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Variational and diffusion Monte Carlo techniques for quantum clusters

R. N. Barnett and K. B.Whaley
Department of Chemistry, University of California, Berkeley, California 94720
(Received 21 August 1991;revised manuscript received 18 November 1992)

The H2- He dimer and small He clusters are studied using Monte Carlo sampling techniques. We

consider alternative wave-function forms in order to obtain high accuracy efficiently. For the smaller

systems, both guided and unguided Metropolis walks are used and the e8'ciencies are studied. Of partic-
ular concern is accurate sampling at small particle separations and the behavior of the local energy in

this regime. As a final step, we compute exact energies by a diffusion Monte Carlo method. We obtain
converged energies significantly below the Green's-function Monte Carlo values, which employed an ear-
lier He-He potential with a slightly shallower well. For He3 and He2o, the Green s-function Monte Carlo
energies are reproduced when employing the same potential. However, for the 112-atom cluster, our
converged energy lies below the Green's-function Monte Carlo value. Second-order estimates of the ex-

act density profiles and particle separation distributions, p, are also determined. For the 14- and 20-atom
clusters, second-order estimates of p show enhanced structure in comparison to variational Monte Carlo
results. Statistically meaningful oscillations in the second-order estimates of the exact density profiles
are not observed.

PACS number(s): 36.40.+d, 67.40.Db, 02.70.—c, 03.65.Ge

I. INTRODUCTION

Atomic and molecular clusters have become of interest
to both theorists and experimentalists [1]. Of particular
concern are structure, phase transitions, binding energies,
and excitation spectra, and the behavior of these proper-
ties as the bulk is approached.

We are interested in studying atomic and molecular
clusters, both pure and with impurities attached, using
Monte Carlo techniques. Such approaches thus far pos-
sess the greatest possibility of yielding high accuracy for
theoretical methods. To enhance the capabilities of
Monte Carlo for these systems, we consider alternative
wave-function forms and the efficient optimization of
wave-function parameters in studying weakly bound
quantum clusters. To start with, we study the H2He
complex (from here on He is assumed). This system is
quite useful as it provides a very weakly bound, highly
repulsive potential, test case for the initial wave-function
form we employ.

As a further development, we employ diffusion Monte
Carlo (DMC). We use this approach to compute exact
ground-state energies for helium clusters with the most
up-to-date potential. In addition to increased accuracy in
the energy and structural features such as the density
profile, the DMC approach serves to provide benchmarks
for evaluating wave-function quality. This is pertinent
for the helium clusters for which exact energies resulting
from the most recent pair potential have not yet been
computed.

The remainder of the paper is organized as follows. In
Sec. II we discuss Monte Carlo integration techniques,
and in Sec. III the exact diffusion Monte Carlo approach.
The wave-function forms and optimization technique we
employ are presented in Sec. IV. In Sec. V we present re-
sults for a range of small clusters (N ~20 and N =112).

Section VI presents conclusions concerning the wave-
function accuracy and sampling efficiency for all tech-
niques.

II. MONTE CARLO
INTEGRATION TECHNIQUES

with I R, I sampled from p. As M becomes large, A~ ap-
proaches the average of 3 (R) over p(R).

We employ two variants of the Metropolis walk I2,3]
to sample p. The first of these is the widely used and very
simple "unguided" walk. For a point at R, a new point is
sampled from a transition probability density T(R~R )

which is simply constant within a cube and zero outside.
Thus moves are given by

R' =R+ b, (g —0.51), (2)

where g is a vector whose components are uniform ran-
dom variates between 0 and 1.

This "unguided" walk attempts to move uniformly
through coordinate space without regard to the form of

Therefore a more efficient scheme of choosing at-
tempted moves is likely. This is the basis of a guided or
"smart" Metropolis walk, which is also known as impor-
tance sampling. We now choose the transition density to
be

Multidimensional integration is performed by Monte
Carlo in order to obtain wave-function expectation
values. This is achieved by sampling points,
R=(r„rz, . . . , rtt), from a probability density function

p (R). Expectation values of coordinate operators A (R)
are then computed as

M
A~—=M ' g A(R;),
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T(R~R') =(4vrh) exp[ —[R' —R —bF(R)] /4b, J .

(3)

Sampling from this transition density requires that

probability density function f='P@, where 4 is a trial
wave function. Rewriting Eq. (5) in terms off gives

a DV—f+DV [fF(R)]+[EL(R) E—~)f, (7)

R' =R+ b,F(R)+&26,y . (4) where

The components of y are Gaussian random numbers with
a mean of zero and a variance of unity, which we obtain
by the Box-Mueller algorithm [4]. The "guiding force, "
F=V

~

0' ~, acts to push moves in the direction of most
rapidly increasing ~%~ .

The major consideration for the approaches discussed
here is the value of 6 which yields the most efficient sam-
pling. The optimum choice lies between a small value,
which yields a high acceptance rate but a large degree of
correlation between moves, and a large value, which gives
large attempted displacements but a very small accep-
tance rate so that correlation is large. The optimum 6 is
often taken to be that which yields an average acceptance
rate (or ratio) of roughly 0.5. Here we consider a further
quantitative measurement of the efticiency with which
configuration space is sampled, namely, the average dis-
placement of moves during the walk, (b,R ). (A rejected
move contributes a value of zero to this average. )

H= DV —+ V, DV—:g(2m) 'V2,

EL =4 'H + is the local energy, and once againF:—Vln~'P~ . Note that terms on the right-hand side of
Eq. (7) correspond to diffusion, drift, and branching, re-
spectively. The asymptotic form off follows from Eq. (6)
and is

f(R, t) =exp[ —t (Eo Ez )]—%(R)go(R) . (8)

When f takes this form, expectation values over f are in-
dependent of t, i.e.,

( A )f=—jf(R, t)A (R)dR Jf (R, t)dR

R 0 R 3 R dR 0 R o R dR

For A (R)=EL (R), it is easily shown that (EL )f =Eo,
so that the ground-state energy is obtained as the average
of EL over f. The time development off is given by

III. DIFFUSION MONTE CARLO f(R', t+r) = JdR f(R, t)G(R~R', r), (9)

Although the Metropolis algorithm provides a means
for computing expectation values of a given wave func-
tion, accuracy is limited by the quality of +. However,
exact Monte Carlo approaches are well known. These
approaches are often generically referred to as quantum
Monte Carlo and fall into two categories, Green's-
function Monte Carlo (GFMC) and diffusion Monte Car-
lo. The former has been applied to a wide range of prob-
lems and derives from consideration of the time-
independent Schrodinger equation. Initial work was on
the helium atom [5] and liquid helium [6,7], and later ap-
plications include electronic structure calculations [8,9]
and computations on helium clusters [10—12].

DMC starts with the time-dependent Schrodinger
equation in imaginary time and has been employed most-
ly in electronic structure calculations [13—17]. Recent
work has also included helium clusters and other van der
Waals species [18—20]. The DMC approach we employ
is very similar to that of Reynolds et al. [15] and is out-
lined below.

Writing the Schrodinger equation in imaginary time,
t ~ t /i, and setting A'= 1 we have

=(H E~ )@(R,t) . — (5)

The reference energy Ez only affects the (imaginary) time
dependence of 4&(R, t). It is easily shown that at large t
the ground state dominates, leaving

@=exp[ t(EO E~ )]$0 .— —

where the Green's function G describes a move from R to
R' in time r. The Green's function is a solution of Eq. (7)
with the boundary condition G(R~R', 0)=5(R—R').
For all but a few simple Hamiltonians, the Green's func-
tion is unknown. Here, we employ an analytic "short-
time" approximation to G which takes the form

G, (R +R', r) =(4rrDr)—

Xexp[ —[R' —R—DrF(R)] /4Dr]

Xexp( —r[ [EL (R')+EL(R)]/2 Ez ] ) . —

(10)

The approximate nature of G, is clear from Eq. (10):dur-
ing the course of a move from R to R' in time ~, the drift
[determined by F(R)] and branching (dependent on EL )
are assumed to be constant. While error in G, vanishes
as r—+0 [21—23], for the practical case, i.e., r%0, the
asymptotic f only approximates %go, and computed re-
sults will differ from the corresponding averages over

This difference, referred to as time-step bias, may
either be removed by extrapolation or made insignificant
by using values of ~ such that the bias is less than the sta-
tistical error.

To reduce time-step bias, an acceptance-or-rejection
step is employed [15]. That is, moves are accepted with a
probability 2 given by

A (R~R', r) =min[1, w(R~R', r)],
and

Note that the choice of Ez =Eo is useful in removing the
time dependence from the asymptotic solution.

Importance sampling is implemented by choosing a
I
+(R')'I G.(R'~R, r)w(R~R', r) =

I
q (R) I'G, (R~R, ~)

(12)
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Including the factor A plays an important role. As 4 ap-
proaches the exact solution Po, the branching becomes
constant and G, is essentially the transition density given
in Eq. (3) with 6=Dr. In this instance, DMC reduces to
a guided Metropolis walk and f ( =

~ $0~ ) is sampled
without time-step bias —for any value of ~. Use of A has
been found to greatly reduce time-step bias [24] because
the acceptance-or-rejection step eliminates time-step bias
to the extent that ql resembles Po.

We conclude this section with a discussion of several
technical details. In the DMC [and Metropolis-walk or
variational Monte Carlo (VMC)] computations, ten in-
dependent ensembles of 100 walkers are propagated in
parallel yielding ten independent estimates, of, for exam-
ple, the energy, from which the average and its statistical
error are obtained. If greater precision is desired, more
runs are performed in this manner. This structure is use-
ful in that for each set of runs an estimate of statistical er-
ror unbiased by serial correlation is computed.

Updating the reference energy E„ is useful for minim-
izing the time dependence of the ensemble. For a given
number [or population, P(0)] of points sampled from
f (0)=%$0 at the beginning of the DMC walk, we have

P(0)= Jf(R,O)dR.

From the asymptotic form off it is easily seen that

ing. As seen from Eq. (10), the branching factor for a
move from R to R' is

b(R, R')=exp( r—
I [EL(R')+Et (R)]I2 E—~ ) ) . (16)

Branching may be implemented by obtaining an integer
M=int[b(R, R')+g], where int(x) is the largest integer
that is + x and where g is a uniform random variate uni-
formly distributed between 0 and 1 so that M=b on
average, and creating M copies of walkers at R'. Alterna-
tively, one may assign a weight w(R')=b(R, R')w(R) to
the walker at R'. Since M equals b only on average, as-
signing (or carrying) weights would seem preferable.
However, carried weights diverge towards 0 or ~ as the
walk proceeds, giving rise to the possibility that an en-
semble may be effectively composed of a few walkers with
very large relative weights. In this event, the sampling is
ineKcient as only a few of the many walkers being pro-
pagated contribute to the computed averages. Therefore
we employ a combination of carrying weights and copy-
ing. Weights are carried unless w ~ w;„or w ~ w „.If
either of the bounds are exceeded then M =int(w+/)
copies are made, and for w ~ w, „each copy is assigned a
weight of w/M . For the DMC results reported here,
w;„=0.1 —0.4 and w „=2.

IV. TRIAL FUNCTION FORM
AND OPTIMIZATION

P(t) =exp[ —t (Eo Ez )]P(0—) . (14)

Note that Eq. (14) indicates that an estimate of Eo may
be obtained from the change in the ensemble size over
time. This estimate, usually referred to as the growth en-
ergy (EG ), often possesses a different dependence on the
time step than does the average of the local energy EI .
Therefore, to reduce the long-term growth or decay of
ensemble size, at each time step we perform a short run
to estimate EG and then set Ez equal to this estimate
when computing the reported results.

Another point concerns the renormalization of the en-
semble population P. Even when Ez is equal to the
growth estimate of Eo, fluctuations in P arise from fluc-
tuations in EG, which are in turn caused by variations in
the local energy, as the ensemble is propagated. If the
statistical error in EG over the ensemble is o.&, then

G

from Eq. (14) the relative statistical error in P is seen to
increase proportionally to time as

o.p/P =to.EG

Therefore, in keeping the ensemble size reasonable, it is
useful to renormalize the population [back to Po (= 100)]
at intervals during the walk. However, as noted previ-
ously [25], renormalization introduces an error which de-
creases as the frequency of renormalization decreases.
(Generally, this error is not noticeable unless the propa-
gation time between renormalizations is very short. )

Here, we divide each run into blocks, and at the end of
each block the population is renormalized to 100 walkers.
We vary block propagation times (10 —10 hartree ') to
verify that "renormalization" bias is negligible.

The final point concerns the implementation of branch-

A. Trial functions

We seek ground-state wave functions for bosonic sys-
tems. Such wave functions are nodeless and therefore
may be taken as everywhere positive. A convenient rep-
resentation takes the form

%'(R) =exp g Tt(R)
I

where in the completely general case

tt(r r, rk . . . )
i,j,k, .

(i &j&k&

(17)

In practice I is taken to be + 3 so that the wave function
is reasonably compact. Since the potential is given by the
sum of pairwise interactions, we omit T, and instead
start with two-body terms. (One-body terms have been
employed in previous studies of clusters [10,26,27], but
are not necessary. ) We then add on three-body terms for
increased accuracy if desired. This reflects the fact that
two-body effects should be most important, especially for
weakly bound clusters, followed by three-body effects,
etc.

As is common practice, we employ a two-body term
which is a function only of particle separations, i.e.,

T2(R)= g t2(r;, r )= g t2(r, ). .(19)

This term is both translationally and rotationally invari-
ant, i.e., P, T2=0 and I.T2=0, as required for the
ground-state wave function. Given the importance of
two-body effects, it is useful to explore optimal forms for
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+(r) =+,(r)+, (r), (2o)

where s and l denote the short- and long-range functions,

t2. In this vein, H2He, the first "cluster" in the H2He&
series, provides an excellent test case as a weakly bound
species with an interaction potential very similar to that
of He-He. Therefore a form of t2 which accurately de-
scribes H2He may prove advantageous for the helium
clusters as well.

The initial form of t2 is motivated by our studies of
H2He. For the interaction potential, we use a Lennard-
Jones plus van der Waals fit [28] to the ab initio data of
Vo computed by Meyer, Hariharan, and Kutzelnigg [29].
Since our potential is a function only of the He distance
from the H2 center of mass, the Schrodinger equation for
this system can now be reduced to a one-dimensional
problem. A numerical solution for the ground state, Pz ',
is obtained with the finite difFerence algorithm of Schatz
[30]. The next step consists of considering forms for 4
and fitting them to POP'. The accuracy of both the wave-
function fit and the computed energy expectation value
allow an assessment of the quality of %'.

In determining a useful analytic form for 4, we treat
the long- and short-range behaviors separately. That is,
+ takes the form

5

P(u)= g aku" .
/c =0

(21)

The bound on the powers included in P results from the
desire to limit singularities in the kinetic energy to be no
greater than r ', given that this is the dominant singu-
larity in our potential [28]. A high-quality form of O'I

was found to be

V&=r exp[ar ] . (22)

Since 4, is very nearly constant at large r, we first fit O'I

to in[/& '] in this domain to determine a, b, and a. We
then determine the short-range parameters [ak I by
fitting in the highly repulsive and in the well regions.
The range of points included in the short- and long-range
fits determines the parameters, which are listed in Table
I. We find that the analytic wave function 4 is nearly in-
discernible from the numerical solution PP', and the en-

ergy is reproduced to high accuracy, —0.02443 versus
—0.024 61 K—an error of only 0.7%%uo.

respectively. The short-range form is chosen to be con-
stant at large r. Given the form of V at small r, a natural
choice for 4, is

%, (r)=exp[P(u)], u =r

TABLE I. Wave-function parameters.

H2He He(4 He2p Hei 12( T2 ) He] lp( T2 + T3 )

ap
al
Q2

Q3

Q4

a,
kp

COp

rp

CO1

~~Cluster
Parameter

ao
a,
Qv

Qv

to

t2

t3
t4

—0.007 315 22
—1.438 143

1.138 39
0.153 6

—14.042 55
121.496 28

—710.897 88
1726.975 6

—7454.421 4

He3

—3.231 950 0
—0.068 458 3

8.55
0.840 075 0
0.086 148 1

—682.979
588.918

—205.068
34.132 1

—2.628 22
0.060 120 2

—0.107 061
—1.046 66

0.559 995
—1.323 61

—30.193 5
199.831

—845.506
1808.98

—4354.11
0.012
1.60
5.0
0.043
2.025
3.225

He,

—3.247 39
—0.046 985 0

8.65
0.914958
0.069 567 6

—682.409
590.085

—203.773
33.170 9

—2.466 31
0.053 350 9

—0.062
—1.055

0.545
—1.308 01

—38.864 6
310.061

—1370.01
2484.45

—3674.60
0.012
1.60
5.0
0.043
2.025
3.225

He2o

—3.413 98
—0.019 168 9

9.20
0.873 622
0.069 104 0

—675.000
590.085

—203.775
33.163 3

—2.485 77
0.058 852 4

—0.01000
—0.850 00

0.545 031
—1.308 01

—38.864 6
310.061

—1370.01
2484.45

—3674.60

—0.01400
—0.855 0

0.545 031
—1.308 01

—38.864 6
310.061

—1370.01
2484.45

—3674.60
0.009
1.8
4.5
0.031
2.225
3.225
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The H2He wave function gives a two-body function,
5

t2(r)=b lnr+ar + g aku",
k=p

(23) (27)

which we have employed in VMC computations of heli-
um clusters with and without a Hz impurity [28]. The
form of t2 is structurally similar to forms used previously
[10,26,27]. The diff'erences are that in the short-range
form all powers of r ' up to five are included here, and
there is an added flexibility in the long-range form, intro-
duced by the exponent e. As discussed above, the short-
range component of t2 is based on our H2-He potential
which takes a Lennard-Jones form at small separations
[28]. While the shape of this potential is similar to that
of He-He [31], the analytic forms are quite diff'erent.
Therefore it is of interest to consider entirely new forms
for t2 based on the short-range behavior of the He-He po-
tential. We employ here the most recent HFD-B(HE) po-
tential of Aziz, McCourt, and Wong [31] for all calcula-
tions unless it is explicitly stated that the earlier
HFDHE2 [32] potential is used.

We give special emphasis to regions of small separation
because the local energy generally possesses its greatest
Auctuations as r becomes small. Therefore a two-body
form which is more physically correct in this domain will
reduce Auctuations in EI, yielding greater precision, and
hopefully greater accuracy, in computed energies. Our
new t2 takes the form

tz(r) = T(r)v (r)+ao+a Ir+y lnr,

where

(24)

v(r) =a, exp( —a, r /3, r )— (25)

mimics the short-range form of the He-He potential [31],
and

T(r)= g tkr",
k=p

(26)

with n, k =5. We have chosen y =0 leaving only a singu-
larity of r in EL, arising from the kinetic energy. Oth-
er permissible values are y & —, which give an r singu-
larity but a finite statistical error in EL. With y =0, tpQ,
negative and large gives a wave function which is very
small but remains nonzero at r =0. This reAects the fact
that the potential converges to a very large but finite
value at r =0.

Overall, in comparison to Eq. (23), t2 gives added em-
phasis to domains containing small particle separations
and somewhat less emphasis to large r. It is hoped that,
by directly including a "potential-like" function in 4, the
highly repulsive potential term will be better canceled by
the kinetic contribution, producing smaller Auctuations
in EL at small values of r.

The use of a three-body term in ground-state wave
functions has yielded significant improvements in
descriptions of both the liquid [33—37] and clusters [10].
Here, we employ the description of three-body correla-
tions used previously in microscopic studies of quantum
clusters [10,26,27,38], namely,

with

I ~(i)= g g, (r;, )r,', , 1=0, 1 .
j (wi)

In Eqs. (27) and (28), we have

(28)

go( r) = (r ro—)exp

'2
r Ip

Np

g, (r) =exp
'2

r —rI

W)

(29)

Derivatives of T3 are evaluated analytically. This is actu-
ally faster than finite difference because derivatives by
finite difference require three evaluations of the exponen-
tials in Eqs. (29) while analytic computation requires only
one. Overall, adding T3 to T2 only increased computa-
tion time by about 85% for the 14-, 20-, and 112-atom
clusters.

(30)

This quantity is useful in that one may seek either a
minimum in the energy by choosing E (( (EL ) or in the
variance by choosing E = (EL ). In the first case,
minimizing the energy yields global accuracy, and, in the
second, minimizing Auctuations in the local energy em-
phasizes local accuracy in %. Since computed energies
are most often compared in discussions of accuracy, we
focus on minimizing the energy.

The integrations in Eq. (30) are performed by averag-
ing over a fixed set of points sampled from a distribution

corresponding to an initial set of parameters [40].
Therefore we minimize the estimate of s given by

B. Optimization

Wave-function parameters are optimized by hand and
by conjugate-gradient line minimization. Although
crude, varying parameters by hand is quite useful in com-
plementing more sophisticated techniques. Since initial
wave-function parameters are often quite poor, hand op-
timization can quickly yield large improvements. The re-
sulting wave function can then be used as input for the
more sophisticated optimization techniques.

The conjugate-gradient technique [39] seeks a local
minimum by moving in directions in parameter space
which are conjugate to each other, leading to efficient
convergence. Essentially, the algorithm consists of suc-
cessive line minimizations in parameter space. This pro-
cedure requires the computation of the quantity being
minimized and of its first derivatives with respect to the
wave-function parameters. Here, we consider
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g [EL,(R;)—Eg]'I+(R;)/I+O(R;) '
$2 i=1

M M

g I%(R;)/Iip (R;)I
i=1

(31)

V. RESULTS AND DISCUSSION

A. Metropolis walks

As discussed in Sec. II, wave-function expectation
values may be computed by the Metropolis approach.
We first consider H2He. Since the wave function depends
only on the distance of He from the midpoint of H2, r,
the walk takes place in only three dimensions, r.

We start with the unguided walk employing several
values of 6 in the range 11—40 A and M=SX10 . We
find that sampling IVI for such a diffuse system is not

The major consideration for the stability and accuracy
of the optimization is that sM accurately approximate s .
For this reason the ratio I%/VOI is included, refiecting
the fact that + changes as parameters are varied, al-
though this requires computing parameter derivatives of
O'. To enhance numerical precision, we adjust the nor-
malization of iP so that g;I%/VOI =M. This is useful
for clusters with more than five atoms where changes in
wave-function parameters have a large effect on the nor-
malization of %', because of its product form, and could
make I4/+oI uniformly exceedingly large or small. The
remaining determinant of the accuracy of sM is the num-
ber of points in the fixed sample. While a large number
of points is desired for high accuracy, M is limited by
considerations of computational cost and memory re-
quirements. M is chosen so that the statistical error in
the average of EL over the points is significantly less than
the desired improvement in the energy. We have em-
ployed 1000—2000 points for the smaller clusters, He3 5 7,
and 5000 points for He, 4 and He2O.

The final step in obtaining reliable optimizations in-
volves updating the fixed sample. As the wave function
changes, the points sampled from I+o become a poorer
choice for computing expectation values with respect to
I'PI . This is most noticeable when 'Po is of poor quality
and %' changes significantly during optimization. One
manifestation of this degradation of the fixed sample is
divergence of the energy to unrealistically low values.
Therefore we have found it usefu1 to update the sample
by using a Metropolis walk to generate a new set of
points sampled from the current wave function (which
then plays the role of %0.) Updating is implemented after
the energy has converged or when it begins to diverge.

While the conjugate-gradient technique has been suc-
cessful for the 3 —20-atom clusters, it appears to be much
less practical for larger clusters. (For He»2 we started
with the optimized He2o parameters and only reoptimized
the long-range parameters by hand. ) As the number of
atoms in the cluster increases, the dimensionality of
configuration space which must be represented by the
fixed sample of points increases. Therefore larger sam-
ples are generally required for the larger clusters.

trivial. The energy is reproduced reasonably well, the
computed value is generally within one or two standard
deviations of the analytic, and the average error is O. l%%uo.

However, we find sizable errors in ( r ) and
r, , =((r ) )' . The smallest value of b, produces errors
of 6%%uo and 7% in ( r ) and r, „respectively. Apparently,
poor efficiency in sampling IVI occurs in this case.
Upon increasing 5 to 27 A, giving an acceptance ratio
close to the often assumed optimum of 0.5, errors in (r )
and r, , are reduced to 1% and 2%, respectively. In-
terestingly, we find that only at a large value of 6, 40 A,
and a relatively small acceptance ratio of 0.35, is accura-
cy in (r ) and r, , comparable to that of the energy, i.e. ,
=0. 1%%uo.

The average displacement of the moves, (b,R ), sheds
light on this behavior. We find that (b,R ) monotonical-
ly increases from 2.4 A at 5=11 A to 4.7 A at 6=40 A,
correlating with the monotonic increase in the quality of
(r ) and r, , The fact that the local energy is relatively
constant at large r, so that the computed energies are
only weakly dependent on the accuracy of the sampling
in this domain, readily explains the difference in behavior
of the energy versus the coordinate expectation values.

As a precursor to DMC, we also performed guided-
walk calculations with b. =D~ and F=VlnI+I . Note
that T in Eq. (3) is now equivalent to G„Eq. (10), if the
branching is omitted. We now encountered difficulty in
sampling this distribution because of the sharp cutoff at
small r. In computing at ~= 5 X 10, 10X 10, and
20 X 10 hartree ', we found large errors in the energy,
1% for the first two time steps and 5% for the last,
despite the large number of points sampled,
M=(3 —6) X 10 . The behavior of the computed values of
( r ) and r, , is, however, much different. Good accuracy
and precision are obtained for these quantities at
~=10X10 and 20X10 hartree

The reason for the poor estimates of the energy is that
walkers are either trapped at smaller separations or else
they do not sample these domains. This trapping is
caused by the guiding force F being excessively large at
small r, where it is proportional to r, giving acceptance
probabilities practically equal to zero. This in turn yields
a poor representation of the density at small r which does
affect the computed energy because of the large magni-
tude of EL there. This is much less significant for r and
r which are relatively small near the origin. Since the
effect of F on the acceptance probability is removed ex-
ponentially fast as ~~0, the small-r domain is more ac-
curately sampled as ~ is reduced. However, efficiency is
reduced at small ~ because the small average step size
gives a larger degree of correlation between moves.

We now consider the pure helium clusters. These sys-
tems possess a highly repulsive potential as does HzHe
but are more tightly bound. (For example, the binding
energy of He3 is five times greater than that of H2He. )

This causes the computation of expectation values by an
unguided walk to be less difficult than for HzHe, presum-
ably because sampling a slowly decaying distribution at
large r is no longer required. Despite sampling fewer
points in calculations on He3 5 z [M =(2—6) X 10 versus
5 X 10 for H2He], for each cluster we observe excellent
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agreement between computed expectation values over a
range of A. For example, with 2.6&6(13.2 A for He4,
the maximum difference in ( r ) (the average particle sep-
aration) is only 0.15% and that in the energy is only
0.07%.

While computed averages do not vary significantly as
6 is changed, statistical error in coordinate expectation
values, (r ) and R, , [R, , =((R ) /N)', where
R =g+, (r; —R, ) ], decreases as b, (and (b,R ) ) in-
creases. In going from the smallest to the largest values
of b„statistical error in R, , and (r ) is continuously re-
duced down to a factor of 2 or more, resulting in a four-
fold or greater increase in computational efficiency for
these quantities. For the energy, small values of 6 result
in low efficiency. However, once b„and thereby (b,R ),
is of reasonable size, statistical error in the energy is no
longer decreased as 5 is increased.

Overall, we find the average displacement ( b,R ) to be
a useful measurement of the sampling efficiency in that
larger values tend to give smaller statistical errors, most
noticeably for R, , and ( r ). We point out here that the
sampling required to obtain (b,R ) to high precision is
quite small. Therefore finding the value of 4 which yields
the greatest average displacement may be accomplished
with very little computation. Finally, as was the case
with HzHe, the acceptance ratios corresponding to the
largest (b,R ) were less than 0.5, i.e., 0.38 for He& and
0.40 for He7.

We now turn to the guided walk, which encounters
difficulty when sampling at small r for H2He and does
not, therefore, appear useful for helium clusters. Howev-
er, since the DMC walk we employ consists of the guided
walk described above with branching, evaluating the
practicality of this guided walk is important in ascertain-
ing the feasibility of our DMC approach for obtaining ex-
act results.

As discussed in Sec. IV, acceptance probabilities in the
guided walk globally increase as the time step is reduced.
If a time step can be found which is small enough to re-
move trapping at small r, so that convergence in sam-
pling ~%~ can be obtained, without excessively degrading
sampling efficiency, DMC may be practical for helium
(and other) quantum clusters. Therefore we now deter-
mine values of ~ which yield high accuracy in the guided
walk for He3 5.

Table II presents guided-walk energies and statistical
errors (per point sampled) for He3 5 at several values of r.
The effect of trapping is immediately evident from the
data in Table II. At the larger time steps the energies are
of poor quality. In these walks we have observed that
atoms which are too close together do not Inove during
the entire course of a run. (Trapping is found by record-
ing the number of accepted moves for each particle. ) As
the time step is reduced, particles are no longer trapped
throughout the run. The result is a noticeable (and for
He5 a dramatic) improvement in the energy. Finally, we
see that at sufficiently small time steps, guided-walk ener-
gies are in excellent agreement with those computed by
the unguided approach.

The small-r behavior of the sampling, and its depen-
dence on ~, is illustrated in Fig. 1. This figure compares

TABLE II. Guided-walk results for He3 5 Time steps are
0

given in hartree, lengths are in A, and energies are in K.

10 E/N

25.00
12.50
5.00
2.50
1.25
0.75

Unguided

2.14
1.60
1.09
0.80
0.58
0.45
2.78

He3—0.036 9(33)
—0.036 7(27)
—0.038 1( 14)
—0.039 7( 16)
—0.041 8(7)
—0.041 41( 12)
—0.041 47(7)

7.4
6.0
3.1

5.1

4.4
1.1
0.14

25.00
15.00
10.00
5.00
2.50
1.25

Unguided

1.86
1.55
1.34
1.04
0.78
0.57
2.21

He4
—0.126 9(26)
—0.128 8(6)
—0.128 1{3)
—0.132 9(23 )
—0.1363(19)
—0.136 1(7)
—0.135 6(1)

7.4
2. 1

1.1
9.2

10.7
44
0.2

10.00
5.00
2.00
1.00
0.50

Unguided

1.17
0.96
0.69
0.51
0.37
1.65

Hes
—0.34(10)
—0.34(10)
—0.248 7( 12)
—0.25017(63)
—0.250 48( 51)
—0.250 23(13)

200
200

3.4
2.2
2.5
0.3

0.0015

0.0012-

0.0009-
l

CL
0.000II-

0,0003-

0,0000

1,9 2 2.1 2.2 2.3

FIG. 1. Convergence of p (r) at small r in the guided walk for
He3. The solid line ( ) is the unguided walk, the chain-
dashed line ( —- —-) is the guided walk at v. =50000 hartree
the long-dashed line ( ———) is at ~=25000 hartree ', the
short-dashed line (- - -) is at ~=12 500 hartree ', and the dotted
line ( . - ) is at ~=7500 hartree '. Note the improving agree-
ment between unguided and guided as the time step for the
latter is reduced. The guided-walk energies follow the same
trend, see Table II.
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the probability density functions p(r) at small particle
separations (r) corresponding to several values of r, with
that of the unguided walk for He3. Fluctuations in p indi-
cate trapping in certain regions and lack of penetration
into others. These fluctuations decrease as ~ is reduced,
resulting in convergence to the unguided probability den-
sity function and agreement in the computed energies.

It is important to point out that the error in the energy
at the larger time steps is not systematic. The trapping of
points, or conversely the inability to sample certain
domains at small particle separation (for a practical
amount of sampling), will result in energies either too
high or too low, depending on the sign of the local energy
at small r and whether p is too high or too low. For the
same reasons, statistical error may be artificially high or
low when obtaining an accurate representation of p (r) at
small r is problematic.

For purposes of comparing efficiency with the unguid-
ed walk, the statistical error in the energy per point sam-
pled, o., is presented in the last column of Table II. For
M points, o. is equal to the statistical error in the average
times &M. This statistic depends on the sampling
inefficiency of the algorithm, i.e., the degree to which suc-
cessively sampled points are correlated, as well as the
nonconstancy of EL, which is determined by the wave
function. Since %' is the same for the computations on a
given cluster, algorithm efficiency may be directly com-
pared. Table II shows that while agreement with unguid-
ed energies is obtained by the guided walk at sufficiently
small ~, the unguided walk is consistently more efficient,
with o. an order of magnitude smaller, yielding a decrease
in computational efficiency of two orders of magnitude.
Correspondingly, for the guided walk at the smallest time
step, the average step size ( ( b,R ) ) is four to five times
smaller than that for the unguided walk. Nevertheless
the guided walk still gives good precision for reasonable
computational effort. If this is also the case with the
DMC approach, the increase in accuracy will be well
worth the computational effort.

The guided-walk approach we have employed is
inefficient because of the rapid increase in the guiding
force as atoms coalesce. This suggests that a guided-walk
approach with a better behaved force will not encounter
the difficulties found here. We have investigated two
such choices in a few selected applications. The first,
"weighted unit force, " approach simply employs cF, in
place of F, =V, in~+~ when moving particle i Thus th.e
direction of the original F is preserved while its magni-
tude c is held constant. In the second, a "damped force"
approach, y,.F, replaces F, , where

(32)

and ao in t2 becomes an adjustable parameter. Once
again, the direction of the force is left unchanged but now
its magnitude is most greatly affected only in the trapping
regions, i.e., ~y;F; ~

~0 when 4~0.
For the H2He test case the parameters governing the

force, c and ao, are varied together with ~ to obtain max-
imum ( b,R ), which is roughly the same for the two guid-
ed walks. Trapping is not observed in either case and

values of (b.R ) are obtained which are a factor of 2
greater than the maximum obtainable in the unguided
walk. However, the statistical error in the energy shows
little variation among the unguided, weighted, and
damped approaches. On the other hand, guided-walk
statistical errors in both (r) and r, , are about 25%%uo

lower than those of the unguided walk.
For the second test case, He»2, only the damped force

approach was compared against the unguided walk.
Whi1e exhibiting no trapping, the damped force walk
yielded no increase in efficiency over the unguided walk.
Therefore we conclude that the simple unguided walk is
competitive with the guided-walk approaches studied
here.

B. DMC Computations on helium clusters

For the DMC walks, inaccurate sampling at small r
can have an effect significantly greater than that observed
for the guided walk. If points are temporarily trapped in
a region where the local energy is very low, as we have
seen can easily occur at small r, the branching factor will
be very large, resulting in a quickly increasing number of
walkers at small r. Although the particles trapped at a
small separation may move to larger r after a short period
of time, the continuous generation of new walkers at this
point will yield a high degree of oversampling and there-
by a highly biased (too low) energy. Therefore, at a given
time step, trapping may not be problematic for the guid-
ed walk but nevertheless gives instability in the DMC ap-
proach. So we expect that smaller time steps will be re-
quired to obtain convergence in the DMC walk than in
the guided walk. This is investigated below.

Given the instabilities possible in DMC, we take two
steps to monitor the behavior of the walk. First, we al-
low the ensemble to only reach twice (or four times for
the larger clusters) its original size. If the maximum en-
semble size is attained, this event is recorded and all
weights are carried so that the copying of walkers is no
longer employed. To some extent this step controls insta-
bilities arising from trapping in that the continuous repli-
cation of trapped walkers is not permitted. Additionally,
if the weight of any walker exceeds a given value (10), the
weight is recorded in the output file.

Results for the energy and its growth estimate E& are
presented in Table III and plotted in Figs. 2(a) —2(c) for
He3 5. Block length, on the order of 10 —10 hartree
was varied by factors of 2—4 resulting in no significant
change in the computed energies. Also, maximum en-
semble sizes (200) and excessive weights (10), while found
at the larger time steps, were not observed at the smaller
(last two or three) values of r. Given this, and the statist-
ical agreement of the energies at the smaller time steps,
the DMC energies we have computed are deemed to be
well converged. However, we do see that much smaller
values of ~ are indeed required than was the case for the
guided walk; approximate comparisons are 1000 versus
12500 hartree ' for He3, 1500 versus 25000 hartree
for He4, and 1500 versus 10000 hartree ' for He& (com-
pare Tables II and III).

Umrigar, Runge, and Nightingale have recently de-
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TABLE III. DMC energy vs time step for He3 5 The average of the local energy is E and the
0

growth estimate is EG. Time steps are given in hartree, lengths are in A, and energies are in K. AR
denotes the acceptance ratio.

10

4.0
3.0
2.0
1.0
0.5

AR

0.9963
0.9975
0.9986
0.9995
0.9998

0.62
0.54
0.44
0.31
0.22

He3

E/N

—0.048 6( 14)
—0.046 2(7)
—0.044 33( 16)
—0.044 09( 18 )—0.044 28(20)

EG /N

—0.044 7(7)
—0.044 28( 35 )
—0.044 06( 17 )—0.043 98( 17)
—0.043 93(23 )

5.0
2.5
2.0
1.5
1.0

0.9908
0.9965
0.9975
0.9983
0.9991

0.69
0.49
0.44
0.38
0.31

He4 —0.175 0(90)
—0.151 4(38)
—0.148 1( 16)
—0.144 5(3)
—0.144 5(3)

—0.145 5(7)
—0.145 4(6)
—0.145 7(7)
—0.144 8(4)
—0.144 4( 3)

2.0
1.5
1.0

0.9963
0.9975
0.9986

0.45
0.38
0.31

He5
—0.282(13)
—0.268 3(5)
—0.267 3( 11 )

—0.268 2(8)
—0.267 5(4)
—0.267 4( 10)

scribed a DMC approach which controls the magnitude
of F near its singularities and yields a better approxima-
tion to the Green's function in this domain [41]. It will
be of interest to see if this method will reduce time-step
bias, and thereby increase efficiency by allowing greater
values of ~, in DMC computations on helium clusters.

Neglecting the different time-step scales, the behavior
of the DMC energies is very similar to those of the guid-
ed walk. In essence, both walks are affected by trapping,
which is magnified by the branching in the DMC walk.
As was also the case for the guided walk, the coordinate
expectation values, ( r & and R, „were not visibly
affected by ~. This is not surprising as these quantities
are only weakly influenced by sampling accuracy at small
particle separations. This lack of time-step bias is also
seen for the particle separation density functions p (r) (ex-
cept of course at small r), as well as for the density
profiles.

Computational cost in obtaining converged DMC ener-
gies was large but not excessive. While He3 presented an
especially dificult case requiring five Cray X-MP14 CPU
hours for all (not each) of the time steps, He4 and He5
took only one and two hours, respectively. As for H2He
at the VMC level of theory, the smallest and most diffuse
cluster gave the greatest difficulty in obtaining the accu-
racy and precision desired.

Having successfully obtained converged energies for
the smaller clusters, it was of interest to see if this could
also be achieved for the larger clusters. We found for
He&, N=7, 14, 20, and 112, DMC energies converged at
about ~=500—1500 hartree '. Even at the largest time
step of 2000 hartree ', the energies were very close to
those computed at the smallest values of r. Overall, the
dependence of E/1V and EG/X versus the time step mim-
ics that of the smaller clusters. At "larger" r (=2000
hartree ), bias is noticeable and large weights and fiuc-
tuations in ensemble size occur. At "smaller" r ( =1000

hartree ), stability in the DMC energies, weights, and
ensemble sizes is obtained. Therefore, while the required
time step for unbiased energies is greatly reduced for
DMC versus the guided walk, this is not the case for
larger clusters versus smaller clusters. Unbiased energies
are obtained at ~=1000—1500 hartree ' for 3—5 atoms
and ~=500—1500 hartree ' for 7, 14, 20, and 112 atoms.
(Here, absence of bias, i.e., it being masked by statistical
error, is relative rather than absolute. For example, a
bias of 0.005 K is very large for He3, 11%of E/X, but on
the order of the statistical error for H»z, O. l%%uo of E/N. )

This is explained by the fact that convergence in DMC is
most affected by trapping combined with large fluctua-
tions in the local energy at small r —effects which are
governed mostly by the wave-function form rather than
by cluster size. Total computational cost was roughly 2,
4, 5, and 17 Cray X-MP14 CPU hours for %=7, 14, 20,
and 112, respectively.

The DMC results are summarized and compared to
GFMC [10,11] and other recent DMC results [18] (He20
and He»2) in Table IV. The results we compare against
were obtained with the HFDHE2 potential [32] which
predates the most recent, HFD-B(HE), potential [31]
used here. The two potentials possess practically identi-
cal functional forms but with different sets of parameters.
Perhaps most significant is the 1.3'~/o increase in well
depth. For the unit radius, ra =&5/3R, , /N', we em-

ploy a "second-order" approximation of exact expecta-
tion values [7] defined as

( & &,
—=2(+I & l(to&/(+lyo& —(+I & I+ &, (33)

with A =R . Writing %=$0+5 shows that ( A &, differs
from the exact value, ($0~ Ajgo&, by integrals involving
5 . (This approximation is useful when A does not com-
mute with the Hamiltonian. Methods for computing
( $0~ A

~ Po & have been described elsewhere [42,43].)



VARIATIONAL AND DIFFUSION MONTE CARLO TECHNIQUES. . . 4091

The DMC energies we compute with the HFD-B(HE)
potential are significantly below the GFMC energies re-
sulting from the previous, HFDHE2, potential. The rela-
tive discrepancies tend to decrease with increasing cluster
size. For He3 our energy is I3%%uo lower than the GFMC
value while for HeI4 and Hero the differences are only
3.3% and 3.7%, respectively. However, as seen in Table
IV, for He3 and He2o our DMC energies are in excellent
agreement with GFMC when the same potential
(HFDHE2) is employed. In contrast, our HFDHE2 ener-
gy does not agree with GFMC for He»2. The new poten-
tial lowers our He»2 DMC energy by 3.2%. Such sensi-
tivity to small changes in the potential has been observed
previously. Kalos et al. , employing the HFDHE2 poten-

tial in their study of liquid He, obtained a 6% decrease
in the energy for a 1.9% increase in the well depth [44].

Upon considering HeII2 and comparing with the DMC
energies computed by Chin and Krotscheck [18] (CK),
employing a DMC algorithm difFerent than our own [45],
discrepancies not attributable to the potential arise. For
Hezo, we see in Table IV that CK's energy is 2% below
both our DMC and the GFMC values, when all three cal-
culations employ the same (HFDHE2) potential. For
He»2, further disagreement occurs with the same poten-
tial as our and CK's energy lie roughly 2% and 3%, re-

spectively, below GFMC. This is not readily explained
by statistical error which, for both GFMC and DMC, is
an order of magnitude smaller than these differences. It

-0.043 —0. 14

-0.044—

-0.045—
—0. 15—

-0.046— =-—0. 16—

-0.047—

-0.048—
I I I —0. 17—

—0.049—
—0. 18—

-0.050—

-0.051
I

2 3

1 (IO hartree )

—0. 19

T(lO hartree )

-0.260

-0.265—
(cj

-0.270—

-0.275—

-0.280—

-0.285—

-0.290—

-0.295—

-0.300
I

0.5
I

1.51

1 (IO hartree )

2.5

FIG. 2. Local (circles) and growth (squares) energy estimates of the exact energy vs ~ for (a) He3, (b) He4, and (c) Hes.
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TABLE IV. Comparison of GFMC and DMC energies and unit radii of helium clusters. Lengths
0

are in A and energies are in K.

Cluster

He3

He4
Heg

He7
He)4
He20

He»z

E/N

—0.039 19(8)
—0.044 23( 10)
—0.044 26( 12)'
—0.144 5(2)
—0.267 8(6)
—0.522 1(5)
—1.247 8( 12)
—1.626(2)
—1.659(3)'
—1.688(2)

—3.664(3)'
—3.726(4)'
—3.780(3)

EG /N

—0.039 07( 13 )
—0.043 99(11)
—0.044 21( 11)'
—0.144 6(2)
—0.267 5(5)
—0.521 2(5)
—1.244 3( 12)
—1.621(3)"

—1.675(2)
—1.689(5)g

—3.657(5)

—3.773(5)

+GFMC /N

—0.039 10( 10)'

—0.1333(5)'
—0.251 4(4)
—0.496 5(7)
—1.208 0(40)
—1.627(3)

—3.600(10)"

r, (DMC)

5.81
5.59
5.60'
4.13
3.65
3.22
2.83
2.72'
2.68'
2.69

2.40
2.42'
2.39

ro(GFMC)'

5.35'

4.20'

2.71'

2.44

'Reference [10].
This work. DMC computed with the same potential, Ref. [32], as GFMC.

'Computed using a more highly optimized wave function.
Reference [11].

'Reference [18]. DMC employing the potential of Ref. [32] and wave functions with three-body corre-
lations.
Computed with renormalization.
Computed without renormalization.

is also not likely that wave-function quality is the cause.
Our He20 wave function used for DMC possesses only
two-body correlations and has a VMC energy which is
4% higher than that of CK, which includes three-body
correlations. On the other hand, our He»2 wave func-
tion, including three-body correlations as does that of
CK, yields a VMC energy 1.4%%uo below that of CK.

In spite of the above disagreements with previous
GFMC and recent DMC energies, we feel that both our
old- and new-potential DMC energies possess an accura-
cy well approximated by the statistical errors we report.
For every cluster, a region of time-step sizes yielding sta-
bility in the energy is observed. Even for our largest clus-
ter, He»z, computing at ~=1000 and 500 hartree ' gives
a difference in E/N of only 0.05%, much less than the
statistical error of 0.12% in each value, and weights and
ensemble sizes are well behaved. In addition, we do ob-
tain agreement with GFMC for N=3 and 20. These
cluster sizes should not be problematic for GFMC
despite the use of only two-body correlations in the wave
function.

For He»z, none of the computed energies are in agree-
ment and this deserves further comment. We point out
that very slow convergence in GFMC, from a relatively
simple starting function, was observed [10] for He»2 and
could give too high an energy in this case. Concerning
CK's result, we note that they obtain an energy 2%%uo

below both GFMC and our DMC at N =20 where we ex-
pect GFMC to be more reliable. If CK's He2O energy is
too low, then their He»2 energy may be as well. On the
other hand, CK have produced reasonable consistency in
their computed energies when using different wave func-
tions; differences are 0.5% and 0.6%, for He20 and He»2,
respectively. They have also varied the time-step size.

As a final consideration, we compare the average local
energy (El ) and growth energy estimators EG. While
these estimators are highly correlated through their mu-
tual dependence on the local energy, they often possess
difFerent time-step dependences, as is the case here [see
Figs. 2(a) —2(c)]. Therefore convergence of these two esti-
mators to statistically identical values also argues for the
reliability, i.e., absence of time-step bias and thereby ac-
curacy, of our computed DMC energies. In Table IV we
see that agreement between both of our DMC energy es-
timates is excellent. The differences, for which the max-
imum is only 0.5% for He3, are generally lower than the
precision obtained. The largest discrepancy relative to
statistical error occurs for He2c, EG/N = —1.6748(17)
versus E/N= —1.6879(16) K. This difference results
primarily from computing P(0) [see Eq. (13)] at the be-
ginning of each block, directly after renormalization.
(The final population is computed at the end of the
block. ) Thus, while the effect of renormalization is negli-
gible for the block as a whole, its effect (especially on en-
semble size) is greatest at the beginning of the block. We
also performed calculations which omitted renormaliza-
tion. (Although yielding larger fluctuations in ensemble
size, the omission of renormalization was not problematic
here. ) While this had no effect on the local energy aver-
age ( E /N), excellent agreement between E /N and
EG/N, —1.6879(16) versus —1.6885(46) K, was now
obtained for He2O. The computation of P(0) directly
after renormalization most likely also accounts for the
small (but beyond statistical error) difference between the
two energy estimates for He&4. Since renormalization
may often be desirable, a useful alternative is to compute
P(0) some time after renormalization, when the popula-
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tion has equilibrated. This was done for He3, reducing
the discrepancy between the two energy estimates from
0.9% to 0.5%, thereby giving near statistical agreement.

For the unit radii ro, we first compare our DMC and
the GFMC values for He3 and He2O computed using the
same potential (Table IV). While agreement is observed
for He2O, a large difference of 8% is seen for He3. This
diff'erence is well beyond our statistical error of 1%. (Ex-
cept for He3, statistical error in DMC values of ro is well

under 1%, i.e., 0.01—0.02 A. ) Furthermore, this
disagreement with GFMC does not appear to be caused
by error in our second-order estimate of ro. The error in
the second-order estimate of rz, =(5~8 ~5), should be
less than the difference between the VMC and DMC
values, =(5~A ~%), which is only 2%. For the largest
cluster, N =112, disagreement resurfaces when compar-
ing our value of ro against GFMC obtained with the

same potential. The difference between our VMC and
DMC values is only 0.6%, implying an error of much less
than 0.6% in the second-order estimate. Statistical error
in the second-order values, 0.003 A or less, cannot be the
cause of the 2% discrepancy between second-order DMC
and GFMC.

The unit radii computed by CK differ slightly from our
own, 1.5% below for Hezo and 0.8% above for He»2.
These differences are most likely caused by the differences
in the DMC solutions obtained, as reAected by the ener-
gies, rather than by the second-order approximation.
This is supported by the fact that CK also obtain very
good agreement between their VMC and second-order
unit radii.

Finally, in comparing results using the HFD-B(HE)
potential for He»2, we note that the difference between
VMC and DMC is only 0.6%. Therefore, in this case, we
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the qualitative behavior is unchanged between the VMC
and second-order profiles. The sharp increase in p near
the cluster center for He3, which we first observed at the
VMC level of accuracy and which arises from a
significant contribution of near-collinear configurations
to the density [28], remains in DMC. For 14- and 20-
atom clusters, very little structure is evident. The He, 4
density rises slightly near the origin while that of He2O

0
reaches a constant value at about 2.5 A and then Auctu-
ates about 0.019 A . This is in good agreement with
GFMC [10] and the oscillations seen by CK are not ob-
served here.

VMC and second-order (v=500 hartree ') density
profiles for He»2 are computed with a bin size of 0.13 A
and are presented in Fig. 3(d). The experimental liquid-
helium density of 0.021 85 A is shown for comparison
as a solid line. Statistical error is 10% for the points
nearest the origin, then decreases rapidly at greater dis-
tances, and finally begins to rise near the cluster edge,
reaching about 10%%uo at 11 A. Unlike any of the smaller
clusters, structure in the density profile now appears to be
present. However, further analysis indicates that the
fluctuations at R &5 A are statistical. Only in a very
small region, 2.10—2.35 A, is statistical error (4.5%)
significantly below the deviation from the liquid density
(6%—10%). Thus, out to 4.8 A, the density is very nearly
constant to within reasonable statistical error (under 5%
for R ) 1.5 A). However, a shoulder is present at 6.2 A
where statistical error is very small, 1.5%. Further out,
another shoulder at 9.6 A is barely discernible. This is in
good agreement with CK (bin size is 0.24 A), who also
observe shoulders in these regions. We have also com-
puted a second-order density profile for He»2 employing
the HFDHE2 potential. The results are very similar to
those we obtained above.

In summary, our second-order densities for N = 14, 20,
and 112 rise up to their central values at some distance
from the origin. The value of this central density and the
distance to which it extends increases with cluster size.
The He&4 central density is clearly below that of liquid
helium and p begins to drop off at about 1 A. That of
He»2 is in good agreement with the liquid-He density

0
and extends out to about 4.5 A while the He2o case is in-
termediate between He&4 and He»2. These conclusions
differ from those of CK, who obtain oscillations in their
density profiles as the origin is approached for both He2O
and He»2. We see no such oscillations for He20 while
those of He»z are mostly removed upon considering the
small (2%—5%) statistical error. However, we do see
shoulders in the He»2 density at larger R.

For all clusters, the quantitative differences between
the VMC and second-order density profiles are not large.
The small changes we observe in passing from VMC to
second order lead us to believe our estimate of exact den-
sity profiles by second-order profiles is well justified (see
discussion concerning the unit radii). Comparison
against density profiles computed by VMC [26] or
GFMC [10] shows little variation in the central density,
despite the different potentials and wave functions em-
ployed. A major difference does arise for He3 which has

Q

1.7 1.8 1.9

FIG. 5. VMC ( ) and DMC plots of p(r) at short range
for He, 4 at ~=2000 ( —- —-), 1000 ( ———), and 500 (- - -) har-
tree

C. New two-body form and T3

We have employed our new two-body form, t 2 [see Eq.
(24)], in unguided-walk computations on He&, %=3, 7,
and 20. For each cluster the same value of 6 is employed
for t2 and t,'. We find that t, yields the best energy for
He3, 5%%uo below that of t2. However, for the larger clus-
ters, small but significant (i.e., well beyond statistical er-
ror) reductions are obtained with t2, i.e., 2% for He7 and
1%%uo for He20. For He3, the most diffuse cluster, the re-

0
a sharp increase in p at about 2 A [28] which is not evi-
dent in GFMC [10].

In order to gain further insight into cluster structure
and its changes as accuracy is improved from VMC to
the second-order approximation, we compute particle
separation probability density functions p(r). Figures
4(a) —4(c) present VMC and second-order plots of p (r) for
He7, He, 4, and He2o. For He3 5 qualitative distinctions
are not discernible between the VMC and second-order
density functions, just as for He7. For those clusters
which show structure in p with VMC, He&4 and Hero,
qualitative differences between VMC and second-order
densities are now apparent. We see that the implied
shoulder in p found by VMC becomes much more pro-
nounced as we progress to the second-order level of accu-
racy. It would be interesting to see if this onset of "shell"
structure is progressive or abrupt as cluster size is in-
creased from 7 to 14 atoms. We point out once more that
both p and p are essentially independent of the time step
employed (for the range of r we have considered). The
exception of course is for p at small r. An example of this
is given in Fig. 5 which presents the VMC and several
second-order estimates in the region p(r)/p, „(5X10
for He&4. Note that by ~=1000 hartree ' convergence is
quite good, as is the case for the energy. (See Table IV
and associated discussion. )
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duced Aexibility of t2 in describing long-range behavior is
significant. In addition to yielding a poorer energy, t2
also gives an unrealistically low unit radius. For the
more tightly bound clusters, for which short-range in-
teractions are more important, an improvement with t 2 is
obtained. Also, t2 yields a 30% reduction in statistical
error in the energy, even for He3, presumably by better
describing the short-range behavior where the local ener-

gy possesses its greatest fluctuations. Consequently, we
expect that further accuracy may be obtainable by in-
creasing the long-range flexibility of tz.

In addition to seeking better two-body wave functions,
accuracy can also be increased by including three-body
(and higher) effects, as discussed in Sec. IVA. We treat
here the larger clusters, whose wave functions should
possess the greatest need for three-body correlations. For
He, ~ and He2O, the initial parameters in T2 (t2 here) are
obtained from a conjugate-gradient optimization. For
He»z initial parameters are those for He2O and are then
varied by hand. As seen in Table I, optimization resulted
from changing only the long-range parameters. Upon ad-
dition of T3, parameters are varied by hand in a set of
short Monte Carlo runs. At this stage, only variation of
the T3 parameters and of the long-range parameters in

Tz was found to be fruitful. Despite the approximate lev-
el of optimization, a significant reduction in the energy is
observed in all cases. The optimized T3 term yielded
about a 6% improvement in the energy for He, 4 and
Hezo. As expected, the He»z energy is reduced by a
greater amount (9%) than for the smaller clusters. The
final result is that the VMC energies of the N =14, 20,
and 112 clusters are quite good; 96.1% of the computed
exact value is obtained for He&& and this decreases only
by 1.5% upon going to He»2.

Wave-function quality is also improved in other
respects. The data listed in the middle of Table V show
that the relative statistical error in the energy decreases in
every case. The increased computation when T3 is in the
wave function ranges from 82% for He&4 to 88% for
He»2. Allowing for this, the efficiency (the inverse prod-
uct of the variance and the computation time) in comput-
ing the energy is increased by a factor of 2 for He&4 and
He»2. Interestingly, however, efficiency is decreased by
19% for He&0. This contrast with the He&4 and He»2
cases may arise from incomplete (hand) parameter optim-
ization or from use of the energy, rather than variance,
minimization criterion. It could also be magnified by the
generally large uncertainties in computed statistical er-
ror.

T2+ T3 T2 T2+ T3 T2 T2+ T3

14 90.5
20 89.5

112 85.7

96.1

95.3
94.6

1.00
0.93
0.23

0.52
0.76
0.11

3.2
4.7
4.9

1.2
2.8
1.2

TABLE V. Accuracies and precisions for two- and three-
body wave functions.

Accuracy in E/N o.(E/N)/(E/N) Accuracy in ro
(%) (%)

In the last two columns of Table V, percent difFerences
between VMC and second-order unit radii ro are listed
for the T2 and T2+ T3 wave functions of He, 4, He2O, and
He»2. We expect these differences to be good estimates
of the deviation from exact values, given our confidence
in the accuracy of our second-order estimates of ro, see
Sec. V B. In each case agreement with second-order esti-
mates of ro is noticeably enhanced upon addition of the
three-body correlation functions. The result is that very
good agreement ( = 1%) with estimated exact unit radii is
obtained at the VMC level of theory with the three-body
wave functions. The exception is again He2o with a VMC
value of ro differing by 3% from the second-order esti-
mate.

VI. CONCLUSIONS

We have studied wave-function forms and Monte Car-
lo integration techniques for H2He and He&,
N =3—20, 112. As a very diffuse system with a highly
repulsive potential, H2He presented special difficulties for
the VMC computations. While the VMC approaches
used here are without bias, errors in computed quantities
can arise for a finite (yet large) amount of sampling if
efficiency is sufficiently poor. Therefore only for very
large attempted displacement sizes 6 is good accuracy
obtained in the unguided walk. Furthermore, these
values of 6 correspond to acceptance ratios of 0.35—0.40,
well below the often assumed optimum of 0.5.

Despite the increased dimensionality in comparison to
HzHe (3N versus 3), the less diffuse helium clusters are
much more amenable to Monte Carlo integration. For
the unguided walk, consistency in computed expectation
values is obtained over a wide range of A. However, we
do find that statistical error in both (r ) and in R, , is
noticeably lower at large A. Once again, these values of
5 corresponded to the largest average displacement of an
attempted move, ( b,R ), rather than to an acceptance ra-
tio of 0.5.

Directly including importance sampling by using a
walk guided by F=V~'P yielded inaccurate HzHe ener-
gies. Although most of configuration space was well sam-
pled, as indicated by accurate values of (r ) and r, „
large values of the force F caused trapping at small r.
The resulting inaccuracy in the density gave rise to
significant errors in the computed energy because, al-
though the wave function is small, the large magnitude of
the local energy at small separations requires accurate
sampling in this region. However, trapping is readily cir-
cumvented by employing a better behaved force. Two
such approaches, which still direct moves toward a local
maximum in

~
4 ~, were applied to HzHe and Hei i2.

Compared to an unguided walk, efficiency was increased
slightly for H2He but not for He»2.

As seen for H2He, errors in the energy arise in a walk
guided by F=Vin~+~ due to poor convergence at small
r (which is practically infinitely long unless r is very
small). In light of the desire to compute exact energies by
DMC, however, it was of interest to determine the
domain of ~ at which high accuracy could be obtained by
this guided walk. We find that, though initially quite
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poor at large ~, accurate energies are obtained at smaller
values. "Convergence" in the guided-walk energies is
directly correlated, as expected, with improving accuracy
in p(r) at small r as the time step is reduced. This was
also the case in the DMC calculations, demonstrating
that accuracy in the (DMC or VMC) energy is critically
dependent on the sampling at small r. In light of this dis-
cussion, we point out that a DMC approach similar to
that employed here but which bounds the magnitude of F
near 4 =0 has been described recently [41] and may be of
use for the systems studied here.

Although small time steps are required, well-converged
DMC energies have been obtained for He&,
N =3—5, 7, 14,20, 112. The steps taken to ascertain con-
vergence, variation of the time step and block size, com-
parison of the local and growth energy estimates, and
convergence of p at small r, all support the reliability of
the computed energies. As we have already found with
VMC for He3 and He4 [28], energies well below those of
GFMC [10,11] are obtained. For He3 and He2o, these
discrepancies are clearly caused by the use of different
potentials. It is reasonable to conclude that this is also
the case for all the 3 —20 atom clusters studied here. The
agreement we obtain with GFMC for an identical poten-
tial leads us to believe in the reliability of our DMC ap-
proach and the exactness of our computed energies with
the most up-to-date potential. However, energies below
GFMC (but with the same potential) have been obtained
by CK using a modified DMC approach for He&, N =20,
40, 70, and 112 [18], and by us for %=112. While the
discrepancy between DMC and GFMC is smaller in our
calculation than in CK s, our energy is still significantly
lower than the GFMC result. Further disagreement
occurs when comparing our DMC energies with those of
CK. For both N=20 and 112, we compute slightly
higher energies.

We see a sizable lowering of the energy below that ob-
tained from the earlier, HFDHE2, potential when em-
ploying the most recent, HFD-B(HE), He-He interaction
potential, 13% for three atoms and 3.2 Jo for 112. This
reflects primarily the lower well depth of the newer po-
tential. Decreases in the unit radius are also observed,

3.8% for He3 to 0.3%%uo for He»2. Finally, as do CK, we
see fluctuations in the He»2 density profile which have
not previously been observed at either the VMC or
GFMC level of theory. However, our fluctuations at
small R are beneath statistical error as differences from
the liquid-helium density are generally less than one stan-
dard deviation in this region, R ( 5 A.

In an effort to improve accuracy at the two-body level,
we have studied an entirely new form describing these
effects. This form gives added emphasis at small r and
contains a factor which mimics the potential in this
domain. Optimized wave functions for He7 and He2o
gave slightly improved energies, despite the reduced flexi-
bility at large r. For the more diffuse He3, the older form
gave a lower energy. In addition, statistical error in the
energy was reduced by about a third. It is expected that
a better description of the long-range behavior will yield
further improvements.

In order to investigate the accuracy obtainable by
current VMC approaches, a three-body factor was added
to the 14-, 20-, and 112-atom two-body wave functions.
Substantial improvement in the energy is obtained, and
for He&4 and He»2 an increased efficiency in computing
this quantity also results, despite the greater complexity
of the wave function. More sophisticated optimization
algorithms for the parameters in T3 may yield a further
lowering of the VMC energy. It also remains to be seen
whether t2, combined with T3, will yield better agree-
ment with exact energies, and whether the use of such
complex wave functions will be advantageous for DMC.
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