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Close-coupling techniques often break down when transitions to a continuum or quasicontinuum can-
not be neglected. This work describes an extension of a recently proposed method [L. F. Errea, L.
Mendez, and A. Riera, Chem. Phys. Lett. 164, 261 (1989)] to deal with such situations, when the cou-
pling terms involve Coulomb potentials. A connection with the method of packet states is made, and a
preliminary application of the method is presented.

PACS number(s): 34.10.+x, 34.70.+e, 34.50.Fa

I. INTRODUCTION

A standard approach in the treatment of dynamical
atomic and molecular systems is the close-coupling
method. The corresponding basis functions are electron-
ic eigenfunctions of some operator Ho, such as the fol-
lowing.

(i) The Born-Oppenheimer Hamiltonian Ho=H,
describing the whole system for fixed nuclear positions.
The ensuing adiabatic expansion yields the so-called su-
permolecular, or perturbed stationary states, approach

(ii) The Hamiltonian describing only a part of the sys-
tem, or the sum of such operators. The best known ex-
ample is a one-center expansion. In this case, the eigen-
functions of Ho form a complete set, although the pro-
cedure is often slowly convergent. Faster convergence
can be achieved with two- (or more) center expansions.

(iii) The sum of projected Hamiltonians
H&&=Q, Q, HQ;, where the eigenfunctions of each term
Q, HQ, have a spec. ific character. The most common ap-
plication of this approach is the construction of diabatic
states [2,3].

With any of these choices, the spectrum of Ho usually
consists of a discrete and a continuum part. As the
justification of the close-coupling hinges on the complete-
ness of the set of eigenfunctions of FXo, the expansion
must also include an integral over the non-L integrable
continuum "eigenfunctions. " In practice, inclusion of
this nondenumerable set of functions is usually avoided,
as the couplings between them involve 6 functions, and
their construction and numerical manipulation are not
simple.

Neglect of transitions to the continuum, however, is
not always possible, well-known examples being the non-
radiative decay from a discrete state to an adjacent con-
tinuum (or quasicontinuum), as occurs in energy transfer,
intramolecular relaxation, unimolecular reactions, and
autoionization phenomena. In these cases, the problem is
usually solved by use of operators of the type III and ex-
tensions of the work of Feshbach [4] and Fano [5] to treat
resonant (same energy) transitions between discrete and
continuum states.

The treatment of nonresonant transitions to a continu-
um is much less standard, and although the Feshbach
formalism is extendable [6—9] to this case, its implemen-
tation is rather involved. To deal with those transitions,
the introduction of a set of "probability absorbers, "
which provide an optimal augmentation of the close-
coupling basis, was proposed in a recent letter [10]. The
procedure off'ers computational advantages as the new
functions are L integrable, so that the calculation of the
corresponding energy values and coupling terms is sim-
ple. As a price for this simplification, dissociative transi-
tions cannot be unambiguously separated from transi-
tions to high-lying bound states. If such information is
required, more refined procedures on the basis of the op-
tical potential approach [9], or the method of continuum
wave packets [11—15], have to be employed.

The method proposed in Ref. [10] was applied [16] to
the treatment of atomic collisions at high impact ener-
gies, using a Hamiltonian of type I, so that transitions to
the continuum are caused by no nadiabatic coupling
terms. This application was most useful in elucidating
[17] the ionization mechanisms in the molecular treat-
ment of atomic collisions. The present work extends the
method to cases where the coupling operators involve at
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least one Coulomb potential. Applications are the use of
close-coupling expansions in terms of eigenfunctions of
Hamiltonians of type II, as in the use of one-center ex-
pansions at low energies such that molecular effects are
important.

A summary of the previous theory is presented in Sec.
II A. In Sec. II B the difficulties that arise for Coulomb
interactions are analyzed, and a solution is proposed via
regularization of the potential. We then show in Sec. II C
that this solution follows naturally from a more fIexible
definition of absorber wave functions. An illustration of
the previous points and a preliminary application are
presented in Sec. III. Atomic units are used except where
otherwise stated.

(i) Qo(t J

go (8)

which fulfills

the jth state. Furthermore, the norm (7) yields [17] an
average value for the difference between exact and ap-
proximate solutions of the dynamical equation.

The proposal of Ref. [10] concerns cases in which
probability leakage to Q space cannot be neglected but in-
dividual transition probabilities from any given P func-
tion (t to Q states are small. It is then sufficient to intro-
duce a global representative for Q space to account for
these transitions. This representative was chosen to be of
the form

II. THEORY

A. Absorber functions

We start from a truncated close-coupling expansion

J
@= g ajgjexp i f—E dt

where P are eigenfunctions of a Hamiltonian Ho (see
previous section), multiplied, if necessary, by appropriate
translation factors. When Ho depends on the time (as in
a semiclassical molecular approach [1])so do the energies
EJ-. To calculate the expansion coemcients aj the ansatz
(1) is substituted in the projected dynamical equation

POP% —=P H —i PN =0,. a
at

(2)

P= y ~y, )(y, , g=l —P . (3)

We may compare (2) with the exact dynamical equation

0%= H —i 4=0,. a
at

(4)

or

POP += POQ 4(, —

QOQV= —QOPV .

(5)

(6)

The right-hand side in (6) yields a probability leakage
from P to Q space; since this is not considered in (2), one
usually chooses the P space such that the leakage is as
small as possible. In turn, the resulting Q population
inAuences that of the P functions through the right-hand
side in Eq. (5). The operator QOP is thence responsible
for P~Q and Q~P fiuxes. A measure [18] of this in-
teraction operator is given by its Euclidean norm

X = g X = g //QOP+&// (7)

which also defines the partial norm X. corresponding to

where we define [13,18] the projector P onto the manifold
spanned by the wave functions included in Eq. (1), and Q
onto its complement:

so that PJ has a vanishing coupling with any Q function
that is orthogonal to P'", and augmentation of the basis
IP;;i =1, . . . , J) by addition of P(" yields a new partial
norm X'=0. The function (8) acts, therefore, as an op-
timal probability absorber for the P function P, .

The method consists in augmenting the basis set
Ip;j= 1, . . . , 2] through the addition of selected ab-
sorber functions (8), so as to approximate the effect of the
missing POQ term in (5). In principle, one could generate
a series of absorbers of absorbers, etc. , so as to render the
procedure exact in the limit [10],but, as may be expected,
the method is not practical if one has to go beyond first
generation absorbers. Energies and couplings involving
absorber functions are calculated [16,17] using either clo-
sure [18]or expansion techniques [19]. The very simplici-
ty of the definition (8) implies that the method has limita-
tions, two of which are discussed in the following sec-
tions.

B. Generalization for Coulomb couplings

For systems involving Coulomb potentials, the method
of Ref. [10] is not easily applicable to Hamiltonians Ho,
which do not contain all these potentials. The reason is
that the corresponding r ' singularities appearing in the
operator 0 of (8) cause the absorber functions to have
infinite energies and couplings. The same happens to
higher generation absorbers for any Hamiltonian contain-
ing singular potentials. On the other hand, there is no
difficulty for first generation absorbers when Ho =H (type
I Hamiltonian), because then the coupling operator QOP
of Eq. (8) does not have any singularity.

To analyze the difficulty, we take Ho&H, and consider
the neighborhood of a given nucleus whose Coulomb po-
tential —Zlr is not included in Ho. Given any P func-
tion P. , the corresponding Q-space representative is, near
r=0, of the form

()
Qoy

(10)

Although the denominator in (10) is finite, the singularity
of r 'P in the numerator leads to divergent energies of
the absorber state, as well as to infinite couplings of PI"
with other absorbers. Since P") can be written solely in
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terms of any set of functions spanning Q space, we are led
to investigating which is the region of this functional
space that is responsible for the singularity. For this, we
expand r 'P~ in terms of the complete set of eigenfunc-
tions of the atomic Hamiltonian

in the form

Two cases may then be considered. For r=0, since
1F1 = 1 the integral diverges like k „. On the other
hand, for 0 ( r (( 1 one can use for k;„))1/r the
asymptotic form

,F, — k 'r 'e '""sin( kr +o ),k~ oo
(19)

maxS(r)=22 '/
vr

' lim f dk e' "&Fi(1,2, —2ikr) .
minmax

(18)

(12)

( „—0 )
—Z 3 /2 —1 /2 —3 /2

Xn (13)

with k =(28)'/ .
Since only the neighborhood of r=0 is studied, it

suffices to consider the s-wave contribution to expansion
(12). Furthermore, each term in the sum and each in-
tegral over a finite domain of (12) are regular functions at
r=0. Hence, the unboundedness of the left-hand side
must come either from the series limit n ~ ~ or from the
integral limit k~ ~ in the right-hand side. It is easy to
see that the first outcome is impossible: in the integrand
of &g„lr 'IP/ & the factor r r 'P takes non-negligible
values in a finite domain of configuration space where y„
decreases as n ~ Oc; hence, the integral vanishes in this
limit. Furthermore, we have [20]

QS = lim lim
k max max

x f '""k'f '"dk~„,(r)&7/„, IQI&„&
min min

X&xklr 'lW)&

At r =0, this becomes, for k;„,k';„ large,

(20)

and the limit in Eq. (18) converges to a value that behaves
like r, and therefore also diverges in the limit r ~0.

Equation (18) shows that the divergence of r 'P. must
be ascribed to the k —+~ limit in (12). However, the
function (10) behaves like Qr 'P rather than like r
near r=0. Expanding the Q operator in this neighbor-
hood in terms of the [g„,yk] set then leads to an analo-
gous treatment for the former function. In particular (14)
is replaced by

which shows that the series of Eq. (12) converges with n
at r =0.

Turning now to the upper limit of the integral over
continuum states in (12), we consider

km. xS= lim dkgk yk r (14)
minmax

QS(0) = A2 '
m

' lim lim
k ~oomax max

X f, dk' f„'dk&xk IQlxk &

min min

This quantity only converges if

lim lim kk'&yk IQlyk &=0,k~ oo k'~ oo

(21)

(22)
with k;„ large, where yk are the Coulomb functions
[1,21]:

—2
—1/2~ —1k —Z~/2k i kr

X
I 1 (1+Zk ') I,F, (1+Zk ', 2, 2ikr ), —(15)

2 '/2m 'r 'sin(kr+o —Zk 'In2kr ),
kr —+ oo

(16)

where o is the Coulomb phase shift [1]. Using integra-
tion by parts we can generate an asymptotic series in
powers of k

with I the gamma and &F&(a, zb) the confluent hyper-
geometric function [22]. Because of the Jacobian r fac-
tor, the matrix element (yk r 'IPJ & is determined by the
range of integration (k, ~ ), where since k is large, we
can use in the integrand the asymptotic form for yk.

which usually means that Q—:0; this is an uninteresting
case because then the original close-coupling expansion
would be exact.

The previous reasoning shows that absorber functions
as defined in (8) have an unphysical character near any
Coulomb singularity not contained in Ho because they
contain contributions from states with very high positive
energies. In more practical terms, absorbers take very
large values in a region near r =0 and are therefore un-
suitable as basis functions in a close-coupling treatment
because they represent ionizing states with very large en-
ergies. Since these states are physically inaccessible, their
contribution to the absorber function should be eliminat-
ed in any meaningful definition. This can be implement-
ed by replacing the infinite limit in (12) by a finite value
k,„. We are thus led to substituting the full Coulomb
potential by a regularized one:

&y„lr 'ly &=/Ik '+O(k ), (17) vy, = y x.&x. l

—zr 'Iy, &

n =1
with /I =2 / cos(1+o.)gj(k '). Substitution in (14)
yields, for k;„ large, (23)

max+ f '"dk y„&yk I

zr—
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In practice, this potential is nonlocal and may be awk-
ward to use. In Sec. III we shall compare this procedure
to the implementation of a simpler, local regularization
of the Coulomb potential ~

The substitution of the potential —Zr ' by a regular-
ized version may seem an ad hoc procedure to offset the
unphysical character of the absorber functions (8) near
r=0. We now show that it follows naturally from the
improvement of the theory that is presented in the fol-
lowing section.

C. Generalization to partial absorber states

Q. =Q
/1 = I a

(24)

where the upper limit i +, may be infinite. For continu-
um wave functions, we define

Q. =Q j„«~~k &«. ~

(25)

and

Q. =Q J„«lq, &&&, I
. (26)

Generalization for non-orthonormal functions and the
definition when both discrete and continuum levels are
simultaneously considered are obvious. We can now
write the Q projector:

max

Q=UQ (27)
a=1

where the union symbol U is written instead of a sum g
because the partial projectors need not be orthogonal.

Partial absorber functions are then defined

(i) QaOQ

Q Oy
(28)

This trivially generalizes our previous approach, since
the original absorber PJ(" is contained in the manifold
spanned by the set [P'";a=1, . . . , a,„I. The finer the
partition of Q in (27), the more information we can obtain
from the dynamical calculation, at the cost, of course, of
an increased computational effort.

In fact, in the limit of a very finite partition the

According to the definition (8), absorber functions are
global representatives of Q space that bear no direct rela-
tionship to the asymptotic eigenstates of the total elec-
tronic Hamiltonian H. Consequently, exit probabilities
to any of these exact Q space eigenstates cannot be easily
calculated. In particular, transitions to high-lying Ryd-
berg Q levels can only be approximately separated from
ionization processes in the energy region where both pro-
cesses compete with each other [16,17].

It is very easy to formally generalize the definition of
absorber states so as to be able to calculate partial cross
sections to a set of discrete and/or continuum eigenfunc-
tions of H belonging to Q space. For this, we first take
any set of functions Ig„,gkj, covering Q space, that
asymptotically tend to those eigenfunctions. For discrete
(orthonormal) functions p„we define the partial projec-
tor i +I —1

definition (28) is excessively complicated, and the pro-
cedure then appears as a variant of the packet state
methods defined by Reading et al. [13], Bandarage and
Thorson [14],and Micha and Piacentini [15]. The former
authors slice the ionizing continuum into slabs of width
6„, either to construct pseudostates that represent this
continuum as a basis, or in the integral over the continu-
um spectrum which appears in the explicit form of the
dynamical equation (5); in this latter case an energy
damping function appears in the resulting weighting
function, which effectively prevents transitions to highly
excited ionizing states. In the treatment of Bandarage
and Thorson [14], a weighting function due to electron
escape appears when account is taken of the difference
between the space spanned by the dynamical evolution of
the packet states and that spanned by the original contin-
uum molecular orbitals. Such damping and escape effects
are not taken into account in the present formalism,
which treats absorber and P states on the same footing,
so that probability is strictly conserved; one possible
drawback of this approach is that backflow from ab-
sorber to P states may be overestimated. Finally, the
method of Micha and Piacentini is to generate a basis of
orthonormal pseudostates, defined by integrations over
the continuum wave functions with suitable weight func-
tions; similarly to our proposal, no probability escape
mechanism is described.

The definition (28) is most useful when the energy in-
tervals of the partition (27) are large, and may formally
be considered as a special case of nonorthogonal packet
states in which the "weight" function ascribed to each
(quasi-)continuum state is proportional to its coupling to

In this way, the approach is adapted to the situation
in which one is able to describe most of the dynamics
within P space, and one wishes to increase the accuracy
of the method by allowing for transitions from selected P
functions into Q space. Given a P function P, the partial
absorber functions then appear as an optimal choice for
the packet states, in which the states involved are weight-
ed according to the strength of their coupling to P .

The present generalization has two further advantages
over the previous one [10]. First, the method is formally
more satisfactory in that it can treat resonant as well as
nonresonant discrete-continuum interactions: in the limit
of sufficiently narrow energy bands in Eq. (25), a pertur-
bative approach for resonant P~Q transitions leads to
an expression [23] for the dissociation probability that is
equivalent to the known procedure of adding an imagi-
nary potential i I /2 (where I is the —corresponding en-

ergy width [4,5]) to the Hamiltonian Ho defining the au-
toionizing state.

Second, it provides a justification to the regularization
procedure described in the preceding section. In the case
treated in that section, the last term in (27) leads to a par-
tial absorber

(29)

that is singular at r =0 and describes physically inaccessi-
ble states. In fact, the failure of the packet state method
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to account for transitions to ionizing states with very
high energies was pointed out in Ref. [13]. For the
present purpose, we see that this "failure" is, in fact, an
asset, and that the present generalization is useful even in
the simplest case where partial cross sections to Q func-
tions are not required. Then, we can partition the Q
operator

0.6

0, 5

0. 2

Q=Qi UQ. (30) 0. 1

u 0 Q

with cz „=2,and we can augment the basis with a physi-
cally meaningful absorber function, which, according to
(24) and (25), is defined as in Eq. (8), with Q replaced by
Q, . Since

—zQ, r 'P~ =Qv(f'

this is equivalent to substituting in that definition any
Coulomb potential not included in Hp by a regularized
form (23). The same applies to higher generation ab-
sorbers for any choice of Hp.

III. ILLUSTRATIONS

A. Regularizations of the Coulomb potential

We shall first illustrate the inconvenience of incor-
porating highly excited states in expansion (12), even
when the continuum integral is substituted by a summa-
tion over discretized [13,24j functions. For this purpose,
for the simplest heteronuclear system HeH +, we have
drawn in Fig. 1 some electronic density contours for the
function —Qr 'Pi, where (f i is the 1s orbital of a He+
ion situated at a distance 1.0 bohr from the proton
Q= 1 —

~P, &&(f, ~
and r is the distance from the proton.

Figure 2 shows the behavior of the approximate absorber
near r =0:

—0-1

-0. 2
C)

—0. 3
&C

—0 4

-0. 6

I I I l I I I I I

0. 5 0.6 0.7 0.8 0.9 1.0 1.1 1-2 1 3 1.4 1.5

2 coordinate f a. u. )

FIG. 1. Electronic density contours for the (unnormalized)
exact absorber function —Qr '((), [see Eq. (10) of text], where
(I, is the He+(ls) target orbital, r is the electronic coordinate
with respect to the proton location, and Q= 1 —

~P, }&(()~~. The
internuclear distance is of 1.0 bohr, and z coordinates are taken
along the internuclear axis, with origin at the target (He+) nu-
cleus.

It should be stressed that the regularization of the
Coulomb potential thus achieved is far from being
unique: there is a wide choice in the value of k in the

max

definition of Qi of Eqs. (30) and (31). This choice plays a
similar role to that of basis selection in bound-state prob-
lems. The smaller the value of k „, the smoother the
corresponding absorber function, but when k „ is

(32)

which is written as a superposition of eight bound orbit-
als g„of s symmetry, and five discretized s-wave continu-
um orbitals g& that were obtained in a variational calcu-
lation for the H atom. Exact (Fig. 1) and approximate
(Fig. 2) absorber functions exhibit similar characteristics
in the neighborhood of r =0, only the exact one being, of
course, strictly singular at this point.

Next, to show that the behavior near r =0 is due to the
contribution from highly excited continuum states, we
display in Fig. 3 the contours obtained by eliminating the
two orbitals gl with the highest energies (E=25 and 125
hartrees) in (32). Those orbitals have energies that are
inaccessible in most physical situations, and their elim-
ination leads to an absorber that is smoother than that of
Fig. 2, and is therefore more useful as a basis function in
a close-coupling expansion. A direct comparison be-
tween the functions of Figs. 1, 2, and 3 is given in Fig. 4,
where we have plotted the values of these functions along
the internuclear axis.

0.6

0.5

0. 4

0. 2

0 1

a
—0. 1

—0 ' 2
I
Ao —0 3

—0.4

-05-

I I l I I I I I

0.5 0.6 0.7 0.8 0.9 1,0 1.1 1.2 1.3 1.4 1.5
Z coordinate (a. u. j

FIG. 2. Electronic density contours for the approximate ab-
sorber —Qr 'P„defined in Eq. (32) of text, in terms of 13 orbit-
als obtained in a diagonalization of the H Hamiltonian in a
basis. Conventions as in Fig. 1 ~
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-0. 4
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We have drawn in Fig. 5, as a function of the distance
from the H nucleus along the internuclear axis, the result
of taking X,„=O—5 in (33). It may be noticed that the
curves asymptotically (r ))0) coincide because the form
of the absorbers is dominated in that region by the excit-
ed bound orbitals in (33).

Next, we compare the previous nonlocal regularization
with a simpler local procedure. We have drawn in Fig. 6
the values for the potentials

V= Zr '—(1 —e ""), (34)

which depend on a parameter p, such that in the limit

p —+ ~ we obtain the original Coulomb singularity. Com-
parison between Figs. 5 and 6 shows the overall (though
not point-to-point) similarity between both sets of regu-
larized potentials, from the point of view of defining ab-
sorber states according to Eq. (8).

05 06 07 08 09 10 11 12 13 14 1 5

Z coordinate ( a.u. )

FIG. 3. Electronic density contours for the regularized ab-

sorber of Eq. (32) of text, obtained by eliminating the two

highest excited orbitals in the expansion.

chosen to be too small this function may no longer
represent all ionizing states that are accessible during the
collision. Clearly, the method is useful when results are
not critically dependent on the type of regularization em-
ployed. Otherwise, one should either increase the
amount of P states or define a finer grid of partial ab-
sorbers (see Sec. III C).

To illustrate the choice of k „in the regularization
procedure, we choose a neighborhood of r =0 such that
the function P, can be considered as approximately con-
stant in (23):

B. Dynamical calculations

We present here a preliminary account of the results of
applying the new method to a one-center treatment of
H++He+( Is) collisions, in the framework of an impact-
parameter semiclassical formalism. A full description of
the calculations, as well as an application to the whole
range of energies and to more benchmark cases, will be
reported elsewhere. The functional space employed in
the calculations is spanned by ten target (He+) orbitals of
lowest energy and the corresponding ten absorber states,
which are defined by

(35)

n=1

max

(33)
0.0

-1.0

1.0

0.5

0.0—
' ' ~, .—0 5—

—1, 0
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-e,o
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1.5

—4.0
0.5 1.0

D istance ( a ~ u. )

I

1.5

FIG. 4. Comparison between the values taken by the ab-
sorber functions of Figs. 1 ( ), 2 ( ———), and 3 ( ~ - ~ . )

along the internuclear axis.

FIG. 5. Illustration of the behavior of exact and nonlocal
regularized Coulomb potentials [Eq. (33) of text], as functions of
the distance from the 0 nucleus along the z (internuclear) axis.

bare —r ' Coulomb potential; ———,k,„=5;
——.—,A, ,„=4;,A, „=3;—+ —+ —,A, ,„=2,1;—
~ .—..—,A, ,„=O.
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—1.0

—2.0
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-4.0

Cl~ -5.0
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—1.5 —1 0 —0.5

Il

l

0.0

I
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I

1 ~ 0

]

1.5

Distance (a. u. w

FIG. 6. Illustration of the behavior of exact and local regu-
larized Coulomb potentials [Eq. (34) of text], as functions of the
distance from the H nucleus along the z (internuclear) axis.

bare —r ' Coulomb potential; ———, p = 150;
—.——-, p=10; - ., p=5; —+ —+ —,p=2. 5;
..—,p=1.0.

where V is the regularized potential of Eq. (34). For the
present purpose, it suSces to give the results for some
representative collision energies and p values.

We compare in Fig. 7 our electron-loss (charge transfer
plus ionization) cross sections with those of accurate cap-
ture and ionization calculations [25] and with experimen-
tal data [26—28]. The corresponding excitation cross
sections into He (2s, 2p ) are given in Fig. 8. Since, to
our knowledge, there are no experimental data available

for excitation, the present results can only be compared
to those of previous two-center calculations [29].

As explained above, to separately obtain results that
can be unambiguously ascribed to charge transfer or ion-
ization, we should improve our treatment by introducing
partial absorber states in the close-coupling basis. This
was not done in the present calculations. Nevertheless,
by extending our previous reasonings, both cross sections
can be separately calculated to a reasonable approxima-
tion through use of diFerent values of the regularization
parameter p as follows.

(i) For large values of p ( ~ 50) the potential (34) is very
close to the Coulomb one except for a negligible neigh-
borhood of the projectile. Then, the absorbers (10) de-
scribe, near r=O, high energy inaccessible continuum
states. On the other hand, they are regular near the tar-
get, where they describe excited and continuum target
states. Therefore, for large values of p, our calculation
should be able to reproduce both target excitation and
target ionization, though not charge exchange. This is
exemplified in Fig. 9, where it is shown that as p in-
creases the calculated cross sections for electron loss con-
verge to the ionization cross section, which is mostly due
to target ionization as shown by electron spectra. The
failure to reproduce charge exchange is especially notice-
able at small energies (Fig. 7). On the other hand, the
calculated excitation cross section is almost independent
of p, (Fig. 8).
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FIG. 7. Electron-loss cross section for He+(1s)+H+ col-
lisions, calculated with the regularized potential (34) of text,
with 4, p=1; , p=2. 5; '7, p=5; 0, p=10; X, p=50; +,
p, = 150. Previous theoretical calculations of Winter [25] corre-
sponding to the ionization cross section ( ———) and to the
electron-capture cross section ( —~ —~ —~ ). Electron-loss experi-
mental data: CI, Rinn et al [26]; C', Mitch. ell et al. [27]; o,
Angel et al. [28].
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ments of Watts, Dunn, and Ciilbody [30].

(ii) Regularization of the Coulomb potential (@~5)
permits us to reproduce charge exchange as well as ion-
ization, and yields electron-loss cross sections that are in
agreement with experimental values (Fig. 7). In particu-
lar, at low energies (e.g. , E=50 keV amu ') where
charge exchange dominates ionization, our cross section
is close to the corresponding measurement [25]. An op-
timal regularization for p=2. 5 is found when there is a
close similarity between the shape of the potential (34)
near the projectile and the 1sH orbital.

From (i) and (ii), it may be reasoned that if we can sep-
arately obtain electron loss and ionization data, by sub-
tracting them we can also evaluate the corresponding
values for charge exchange. Indeed, our calculations
show that this procedure is accurate even for individual
trajectories. As an illustration, we compare in Fig. 10
our values for the charge-exchange probability times the
impact parameter b versus b for an impact energy E=50
keV amu ', together with those of an accurate calcula-
tion [31]. Our data were obtained by subtracting the
probabilities obtained with the values @=2.5 (yielding
electron loss) and @=150 (yielding target ionization) in
(34). For comparison purposes, we also include in the
figure our prediction for the ionization probability.

IV. CONCLUSION

Close-coupling techniques often break down when
transitions to a continuum (or quasicontinuum) are im-
portant. A simple method was recently proposed [10] to
offset this difhculty through the augmentation of the
close-coupling basis by selected representatives (called ab-
sorbers) of the part of functional space not spanned by
the original basis. The method has been applied [16,17]
in the framework of the molecular treatment of atomic
collisions. For different —e.g., atomic —expansions, its
implementation is not straightforward because Coulomb
potentials introduce divergences in the energies and cou-
plings of the representative functions.

FIG. 10. Probability for charge exchange times the impact
parameter b vs b in He++H+ collisions for a nuclear trajectory
with b = 1 a.u. and an impact energy E=50 KeV/amu
(U =1.414 a.u. ). , present results obtained as explained in
text; +, electron-capture results of Winter [31]. For compar-
ison purposes, we also present our prediction ( ———) for the
ionization probability, obtained with the potential of (34) with
p= 150 (see text).

In the previous sections we have analyzed the source of
those divergences. We have shown, both analytically and
numerically, that absorbers have an unphysical character
near the Coulomb singularity because they contain con-
tributions from extremely-high-energy states. Since these
states are physically inaccessible, their contribution
should be eliminated in any meaningful definition.

Our analysis suggests a solution to the problem
through a regularization of the Coulomb interactions.
We have shown that this solution follows naturally from
a more flexible definition of absorber wave functions,
which allows the calculation of partial cross sections.
The introduction of partial absorbers in the close-
coupling expansion may be viewed as a blend of the pre-
vious theory [10] and the method of packet states
[11—15], and encompasses the treatment of resonant as
well as nonresonant transitions. We have further
reasoned that nonlocal and local regularization pro-
cedures are expected to yield similar results.

Preliminary applications on H++He+(ls) collisions
with a one-center basis and a local regularization (34) of
the (projectile) Coulomb potential show that excitation
probabilities are independent of regularization; that use
of reasonable choices for the regularization parameter
yields accurate electron-loss cross sections; and that using
both regularized and (quasi) singular potentials allows to
calculate separately charge-exchange and ionization cross
sections.
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