19)—(21), and, assuming the secular limit

r/~a~ «I, (35)

to lowest order in I /~ b, ~, one obtains the equation for p, (p) as

p, (p) = —
—,",I"p, (p)+ I"f dq N(q) j —,",, [p, (p+fik+A'q )+p, (p fik+A'q —)]

+—„',[p, (p+2irik+iriq)+p, (p —2A'k+4'q ) ]+—,'p, (p+A'q )]

+I ' f dq N(q) [p„(p —A'k+6'q) —p„(p+A'k+fiq)]22&2

+ [p„(p —2A'k+iliq) —p„(p+2A'k+11i'q)] '
v'2

2&6
45 ' 540

I 'p 1(p)+ I"f dq N(q) [p,l(p+2A'k+6'q )+p,l(p —2A'k +4'q )

+44[p,l(p+A'k+4'q )+p,l(p —A'k+iliq )]—66p, l(p+iriq )]

y~ i i 4—cok p,—(p ) i 4cok p„(p—). 2kp
m

l5t i5t

p ', ,(p+Ak, p+ltik) —,p ', , (p haik, p —Ak)—
g 1,g 1 y+ia'

+ f dq N(q)p ', 1(p+A'q, p+fiq )
y2+ Q2

i5t I5t

p o' o(p+2A'k, p+21rik) — . , pg()'so(p, p)
2(y —i.a

i5t
+ f dq N(q)p o' (po+k iiiA+'q, p +k11i+iqir)

2( +b, )

I5t &5t

6(y —ib, )
p+,', (p+311ik,p+3A'k) — . , p 1' l(p+irik, p+irik)

6(y+i b')
i5t

+ f dq N(q)pg, ', (p+2irik+iriq, p+2fik+iriq)6y+b,
s5t i5t

6(y+ih'),
p+ ', 1(p —A'k, p+A'k) — . p ', ,(p+ilik, p+ 3111k)6(y —i~) ' '"

I5t
dq ~ q p

'
) ) p+Qq, p+2Ak+Aq

6( +b, )
(36)
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Note that, neglecting the photon recoil momentum Ak
and Aq, one has

p, (p)=0 .
In other words, when the photon recoil momentum is
neglected, the population modulation term p, (p) remains
zero despite the addition of the probe field. This is in
agreement with the semiclassical theory where the atomic
center-of-mass motion is described by a classical variable
(the velocity), and the total atomic population is a con-
stant [5]. In this case the population will remain diagonal
in momentum space before and after the addition of the
probe field [see Eq. (24)]. It is clear here that the signal
related to the probe-induced modification of p, (p) is a
direct result of the photon recoil momentum, which ex-
plains why we call this part of contribution to the probe
absorption the recoil-induced signal.

From Eqs. (19)—(21), we then solve for the quasi-
steady-state solutions for p„(p) and p,&(p) in terms of
p, (p), and substitute the solutions into Eq. (36). In the
secular limit (35), p„(p), whose value is proportional to

(I /b, ) (cok /ku )p, (p), can be neglected, while p,&(p) is ap-
proximately given by

5&6
p,i(p) = p, (p) . (37)

Corrections to Eq. (37) are smaller by a factor cok/(ku).
We have dropped some terms in the solution for p,&(p)
that are explicity proportional to g'*. Since their contri-
butions to the recoil-induced signal, upon substitution of
p„(p) into Eq. (36), is of order cok/(ku) [8], and since we
are interested only in the signal that is linear in cok /(ku )

[2], such y'* terms can be neglected when replacing p,&(p)
in Eq. (36) with Eq. (37). After such procedures, we ar-
rive at an equation involving p, (p) only. In this equation,
there are two types of terms. First, there are terms which
are explicitly proportional to y'*. They are identical to
those appearing in Eq. (36), and provide the source terms
for the recoil-induced signals. Second, there are terms
which are proportional to I". They describe the optical
pumping effects due to the presence of the pump fields,
and are given by

[p, (p)] „=— I"p, (p)+ I"f dq N(q)[p, (p+2A'k+fiq)+p, (p —2irik+ih'q)]
281 13
255 ' 3060

+ I ' f dq N(q)[p, (p+A'k+6'q)+p, (p —A'k+4'q)]+ I ' f dq N(q)p, (p+fiq) .347 19
765 102

(38)

If one assumes that N(q) =5(q) and expands the in-
tegrands around p, it can be simplified as

2
a'

[p (p)]p p t7 I (flak ) p (p) (39)
Bp

where the overdot symbol in Eq. (39) denotes time deriva-
tive only. Equation (39) describes a momentum diffusion
process induced by the pump fields in the absence of the
cooling forces (since we have neglected the Doppler shift
in comparison with I ). The diffusion coefficient,
—,', I"(irik), is in agreement with the result of Ref. [3] in
the limit ~b

~

))I and neglecting the contribution of
spontaneous emissions.

In this paper, we are interested only in the qualitative
effects of the optical pumping on the recoil-induced sig-

I

nal. For the sake of simplicity, and without loss of the
basic features involved, we replace the optical pumping
terms in Eq. (38) by the following simplified model:

[p, (p)] „=—I [2p, (p) —p, (p+fik ) p, (p —erik )]—,

(40)

where I (A'k ) is the atomic momentum diffusion
coeKcient due to the pump fields, and I is of order I".
One can verify that, by expanding the p, (p+ih'k ) terms in
the above equation around p, Eq. (40) leads to an equa-
tion for momentum diffusion that has the same structure
as Eq. (39). The complete equation for p, (p) can now be
written as

p, (p) = —I [2p, (p) —p, (p+Rk) —p, (p —A'k )]— yg i i4—a)k p, (p)—. 2kp

i5t i6t

p ', ,(p+Ak, p+A'k) — . , p ', s, (p —Rk,p —haik)
y —iA y+i 5'

r "e'"
+ f dq N(q)Pg ', s, (P+iriq, P+hq)

y2+ Q2

t5t t6t

p o' o(p+2fik, p+2A'k) — . , pgo'so(p, p)
2 y —i~) ''
r '*e'"

+ f dq N(q)p~o' 0(p+A'k+iriq, p+A'k+irtq)
2(y —b, )

~~racist i st

p, 's, (p+ 3iiik,p+ 3A'k )
— . , p,', (p+iri, p+ iiik )

6 y ib, — 6 y+ia
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i5t
+

2 2 f dq Xp~,', (p+2A'k+6'q, p+2irtk+iiiq )
6y +5

I5t I6t

6(y+id, '), P i —i(p —&k,p+&k) — . p
' i, (p+Ak, p+3fik)

6(y i b. )—
I6t+, , f dq &(q)pg ', gi(p+irtq, p+2fik+fiq ) .

6(y +b. )
(41)

It is shown in Appendix 8 that by imposing the following
condition:

I ' ~k2

2
«1

ku (ku)
(42)

p +i +i(p)=p'+IW(p+iiik)

Ao) (o)
pg+ I, +1(p) p+1, +1+(p)

(43)

where W(p) is a normalized distribution function of p
which has a width of order po =mu that satisfies inequali-
ty (27).

The population modulation term p, (p) can now be
solved from Eq. (41) without the optical pumping terms,
and integrated over p to give the recoil-induced signal to
lowest order in cok /(ku ) and I /~ b, as

—i5t

9 y+iA'

one can neglect the effects of the optical pumping terms
in Eq. (41). Since the momentum diffusion coefficient is
of order I"A' /k, and the atomic momentum distribution
width is of order mu, the above condition implies that,
during the time of order 1/ku in which the ensemble of
p, '(p, p+2iit'k ) decays as a result of Doppler dephasing,
the amount of momentum diffusion due to optical pump-
ing is small compared with the initial momentum width
mu. Assuming that condition (42) is satisfied, the terms
on the right-hand side of Eq. (41) that are proportional to
I can be dropped. Finally, we assume the zeroth-order
terms in Eq. (41) are given by [3].

B. Raman signal

We now consider the contribution to the probe absorp-
tion signal due to the atomic ground-state orientation and
alignment, which can be interpreted as a Raman signal in
the limit that ~b, ~/I ))1. Since both the ground-state
energy splitting ~5E~ —

~y~ ~b, /(y +b, ) and the effective
decay rate I" of each sublevel are much larger than cok,
one can neglect the recoil shift terms in considering the
Raman signal. In this case, the calculation for the Ra-
man signal can be carried out semiclassically in a sense
that the atomic center-of-mass momentum and position
are treated as classical variables. The semiclassical equa-
tions for the density matrix can be obtained directly from
Eqs. (19)—(23) by the transformation [2]

I

p. ..,(z, t)= ' f fdpdp exp i P

XP, ,, (pp'» (47)

neglecting terms proportional to the recoil energy Acok.
In Eq. (47), z is the classical atomic center-of-mass posi-
tion, which can depend on time. Defining similar quanti-
ties for the atomic ground-state population, orientation
and alignment as

I

As shown in Ref. [2], the signal Im[pg', ] as a function of 5
has a dispersion-like line shape around 6=0 for a Gauss-
ian distribution of 8'(p), and it has the same sign as we
have predicted qualitatively in the Introduction.

1O

(@+i'')(y +b, ) (ku)

The function I (x) is defined as

W'(pot )podt
I(x)=

V'ir — z —t

(44)

(45)

1

ps= X pgm, gm(z~t) ~

m= —1

1p„= —[pg, g, (z, t) pg, g, (z, t)],—

1
p i ~—[pgi gi(z, t)+pg —i,g, (z, t)

(48)

and I'(x) is the first-order derivative of I(x) with respect
to x. The values of p' ' can be deduced from the results
of semiclassical calculations [3]. In the limit that
ku « I", they are given by

2P 0 0(z t)]

p+. , +, =pg+, g+, (z, t),
(0) (0) ]3 (0) 4 (0)

P1 P —1 34& PO ]7 ~ P 11 34 (46) one then obtains the following equations:
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P, =O,

Por
I" I" i 6p, + — (e p, , —e p, , )

(49)

—I'2kz+ I st 1 1

y i—A y+i(6+6)
5&2 1 V3
72 ' 12 ' 18

1 t5t
X X

1 1

y i b, —y+i (5+5) (50)

Pa1
r'

( e
—

I 2kz + (2kz

18 18V6 3e6 ' P — ' P-l

~i+~
—i 2kz+i5t 1 1

y i 6—y+1(I4), +5)
5 1 11

36V6 ' 6v'3 " 36

1 1 1

y id —y+i(i(), +5) 3V6

P1, —1 P1, —1+ e P —e P 1+ — e Po
5, 5, ,„, I" „„, r'

2 I

(51)

1 1

y i il —y+i(b, +5)
5 1

+~&4'~e I 5t 1 X —i 2kz+i 6t

y+i(6+5) 6v'2 " 6 y+i(6+5) (52)

As is evident from Eq. (49), the total population in the
semiclassical picture is a conserved quantity, i.e.,

ps 1

We now make the following expansions in powers of the
probe-field strength for the steady-state solutions of Eqs.
(50)-(53):

(0)+ (1) —i2kz+i 5t
Pa1 Pa1 Pa1 e

(0) e i 2kz+ ( 1) e i6t
P1, —1 P1, —1e P1, —1e

~l 7 & A I Q
~ p~ + I ~ —i2kz —i2kz l~ —i2kz + X X —i2kz+ibt (53)P l l 6 P l l 36 P$3i/6 e Pal 3i/2 r e Por 6 i)

e P —l, l

where v is the z component of the atomic velocity. One
can verify that to zeroth order in ku/I", Eqs. (54) and

(54)
(56) lead to the results of Eq. (46) in Sec. III A.

Upon substitution of Eq. (56) into Eqs. (50)—(53), one
can then solve for the ground-state elements to first order
in probe-field strength. In the limit that ku/I"-0, the
first-order terms are given by

IQ
(0) l (1) —i 2kz+i 5t

Por Por Por e (l) 5+2 X X
204 r'/6+) n+(r '/3)'(~/r)2/(Sr /6+ i t )

(55) 5I"/3 i 6 1

sr'/6+i 5 I y i6—

5 5+4(b, /r) —i20(ku /I")
5+4(a r/)' +" (ku/r')'

L

(0) —
[

(0) ]a
z

(56)

(0) e
—i 2kz~ (1) e

—i 4kz+i 5tP-1, 1 P-1, 1 ' P-1, 1

where the superscript (0) or (1) again indicates that the
related terms are to zeroth or to first order in probe-field
strength. Equations (50)—(53) can then be solved recur-
sively. First, the zeroth-order terms are solved by letting
y'=0 in Eqs. (50)—(53). One finds

100&& (a/r)(ku /r')
17 5+4(/4 /r)2+ 44~ (k. /r )

(0) 5&6 800 (ku/I ')
102 17 5+4(t4) /r)2+ 44oo (ku /r )2

(1)—
OPa1

+ .
2

y+i(b, +5)

1 l'5 I"
3v'2 r sr'/6+mP"

x'*x
+204 Sr'/6+ib y —ia '

(57)(1) (1)
P —» P1 —1 ~

The Raman signal

A RIll ) 5 2
Pge

[see Eq. (14)] is a function of

lg (1)
y+ib

(l) +2 (l)
5~3 Pal 5 Pl, —l

(58)
Upon substitution of the results (57) into Eq. (58), one ob-
tains the Raman signal to zeroth order in ku /I" as
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;g" Ixl' .~R.m)—
Pge 1224 y+ ' ~

r'/15
1 —,r/6+, g r

(r'/3)2(Q/I )'r'/6+ i~+ gr'/6+ i5

5r'/3 l 5
gr'/6+i& r +

y
—l @+i(~+

1 1.+ 5I"/6+
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(ku)'
(63)

to rewrite g as

IV. DISCUSSION

We have presented the calculations of probe absorption
coefficients in the J =I—+J, =2 systems in the presence
of polarization gradient pump fields. Apart from the Ra-
man signals which result from the nonconservation of the
atomic properties such as the ground-state orientation or
alignment, there is a recoil-induced signal which is relat-
ed to a probe-induced spatial modulation of the atomic
total population. We find that optical pumping does not
broaden the recoil-induced resonances. This can be un-
derstood as follows. In the picture of Raman-type pro-
cesses between center-of-mass momentum states, the
transition width is determined by the effective lifetime of
each momentum subclass. When condition (42) is
satisfied [(I"/ku)(coI, /k u ) «1], the population in a
given momentum interval hp does not decay during the
time interval 1/(ku). As a result the optical pumping
does not broaden the linewidth of the recoil-induced sig-
nal.

The recoil-induced signal calculated in Sec. III is relat-
ed to the stimulated transitions between different momen-
tum families involving the pump and the probe fields, ow-
ing to this particular probe configuration. On the other
hand, if the probe is a 0.+ field copropagating with the
o.+ pump, the stimulated transitions involving the probe
field are between states that belong to the same family.
As a result, there is no recoil-induced signal in this case.
However, it has been shown recently by Lounis et al. [9]
that there is a Rayleigh-type resonance in this situation
even without the inclusion of recoil effects, owing to some
nonvanishing spatially averaged atomic velocity that os-
cillates at a frequency 5 under the influence of the copro-
pagating pump and probe fields having the same polariza-
tion. This average velocity leads to a so-called motion-
induced atomic orientation [3), which scatters photons
from the pump field into the probe field, resulting in the
probe gain or loss. Such a Rayleigh resonance will not be
broadened by the atomic Doppler width since it only in-
volves transitions between atomic states of the same
momentum. It is clear from the above arguments that
there is no Rayleigh resonance for the field configuration

7l (64)

For values of ~b,
~ /y that are of order I/g, the magnitude

of the recoil-induced probe absorption signal is compara-
ble to that of the Raman signal. Equation (63) also indi-
cates that the width of the recoil-induced signal, which is
of order ku, increases linearly with ~g~ for a fixed value of

This is in contrast with the Raman signal, whose
width [ —I"] increases quadratically with

~ y ~. Finally,
when the cooling condition is not optimal and ku is of or-
der I", the Raman signal will be a convolution of a
Lorentzian function of width I" with a Gaussian function
of width 1.66(2ku ).

considered here, since the spatially averaged atomic ve-
locity, to first order in the probe-field strength, is zero.
As a result there is no motion-induced atomic orientation
in this case. Instead, there are recoil-induced resonances,
i.e., Raman processes between atomic states of different
kinetic energies, for this field geometry. The width of the
recoil-induced signal is determined by the Doppler width
2ku and serves as a probe of the atomic velocity distribu-
tion.

The theoretical calculations presented here cannot be
compared directly with the experimental results on
pump-probe spectroscopy of atoms confined in a
magneto-optical trap [4]. One reason is that the
actual atomic level schemes are more complicated
(F =4~F=5 for Cs atoms) than that considered in this
work. Also the possible inclusion of inhomogeneous
magnetic fields in those earlier works can further compli-
cate the problem. In the results of some more recent ex-
periments in one-dimensional (1D) optical molasses pro-
duced by a pair of circularly polarized fields [9,10], there
have been some signatures of the recoil-induced reso-
nances considered in this and a previous paper [2]. How-
ever, a direct, unambiguous observation of such reso-
nance phenomena is yet to be made. When selecting the
field configuration as the one considered here, it may be
useful to choose parameters such that ~h~/I ))1, there-
by the normal Raman signals can be separated from the
recoil-induced signal centered at 6=0.

Finally, we discuss the relation between the results cal-
culated here, and a number of experiments on cold atoms
using linllin cooling field configuration [11,12], in which
the linear polarizations of the counterpropagating cool-
ing fields are orthogonal. As is well known, atoms in
such field configurations experience an effective, spatially
modulated potential originating from the atomic
ground-state energy shifts in the fields. If the average
atomic kinetic energy is cooled below such potential
depth, a significant portion of the atomic population be-
comes spatially localized [13]. Such localized atoms have
a bandlike energy structure [14], which can be probed by
various spectroscopic means. In situations like this,
where spatial localization of atoms is important, the
recoil-induced resonances, which are basically a
phenomenon associated with the atoms in the energy
continuum states, may still exist. Due to the small popu-
lation of untrapped atoms in most situations, and also
possibly due to the large amplitude of the signal provided
by the trapped atoms [15], the recoil-induced signal may
be too small to be observable under most experimental
conditions. There might be some cases, for example, with
low cooling field intensities, where the localization effects
are less significant, and the recoil-related effects are more
pronounced. Whether such situations exist requires fur-
ther research.
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Pg
= p. -l, -2(k)+ 2p.o, -1(k)

APPENDIX A + —pg],o(k) e (A9)

In this Appendix, we give the derivation of the probe
absorption coefficients in terms of the atomic ground-
state density-matrix elements. A convenient basis for the
derivation is the irreducible tensor basis [5,16], in which
density-matrix elements are defined as

pq(F], F2)= g ( —1) ' '&F],m],'F2, —m2I&, g &

m l, m2

XnPF), m I,'F2, m2 (Al)

P= —( —1) +'er,
g g egp'(G, H)+c.c. , (A2)

where G, H are the angular momenta of the ground and
excited states, respectively, r,g is a reduced matrix ele-
ment of the dipole moment, and

where pF .F are density-matrix elements written in
1~ 1~ 2~ 2

the magnetic-state basis, and (F],m„'F2 —m2lK, Q ) is a
Clebsch-Gor dan coefficient. The polarization of the
medium can be written as [16]

where p, .(k) are related to density-matrix elements

pg, (p,p') defined in Eq. (9}through

pg, (k)= fp, (p,p+ ]rkt)dp . (A 10)

When replacing p, ~ with ground-state matrix ele-
ments, and neglecting terms that correspond to linear
probe absorption, one obtains the following expression
for pge.'

—iht

p,.= ', p-" p.p+2Rk+-, p p.p+2Aky+i 6'

+ —,'p] (p,p+2]rtk )]dp

l++e
~ e —i5t

6 y+ib, '

where p+, and po denote p~+& ~+& and pro go respective-+]) + j) +i) -(1)

ly. By using the identity

P ]+2Po+ —6P] = 9PS ]2(P] P ])

+—'(P]+P—]
—2'» (A12)

e+]=+ —(x iy), eo=z .
2

(A3)

e'* P(k') =g (
—1)'e'g& q(k')

q

—( —1) +' g e'p'(G, H;k'),
q

(A4)

where P(k') and p'(G, H;k') denote the components of P
and p'(G, H) that vary as exp( ik' R+iA—'t), and the
e' 's are given by

The absorption coefficient for a probe field having (com-
plex) polarization e', frequency 0', and propagation vec-
tor k', is proportional to [17]

where p, is the total population as defined in Eq. (16), one
obtains Eq. (14) for pg, .

APPENDIX 8

In the appendix, we analyze the effects of optical
pumping due to the presence of the pump fields on the
recoil-induced signal, and give the derivation of condition
(42). The optical pumping processes cause an effective
atomic momentum diffusion, which can be represented by
Eq. (40). Instead of using an effective transit decay rate
yg, we solve the time-dependent problem for the recoil
signal. The evolution equation of p(p) can be written
from Eq. (41) as

e+] + (e» —]Ey )~ eo ez3' (A5)
p, (p) = —2I p, (p)+21 f c]](p'~p )p, (p')dp'

&q
= —

~q, i (A6)

where E' 6'y and e,' are the Cartesian components of the
probe-field polarization vector.

In the case of Sec. III, the probe polarization is given
by

+i +4o]k p(p)+e' 'Wo(p),2kp (Bl)

co(p'~p }=—,
] [5(p' —p+fik )+5(p' —p —]]lk )] . (B2)

where Wo(p) represents the "source" terms in Eq. (41)
(terms explicitly proportional to y' ). The kernel
co(p —+p ) 1s given by

Substituting Eq (A6) into. Eq. (A4), one obtains

p, ~ p,'(G, H;k), (A7)

Equation (Bl) can be solved in the interaction representa-
tion defined by

where
i (2kp/m + 4'], ]t

p p =ppe (B3)

p'(G H'k) =p', (G,H;k)e'"'

In the magnetic-state basis, one has

Moreover, by noting that t]](p'~p ) depends only on the
difference (p —p'), one can make a Fourier transforma-
tion,
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p(p) = f/(g)e' dg,

and obtain the solution for/t(g) as follows:

(B4) centered at p =0, with the most probable momentum
pc=mu. Then upon substitution of Eqs. (BS)—(B7) into
Eq. (B8), one obtains

/t(g)=exp[ —2I t+2I ~ f co(g, t')dt']

X f exp[2I st' —2I ~ f co(g, t")dt" ]co,(g, t')dt',

(BS)

where

and

co(g, t) =-,' I exp[ —ihgk —
i4cokt ]

+e xp[ih'g @+i4cokt ]], (B6)

The recoil related probe absorption signal depends on

f e ' 'p(p), dp [see Eqs. (14), (15), (30), and (32)]. From
Eqs. (B3) and (B4), it's easy to show that

—2k —i6t+i4mk t
t e

P7l
(B8)

As an illustration, let us assume 8'o(p) to be a Craussian

sin(4cok t')
fp(p)dp= f exp —2I t'+2I

4co k

X exp [
—

( kut ') —i 5t '+i 4cok t ']dt ' .

(B9)

It is obvious that the values of t' that contribute to the
above integral are t' & 1/(ku). All the effects of the opti-
cal pumping are included in the first exponential term on
the right-hand side of Eq. (B9). In order for the pumping
effects to be negligible, this term has to be approximately
unity. Since cok/(ku) «1, one can expand the sine func-
tion and reach the following expression:

exp =1 (B10)
3 ku m g

which is true when condition (42) is satisfied. The
momentum diffusion coefficient due to the optical pump-
ing effects is I irt k . Condition (42) implies that, during
the coherence dephasing time, the amount of momentum
diffusion due to optical pumping is small compared with
the width of the original momentum distribution.
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