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Atomic-position resolution by quadrature-field measurement
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An atom passing through a standing light field imparts a position-dependent phase shift to the
field. By making a phase-sensitive measurement of the Geld, it is possible to resolve the atom s posi-
tion to much less than the wavelength of the light. The Geld measurement results in the creation of
virtual slits, and difFraction and interference phenomena may be observed. The phase measurements
give nelcher S'eg information and enable "quantum-eraser" experiments to be realized.
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I. INTRODUCTION

There is considerable activity in studying the mechani-
cal effects of light on atoms [1]. It has been proposed that
the defiection of atoms passing through a standing light
wave may give a quantum-nondemolition measurement
of the photon number in the light beam [2]. A recent
experiment has demonstrated the optical Stern-Gerlach
effect where an atom undergoes state-selective defiection
when passing through a standing light wave [3].

Techniques for precise localization of the position of
an atom have been developed. The channeling of atoms
at the nodes of a standing wave using the gradient force
has been demonstrated by Salomon et aL [4]. Measure-
ment of atomic position with a resolution of 1.7 pm has
been achieved by Thomas and co-workers [5] using spa-
tially varying level shifts which enable one to correlate
the position of the atom with its resonant frequency.

In this paper we describe a method to make a quan-
tum measurement of the atom's position using the inter-
action with a standing light wave. A preliminary report
on this method was given in Ref. [6]. When an atom
passes through a standing light wave, information about
the position of the atom is recorded in the phase of the
field. By making a phase-sensitive measurement on the
field, the atom's position may be determined to much less
than the wavelength of the light. The resolving power of
the scheme is found to be proportional to the amplitude
of the radiation Geld.

If the atomic-position distribution is phase coherent
before the interaction, the field measurement produces a
quantum localization of the atom, rather than simply a
classical position measurement. The atomic wave packet
is altered, as if the atom had passed through a "virtual
slit" (or slits). Interference from two such virtual slits is
predicted, both in the near fiel and in the far field. The
slits in this case are formed by the light, and the waves
undergoing interference are matter waves.

Di8'raction from a single virtual slit is also demon-

strated. It is shown that as the width of the virtual slit
is decreased, the diffraction pattern spreads out, as if a
real physical slit were present. Because the slit width is
adjusted by a local variable, the experiment is of a type
suggested by Einstein, Podolsky, and Rosen (EPR).

The localization scheme is used to show how the avail-
ablity of tvelcher Weg information destroys interference
in a double-slit experiment. The scheme also provides a
very simple realization of a "quantum eraser. "

II. LOCALIZATION SCHEME

An atom is passed through a standing wave in an op-
tical cavity as indicated in Fig. 1. The strength of the
atom's interaction with the light field depends on the
atom's position relative to the nodes and antinodes of
the cavity mode. Position information is extracted by
making a phase-sensitive measurement on the field.

The transit time of the atom through the cavity is as-
sumed to be much shorter than the lifetime of the cavity,
which in turn must be much shorter than the time inter-
val between successive atoms.

A. The Haxniltonian

The simplest possible coupling will be assumed; the
atom is modeled as an ideal two-level system, and only
a single mode of the radiation field is considered. Both
the atom and the light field are treated quantum me-
chanically. The Hamiltonian for the combined atom-field
system is

~ = Hfield + ~atom + ~int (1)
where

Hp, id = h~ (ata+ zi),

p'
Hstom = h~ooo z +

2m

Hi„t ——h cos (km+ ()(g*o at + go+a).
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H. Initial conditions

Before the interaction with the atom, the field is as-
sumed to be in a coherent state,

lg(0))fi id = ln) = D(n)l0),

where D(n) is the displacement operator

D(n) = exp nat —n"a

and l0) is the vacuum state of the radiation field. The
coherent state satisfies the eigenvalue equation

horn

adyn e
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FIG. 1. The setup used for the position localization
scheme.

GA =(lA
The atom is assumed to enter the cavity in its ground

state with a transverse spread in position given by r.(x).
In order to observe interference effects, the atomic distri-
bution must be phase coherent across its width, and the
atom must therefore enter the cavity in a pure state

Heff = Rcl) cr,p+ hula a + 25 cr,a a cos (kx + ().

In a frame rotating at the cavity frequency u~ the po-
tential experienced by the atom as it passes through the
standing wave is

V = 25 o,a a cos (kx+ () + M,cr, . (4)

Here a and at are the annihilation and creation operators
for the cavity field, and a„o, and o+ are the internal
atomic operators. u~ and k are the frequency and wave
number of the cavity mode. wp is the atomic transition
frequency, which is detuned from the cavity frequency
by an amount 4 = Ldp —4) . lgl is the coupling constant
(equal to the one-photon Rabi frequency).

The transverse motion of the atom during its passage
through the standing wave is assumed to be negligible
(the Raman-Nath approximation). Under this condition
the kinetic-energy term p2/2m may be omitted from the
Hamiltonian.

When the atomic transition frequency is highly de-
tuned from the cavity frequency, the probability is small
that the field will induce an atomic transition between
the ground and excited states. However, even for high
detuning, the atom has a significant dispersive effect on
the field. In effect the atom changes the refractive in-
dex of the cavity. The interaction is manifested as vir-
tual transitions between the ground and excited states,
in which the atom absorbs a photon from the field and
then reemits it immediately by stimulated emission. If
the atom is initially in its ground state, the population
of the excited state will always be small and spontaneous
emission can be neglected. This justifies the omission of
atomic relaxation terms from the full Hamiltonian.

The effective Hamiltonian in the regime of large de-
tuning, obtained by adiabatically eliminating the atomic
coherences, is

C. System evolution

After an interaction time t, the combined atom-field
state (in a frame rotating at frequency u~) is ealeulated
by operating on the initial state with the evolution oper-
ator U(t) = exp (—iVt/5),

l@(t)) = dxK(x)e " ln) I* g)

The evolution operator includes a factor

exp i'(x)ata, where il(x) = (lgl t/6) cos (kx+()
when evaluated over the atomic ket lx, g). This oper-
ator changes the phase of the field by an amount rI(x),
which depends on the position of the atom (see Fig. 2):

If the atom passes through a node of the standing wave,
no interaction occurs and the field is unchanged. How-
ever, if the atom passes through an antinode of the stand-
ing wave, the phase of the Geld is altered by an amount
lgl't/&

Thus information about the position of the atom is
recorded in the field, leaving the system in an entangled
state of the atom and field

IO(t)) = dz~(z) Qe' ' "' ~ +~') cy ~z, g).

where the ket specifies the position and internal state
of the atom. To observe diffraction it is only essential
to have phase coherence across the effective slit width;
if this condition is satisfied, any departure from a pure
state may be neglected. The initial state of the system
is just the direct product of the initial field and atomic
states.
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FIG. 2. An atom interacting with the standing wave
at position x rotates the initial field state la) on
the signer diagram, mapping it to the new state
oe p i'eai' coe (he+ d) ). X end Y denote the amplitude

and phase quadratures of the Geld.

where N is a normalization factor. The probability am-
plitude distribution of the atom after the measurement
is simply

(e, t) = No(m) (Xe ne' ' "'*ie +tl) (14)

The position probability distribution P(xl)(e) of the
atom given that the value Xe = ye has been measured
for the field is then

P (xl&e) = I@ i. (x ~) I'

P(xlye) satisfies the classical relation for conditional
probabilities

P (xlxe) = INI'P(x)P (xelx)

where

D. Measuring the field

d7. e ~ ye"'(to+~). (12)

Here p is the cavity decay rate and to is the time at
which the atom passed through the standing wave. (The
atom-field interaction time is assumed to be very short
compared to the cavity lifetime. )

If the atom enters the cavity in a pure state, a deter-
mination of the field's phase after the interaction does
not simply provide an indirect classical measurement of
the atom's position; the field measurement collapses the
atomic wave function, producing a quantum localization.

A quantum-mechanical treatment of the measurement
process allows us to calculate the wave function of the
atom after the field measurement. The measurement de-
termines not only the probability of finding the atom at
position x, but also the phase across the atomic distribu-
tion.

Suppose the field quadrature Xg is measured, giving
the result pe. The state of the atom after the field
measurement is found by projecting the system onto the
eigenstate lye) of the quadrature operator Xe

The position of the atom relative to the nodes and
antinodes of the standing wave can be deduced by mea-
suring a phase-sensitive quantity such as the quadra-
ture phase Xe = ae 'e + afe'e. The observables Xe 0
and Xe ~gz are referred to as the amplitude and phase
quadratures, respectively, and are denoted more simply
by X and Y. A quadrature phase measurement is di-
rectly realized using balanced homodyne detection [7].
The field leaks out of the cavity through the end mirror
to produce a continuous sequence of values ye" (t). The
continuous measurement of the cavity output is equiva-
lent in its effect on the atomic state to an ideal instanta-
neous measurement Xg ——gg, where

1
Ixe) = . exp l

—2(~fe" —&e)'+ 4)(.ello) (i9)

which satisfies the normalization condition

(xelxe) = ~(&e —&e). (2O)

Using expression (19) in Eq. (13) gives the state of the
atom after the field measurement Xe = )(e ..

1
dx i(;(x),'

27r

xe
where

~ei[((g) t/A) cos (A:z+g) —e] (22)

and N is a normalization factor.

is the overall probability of finding the atom at position
x regardless of the field measurement, and

2

P(xel*) = (x
is the probability of measuring the value ye for the field
quadrature Xe given that the atom is at position x. If the
atom's position distribution is not phase coherent as it
enters the cavity, the classical relation can still be used to
obtain information about the position of the atom from
the field measurement. In this case the process may be
described as an indirect classical position measurement
rather than a quantum localization. The atom leaves
the cavity with a statistical position distribution, and no
interference effects may be observed.

Calculation of Eq. (13) requires an expression for a
quadrature phase eigenstate. lye) may be defined as a
squeezed state in the limit of infinite squeezing
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The resolution of the position measurement de e

is is the phase shift induced in the field b

i iti lfild 1't damp i u e to be real.

A. Resolution

The localization scheme relies on. mea ' g p
e . e p ase change induced by the atom de-

s ra e in t e following calculation.
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l~(zo)) = l~e"~ i/~)"' (~*'+')

The position meas
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p
' ' measurement properties of the h

ized by the conditional probability P x .
e sc erne

Evaluating this using Eq. (21), we obtain

(26)

(Xlx)

.~ o,
0~',

0 p',

o.o.:

- p8

- p6

pg

p 2

. p.o

p.

(a)

P (yelx)—
1

/2vr
)

where ct i (x) is defined in E . (22 . Fq. . or a given position
z, the probability of measuring Xe = has
dependenceence on ye.

'
g g = yg as a Gaussian

The fiee&~ measurement determines how close the
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s ow cose t e atom
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D

0
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0

~(~(*.))~(*,+~*))~' = (~" I'"+(I ~."I'(* +'*)+&I)

= exp(2lnl [cos (mk bz) —1]j
=exp —lnl (irk6x)

The resolution of the measurement ma be e
from the exponent in th fin in e nal expression

bx
1

lo. lurk
' (25)

The resolving power is therefore ro or '
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half wavelength of the standing wave, due to the perio-

3(a) shows the conditional probabi i y'1't P i ilxFigure ~a& s ows
as a function of x and the value y (= ye —a, o
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wn in Fi . 3(b).
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Because the atom remains in the ground state throughout
the interaction, an e in
we may make the substitutions

IV. ATOMIC INTERFERENCE

If th tial distribution of the atom is phase coher-
entast eaomenh t enters the cavity, a measureme
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A. Near-field interference
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atom. The potential seen by t eforces acting on the atom. e p
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The dipole force on the atom is then

f(&) =-
phase shift is, from Eq. (21),

&(&) = —~2(&)[~i(*)—~el (30)

[a] k sin [2 (kx+ ()].

It is assumed that the atom's motion in the x direction
is negligible during the interaction. The deflection of an
atom interacting with the standing wave at position x for
a time t is therefore given by

ap = f(~)~ = n-~~~'ksin[2(k~+q)]. (29)

~ 0.02-
JC:

0.01
V3

0.00 —0.2
I

—0. 1 0.0 0.1

X (units of X)
(a)

I

0.2

The full quantum-mechanical treatment, performed in
Sec. II, shows that unless the field is measured the state of
the atom remains entangled with that of the field. How-
ever if the atom crosses the standing wave at position
x, and the most probable value, namely, yg = 2n~, is
obtained from a measurement of the field quadrature,
then the gradient of the phase induced across the atomic
distribution corresponds exactly to the deflection of the
atom calculated using semiclassical considerations. This

The gradient of the phase shift is

&'(&) = —~'(~) [~i (*)—xel —~s(*)~i(*)

]n[ ksin [2 (k2:+()],

and the deflection of the atomic beam is as given by
Eq. (29).

Figure 3(b) shows that a field measurement X = 0
collapses the atomic distribution into a series of nar-
row peaks located midway between the nodes and anti-
nodes of the standing wave. The phase variation induced
across each of the peaks is approximately linear, indi-
cating deflection of the atomic beams. The gradient of
the phase variation is opposite across adjacent peaks, and
the spatially separate "beams" of the atomic wave packet
are deflected towards the antinodes of the standing wave.
(For negative detuning deflection is towards the nodes. )

Suppose that before the interaction the atomic distri-
bution is spread over half a wavelength, and is centered
about an antinode of the standing wave. Then the field
measurement A = 0 collapses the atomic distribution
into only two peaks [see Fig. 4(a)]. The phase variation
is opposite across each peak, so the two beams are de-
flected in different directions. In the far field the two
beams are spatially separate and no interference is seen
[Fig. 4(b)].

However, because the two atomic beams are deHected
towards each other, interference may be expected in the
near-field region where they cross. Figure 5(a) shows the
propagation of the atomic probability distribution with
time. The two beams converge on each other and produce
interference in the region where they overlap. Figure 5(b)
shows the atomic distribution in the interference region.

B. Far-field interference

16-

D

0
D

8-

—0.2 —01 00 01
X (units of X )

I

0.2

FIG. 5. (a) A contour plot of the propagation of the
atomic probability distribution after the Beld measurement
described in Fig. 4. For clarity only one contour is plot-
ted and the regions of high probability are shaded. (b) The
atomic probability distribution after a propagation time of
t = 0.015 x 2m/hk~.

The field measurement X = 0 collapses the atomic
distribution into a series of narrow peaks with opposite
phase variation across adjacent peaks. Every alternate
"beam" is deflected in the same direction, and interfer-
ence may be expected between such beams in the far
field.

Suppose the distribution of the atom before it enters
the cavity is spread over three quarters of a wavelength.
Then the measurement X = 0 collapses the atomic
wave function into a distribution with three peaks [see
Fig. 6(a)]. The two outer beams propagate in the same
direction, and the central beam is deflected in the oppo-
site direction. Interference is seen in the far field between
the two outer beams [Fig. 6(b)]. The right half of the dis-
tribution is a typical double slit interference pattern, but
in this case the double slit is produced by the measure-
ment of the standing light wave, and the interference is
of a single atom. The left half of the distribution is the
diffraction pattern of the central peak.
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V. POPPER'8 EXPERIMENT

In this section we suggest a method '
pt od to implement an

b Po er [11]of the EPR gedankenextension proposed y opper
ex eriment. Popper hoped to test whet er now eexperimen .

m
' t to create momentum uncertainty,of position is sumcien o cr

~ ~d under the Copenhagen interpretation, oras is contended un er e
measurin device

H
'

berg microscope for example, one may thin o e

FIG. 6. (a) The atom enters the cavity in a top hat
'd h 3A/4 (ii). The initial field amplitude isdistribution of wi t

n = v8. The field measurement Ã = 0 collapses e a
hree eaks (i). Immediately below is shown

ic distribution a er e e
. &~b~~ The momentum distribution of the atom ersurement.

the field measurement. Interference is seen e
dto the ri ht. The left-han

difFraction pattern of thehalf of the distribution shows the ddFrac '
p

central beam.

L4 ))recoil due to the randomly scattered photon use to see
duced the momentum uncer-the article as avmg pro u

~ ~h EPR edanken experiment pointstainty. However, t e g
'

s
'bilit of making an indirect measuremen

which involves no physical interaction of t e par ic e

nt a source emits pairsI P per's proposed experiment,n op
'

1 ith opposite momenta. Detecto yr arra s onof partic es wi o
the airs of par-each side of the source are wired to detect the pa'

'd . A slit of adjustable width, placed inticles in coinci ence. s i
front of the detector array on the right, scatters e par '-

h it. As the slit width is reduced, the
ran e of scattering angles changes, and is monitore us-

e ri ht-handit is known that the particle detected by the rig - an
h the slit. Because the particles are

emitte rom ed f the source with opposite momen a, is p
vides in iree o' d' t knowledge about the position o

'
n redictsarticle. The Copenhagen interpretation p

of the osition of theth t b virtue of our knowledge o e pa, y
le -hand particle, uncertainty is intro uuced into its mo-

d the article is scattered, as if from a "vir-
tua si. 01 1't" Popper argued that this virtua s i

ld have the same width as the real onene on the right.
The same range of scattering ang es s

h 1 ft-h nd array as by the right-hand array.
an eofIn articular, when the slit is narrow enough, the rang

wi th is reduced. In fact, Popper's proposed experimen
rovide the crucial test of the Copenhagen in-

uantum uncertainties of the source (treated by Popper

real one, and never narrow enoug or i r
to dominate.

A. Realizing Popper's test
using the localization scheme

t' 't has been shown that knowledgeIn previous sections i as
about the posi ion o anh 't' f an atom may be obtained in iree y

~ ~ ~h hase of a standing light wave withby measuring t e p ase o
ocalization of thewhich it has interacted. The resulting localization o e

atom can be regar e asd d the creation of a virtual slit. One
waytoadjustt ewi o ' ' '

eh 'dth of the virtual slit is to change
the phase o e ef th field quadrature measured. This p ase

h after the interaction, when the atom an
the light field have separated. The scheme is e

n exam le of an EPR experiment, in which the phase of
the field quadrature plays the role of e o

Th t m is injected into the cavity, with a narroweaom'
osition distribution centered midway between

d f th t ding wave. Figure 7 indicatesand an antino eo e s an '

h 'dth of the virtual slit is adjusted. Suppose
we choosethat the initial Geld amplitude is real, and that we

the am litude quadrature X' after the inter-
t' The most probable results from suc a measaction. e m

ment would be close to the value X = 0, an wwould deter-
mine the p ase o e eh f th field to within a small angle Ae~,

i hallowing the posi ion ot' f the atom to be inferred with hig
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accuracy. An amplitude quadrature measurement there-
fore creates a narrow virtual slit. At the other extreme,
suppose we choose to measure the phase quadrature Y.
The most probable results would be close to the value
Y = 2n, and would determine the phase of the field only
to within the large angle EO&, thereby providing a poor
measurement of the atomic position. A phase quadrature
measurement therefore produces a wide virtual slit.

The momentum variance of the atom after all possi-
ble amplitude and phase quadrature measurements are
shown in Figs. 8(a) and 8(b), respectively. These curves
are compared with the momentum variance when no field
measurement is made. The probability distribution for
the field quadrature measurements are indicated in each
graph by the dashed line.

Figure 8(a) shows that if the amplitude quadrature
is measured (producing a narrow virtual slit), then the
atom is scattered over a wide angle. By comparison,
Fig. 8(b) shows that if the phase quadrature is measured
(producing a wide virtual slit), then, for any probable
result of that measurement, the scatter is much less. This
decrease in the scattering angle resulting from an increase
in the slit width is exactly the behavior exhibited by real
physical slits.

Virtual slits of intermediate widths may be obtained
by setting the phase 8 of the field quadrature Ãa to
some value between 0 (an amplitude quadrature mea-
surernent) and m/2 (a phase quadrature measurement).

B. An improved realization of Popper's test

Another way to adjust the width of the virtual slit
seen by the atom is to change the resolution of the field
quadrature measurement. If knowledge about the value
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As the phase is decreased from n/2 to 0, the width of the
virtual slits decreases, and the range of scattering angles
increases smoothly [see curve (i) of Fig. 9 . The position
variance and momentum variance plotted on the graph
for a particular phase 8 of the field quadrature are aver-
age variances, where the average is taken over all possible
results of the field measurement, weighted by the proba-
bility of obtaining those results. The deviation from the
minimum uncertainty relation AzAIi = h/2 occurs be-
cause of nonlinearity in the phase shift induced across
the atomic distribution by the field measurement.
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FIG. 7. (a) The measurement Ã = 0 of the amplitude
quadrature determines the phase of the field to within the
small angle b,e~, and thus provides a good measurement of
the atom's position. (b) The measurement Y' = 2n leaves an
uncertainty AS& in the phase of the field, and determines
the atom's position with only poor resolution.

FIG. 8. (a) The momentum variance of the atom as a
function of the value y obtained from a measurement of the
amplitude quadrature A (i). This is compared with the mo-
mentum variance when no field measurement is made (ii).
The probability of measuring the value X = y is shown by
the dashed line (iii). (b) The corresponding functions after
a phase quadrature measurement yielding the value Y = v.
ln both graphs the distribution of the atom before it enters
the cavity is assumed to be Gaussian, with standard devia-
tion cr = 0.1A/2n, centered midway between a node and an
antinode of the standing wave. The initial field amplitude is
n = vt8.
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The cavity field impinging on the beam splitter is de-
scribed by the annihilation operator a. A vacuum field,
described by the operator v, enters at the other face of
the beam splitter. The outputs, described by the opera-
tors 6 and c, are related to the inputs by the equations
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FIG. 9. The average momentum variance vs average po-
sition variance of the atom after measurements of the Geld
quadrature Ãs, with 8 varying from 0 to vr/2 (i), and after
amplitude quadrature measurements on the outputs of the
beam splitter described in Sec. V B, with g varying from 0 to
1 (ii). These graphs are compared with the minimum uncer-
tainty relation b,x bp = h/2 (iii). The initial parameters are
the same as were used in Fig. 8.

of the field quadrature is imperfect, then information
about the position of the atom is erased.

The resolution of the field quadrature measurement
may be varied by splitting the field. Measuring the am-
plitude quadrature of both outputs of the beam splitter
provides a simultaneous measurement of both the am-
plitude and phase quadratures of the cavity field [13],
and in fact, realizes a measurement of the non-Hermitian
operator a cosh r +at sinh r [14]. By adjusting the trans-
mittivity rl of the beam splitter, the resolution of the
phase quadrature measurement increases, at the expense
of the resolution of the amplitude quadrature measure-
ment. By using this method to adjust the width of the
virtual slit, instead of simply changing the phase of the
field quadrature, we find that the momentum scatter of
the atom increases as the atomic localization improves
in much closer agreement with the minimum uncertainty

[

If the transmittivity of the beam splitter is unity (or
equivalently if the beam splitter is not present), then
measurements of the amplitude quadratures Xb and X,
of the output fields constitute separate ideal measure-
ments of the amplitude quadratures Xa and X„ofthe in-
put fields. As r) is lowered, the resolution of the measure-
ment of X, decreases, and instead information is gained
about the phase quadrature Y of the cavity field.

Using Eq. (11),we can write the state of the atom and
cavity field after the interaction as

I@(&))= e ' d~ ~(*)ln(~)) I* g)

where

n(~) i([g[ t/D) cos (kzyt)

(33)

The total system, which now includes the vacuum input
to the beam splitter, may be described by

d*w(~)lo&. In(~)& I~ g) (35)

l@).t. = ~ da ~(*) ((xblb (x.l.)
x 410&„ In(z)& ) Ix, g&. (36)

To evaluate the inner product between the initial and
final field states, we express the output field states in
terms of the input field operators

where the subscripts a and v identify the cavity and vac-
uum inputs, respectively. The state of the atom after the
values Xb = )(b and X, = )tc have been measured for
the beam splitter outputs is obtained by projecting the
system onto the field state Igb) b (g( I)t', )„

I& &
e[—z( —x )'+4xs]e[—2( —x.) +4x ]lp)& id

I 1 t 1 1 t 1
bb cc=~ s

1 1 g 1
2( (~pa —iyi ——qv-—xb) +4x, ] [ 2( iv'1 qa —+v—gv ——x,) +4x ](0ye /field

v'2vr
(37)

The state of the atom after the field measurement is
found by projecting the state I@(t))t t i onto the final
field state given in Eq. (37),

f g ( )
a( —+)+' ( —x)

—(1—q) (as —~) —iag(as —v~)xe I+~ &) ~

(38)

where N is a normalization factor,

gC

gl —r]
' (39)

and ni and nz are defined in Eq. (22).
Adjusting the transmittivity of the beam splitter alters

the resolution of the field quadrature measurement, and
provides a method of adjusting the width of the virtual
slit seen by the atom as it traverses the standing light
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wave. If the transmittivity g of the beam splitter is in-
creased from 0 to 1, then simultaneous measurements of
the amplitude quadratures of the beam splitter outputs
produce virtual slits of decreasing width. As the width of
the virtual slit decreases, the range of scattering angles
increases in good agreement with the minimum uncer-
tainty relation [see curve (ii) of Fig. 9]. The position and
momentum variances plotted on the graph for a partic-
ular transmittivity rl are the variances averaged over all
possible field measurements.

In principle the transmittivity of the beam splitter may
be chosen locally after the atom-field interaction, when
the atom can no longer be physically manipulated. Once
again the scheme is an example of an EPR experiment,
but this time the transmittivity of the beam splitter plays
the role of the local variable.

The implementation of Popper's experiment consid-
ered in this subsection and the preceding subsection can
be used to test whether mere knowledge of the position
of the atom is sufficient to increase its momentum uncer-
tainty.
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PIG. 11. In the absence of the cavity, the momentum dis-
tribution (identical to the far-field position distribution) ex-
hibits the usual interference pattern. The slits are separated
by a distance A/4, and are each taken to have a Gaussian
profile.

VI. R"ELCHER WEG INFORMATION

A. Loss of interference

In the absence of the cavity, the usual double-slit inter-
ference pattern is observed in the far field (see Fig. 11).

doubl e
slit

interference
pattern

atomic
beam

optical
cavity

FIG. 10. The standing wave in an optical cavity placed
immediately behind a double slit can be used to determine
which slit an atom passed through.

The position localization scheme presented in this pa-
per can be used to determine which slit of a double-slit
arrangement an atom has passed through. If one slit
is located immediately ahead of a node of the standing-
wave field and the other slit is located immediately ahead
of an antinode, as. shown in Fig. 10, then melcher Weg
information (which-path information) is recorded in the
phase of the field. It is found that as the position of the
atom is determined with greater certainty, the visibility
of the interference fringes decreases, in accordance with
Bohr's principle of complementarity [15].

Suppose now that the optical cavity is inserted behind
the double slit. The cavity field is initially in a coherent
state ~n), with n real. If the atom passes through the slit
located at a node of the standing wave, no interaction
occurs and the phase of the field is unaffected. However,
if the atom passes through the slit located at an anti-
node of the standing wave, a phase shift of n is induced
in the field [see Fig. 12(a)]. For a sufficiently high field
intensity, a measurement of the amplitude quadrature Ã
reveals the phase of the field, and determines which slit
the atom passed through. The field measurement col-
lapses the wave function of the atom so that its position
distribution is localized about that slit. Consequently
the atom diffracts, but no interference is observed in the
far field.

Suppose now that the cavity is present but that no
measurement is made on the field after the interaction,
so that no path information is obtained. Mathematically
this situation is modeled by tracing over the field. The
calculation of the far-Geld distribution is equivalent to
adding up the probability distributions resulting from all
possible field measurements. Because the measurement
of any probable value for the amplitude quadrature local-
izes the atom at one of the two slits, resulting in loss of
interference, the sum of the far-field distributions result-
ing from all such measurements exhibits no interference
[see Fig. 12(b)].

In the case where the cavity is present but no field
measurement is made we may think of the loss of interfer-
ence as being due to the availability of path information.
During the interaction with the standing wave, path in-
formation has been encoded in the field, and is available
by means of a field measurement. Whether or not we
choose to extract the information has no bearing on the
physical situation and the interference fringes disappear.

Now suppose that the field amplitude is reduced. As
was noted in Sec. III, the resolving power of the scheme
increases in proportion to the amplitude of the Beld. If
the field intensity is too low, then a measurement of the
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amplitude quadrature cannot distinguish unambiguously
which slit the atom passed through [see Fig. 13(a)]. Due
to the incompleteness of the path information recorded in
the field, partial interference is restored [see Fig. 13(b)].

Instead of thinking of the loss of interference in the
presence of the cavity as being due to the availability of
iiielcher Weg information, we may attribute it to random
momentum kicks suKered by the atom as it scatters from
photons in the cavity. A momentum kick will defiect the
atom and shift the whole interference pattern across the
screen. Random momentum kicks can thereby smear out
the interference pattern. The magnitude of the momen-
tum kicks needed to wash out the interference pattern is
25k, which is exactly the momentum transferred between
the atom and the field during one virtual atomic transi-
tion. As the field intensity is reduced, the atom has a
lower probability of scattering from a photon in the field,
and hence the interference fringes return.
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FIG. 13. (a) For a sufficiently low field intensity, the mea
surement of the amplitude quadrature X cannot determine
unambiguously whether the atom passed through a node or
an antinode of the standing wave. (b) The momentum dis-
tribution of the atom after it has passed through a standing
wave of initial amplitude o. = /0. 5 and no field measurement
has been made.
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FIG. 12. (a) An atom passing through a node of the stand-

ing wave does not affect the fieM. An atom passing through an
antinode of the standing wave changes the phase of the field
by m. The path information can be extracted by measuring
the amplitude quadrature Ã of the field. (b) The momentum
distribution of the atom after it has passed through a standing
wave of initial amplitude o, = ~8 and no field measurement
has been made.

B. The quantum eraser

It has been shown that path information about the
atom is recorded in the field by the interaction in the
cavity. If instead of measuring the amplitude quadrature
Ã of the field after the interaction we choose to measure
the phase quadrature Y, no path information is revealed
[see Fig. 14(a)]. In fact, the path information is erased
permanently, as if by a quantum eraser [16].

Figure 14(b) shows the far-field distribution resulting
from two possible measurements of the phase quadrature
Y. In each case the melcher S'eg information is erased,
and complete interference is seen in the far field. The
position of the fringes depends on the particular value
measured for V, and if the far-field distributions result-
ing from all possible measurements of Y are summed the
resulting "no-measurement" distribution exhibits no in-
terference fringes.

For a sufBciently high field intensity, a measurement of
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the amplitude quadrature X' can be considered to reveal
the particlelike behavior of the atom, because it speci-
fies a unique slit through which the atom passed. On
the other hand, a measurement of the phase quadrature
Y can be considered to reveal the wavelike behavior of
the atom, since the conditional far-field distribution for a
particular Y' measurement exhibits interference. The ex-
perimentalist may delay the decision as to display wave-
like or particlelike behavior until after the atom-field in-

teraction, when the atom can no longer be physically
manipulated.

VII. EXPERIMENTAL IMPLEMENTATION

I'he main diKculty in implementing the position local-
ization scheme experimentally is finding a setup in which
atom-field coupling processes dominate the cavity and
atomic relaxation in the system evolution. This is possi-
ble using Rydberg atoms in a microwave cavity, and has
recently been achieved with a high-finesse optical micro-
cavity [17]. The usable parameter regime is determined
by the following operating conditions.

Condition 2: The Raman-Nath condition

atom at
an tin od8 —2 g(

(a)

Y= v

'=x
atom at

node

The transverse distance Az traveled by the atom dur-
ing the interaction must be negligible:

Ax can be estimated using the relation b,2: = Apt/2m,
where t is the interaction time and 6p is the momentum
gained by the atom after it has scattered from photons
in the cavity for time t. bp increases with the number of
photons in the cavity (n) and the momentum per photon

Ap = q(n) hA:. (41)
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The constant of proportionality rL characterizes the num-
ber of times that the atom scatters from each photon
during the interaction. It is found numerically to be ap-
proximately independent of field strength and to have a
value of rL
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Condition 8: High detuning

The detuning b, = uo —u of the atomic transition
frequency from the cavity frequency must be suKciently
high that the population of the atomic excited state re-
mains small during the interaction. This condition is
satisfied provided

(42)
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Condition 8: t gg wca„$t,y

The interaction time was assumed to be much less than
the cavity lifetime.

FIG. 14. (a) No path information is revealed by a mea-
surement of the phase quadrature Y. (b) The momentum dis-
tributions resulting &om measurements of the phase quadra-
ture Y exhibit complete interference. The interference pattern
resulting from the measurement Y = 0 (i) is in antiphase with
the pattern resulting from the measurement Y = vr/2a (li).
In these graphs the initial 6e)d amplitude is assumed to be

Condition g: High fieLd intensity

The resolving power increases in proportion to the am-
plitude of the standing light wave. A Geld intensity of at
least (n) —8 is required to resolve the atomic position to
significantly less than a wavelength.
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Condition 5: ]g[~tjA

Under this condition a phase change of about x is in-
duced on the light field when an atom passes through an
antinode of the standing wave. This is the optimal phase
change.

Condition 6: A & atomic coherence length

To obtain interference effects, the wave function of the
atom as it enters the cavity must be phase coherent across
a width of the order of a wavelength A of the cavity mode.

The six conditions place confiicting requirements on
the experimental parameters, and to satisfy all the con-
ditions simultaneously requires very high atom-field cou-
pling. The Raman-Nath condition is more easily satis-
fied for low field intensities and short interaction times.
However, high field intensities improve the position reso-
lution, and long interaction times are required to induce
a measurable phase shift on the radiation field.

Satisfying conditions 1, 2, and 5 simultaneously pro-
duces the following restriction on the atom-field coupling:

(43)

Because of the inverse square dependence of ~g~ on the
wavelength A of the standing wave, implementation of
the position localization scheme in the optical regime
requires extremely high atom-field coupling (g & 10s
Hz). The required interaction time is t O. lps. The
highest atom-field coupling yet reported is a value of
g = 27r(3.2 + 0.2) MHz obtained by Kimble et al. [17]
using a high-finesse optical microcavity. The lifetime of
Kimble's cavity was w = (0.18 + 0.02)ps.

Some fiexibility in the choice of parameters is possible
if we turn the experimental arrangement used by Sleator
et al. [3] into a ring cavity. A standing wave of wave-
length longer than the photon wavelength is created by
reflecting a traveling wave off a mirror at a grazing angle.
Increasing the wavelength of the standing wave reduces
the value needed for the atom-field coupling ~g~, but in-
creases the required interaction time by the same factor.

To obtain the diffraction and interference effects pre-
dicted in the previous sections, the atomic distribution
entering the cavity must be phase coherent across a width
of the order of A. In the optical regime, phase coherence
across the required widths is easily achievable by colli-
mation.

The spatial distribution of the atomic beam entering
the cavity may be established by a physical slit or a more
sophisticated position selection device, but it must have
an effective slit width of less than a wavelength of the
cavity mode. Material diffraction gratings with a period
of 200 nm have been constructed [18]. Slits of this width
could be used to implement the scheme in the optical
regime. Another possible mechanism for preparing the
initial position distribution would be to use a technique
such as Raman induced resonance imaging [5].

The far-field diffraction and interference effects pre-
dicted in the previous sections should be observable if
the scheme is implemented in the optical regime using

a microcavity. However, to observe the near-field inter-
ference would require a detector placed very close to the
cavity with resolution even better than that of the lo-
calization scheme presented here. This would be very
difficult to achieve in the optical regime.

The spatial dimensions in the problem scale with the
wavelength of the light, so that if longer-wavelength ra-
diation is used to implement the scheme, the near-field
interference pattern would become larger and therefore
easier to observe. However spatial coherence would be
required over larger widths in the initial atomic distri-
bution. If atomic coherence lengths of about 100 pm
can be achieved, it should be feasible to implement the
scheme using Rydberg atoms in a microwave cavity and
observe near-field interference, provided that homodyne
measurements can be made on the cavity field.

VIII. CONCLUSION

When an atom interacts with a standing light wave in
an optical cavity, information about the position of the
atom is recorded in the phase of the field. This infor-
mation may be extracted by making a quadrature phase
measurement on the light field.

If the atom enters the cavity with a statistical position
distribution, the field measurement provides an indirect
classical position measurement of the atom. However, if
the atomic distribution is phase coherent across its width,
the field measurement produces a quantum localization
of the atom, and creates a virtual slit (or slits) from which
the atom diffracts, just as it would from a real physical
slit.

Particular field measurements may localize the atom
so that its wave function collapses to a distribution with
multiple peaks located midway between the nodes and
antinodes of the standing wave. Every alternate "beam"
of the atomic wave function is deflected in the opposite
direction. In the near field, atomic interference is pre-
dicted between adjacent beams, and in the far-field in-
terference should be observable between alternate beams
of the atomic wave function.

If the transverse distribution of the atom before it en-
ters the cavity is suKciently narrow, a field measurement
may produce just one virtual slit. The width of this vir-
tual slit may be varied, either by adjusting the phase of
the field quadrature measured or by splitting the beam
and thereby altering the resolution of the field measure-
ment. In either case the the atom diffracts just as it
would from a real physical slit; the range of scattering
angles increases as the width of the virtual slit decreases.

Atomic position information encoded in the standing
wave field can be used to provide urelcher Weg infor-
mation in a double-slit interference experiment. For the
parameters considered here, a measurement of the ampli-
tude quadrature of the field specifies a unique slit through
which the atom passed, thus revealing the particle prop-
erties of the atom and destroying the interference pat-
tern. A measurement of the phase quadrature erases
all path information, thereby recovering the interference
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phenomena and displaying the wavelike behavior of the
atom.

The central problem in implementing the position lo-
calization scheme is achieving a sufficiently high atorn-
field coupling. This difficulty is overcome in the mi-
crowave regime using Rydberg atoms in a microwave cav-
ity, and may be possible in the optical regime using a
microcavity. The far-field atomic diffraction and interfer-
ence effects discussed in this paper should be observable
if the scheme can be implemented in the optical regime,

and near-field interference should be observable if the
scheme can be implemented in the microwave regime.
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