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Intermediate ionization continua for double charge exchange at high impact energies
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We investigate the problem of two-electron capture from heliumlike atomic systems by bare nuclei
Zp + (ZT' e „e2 );—+ ( Zp, e &, e2 )f +ZT at high incident energies, using the four-body formalism of the
first- and second-order theories. Our goal is to establish the relative importance of the intermediate ion-
ization continua of the two electrons in comparison with the usual direct path of the double electron
transfer. For this purpose we presently introduce the boundary-corrected continuum-intermediate-state
(BCIS) approximation, which preserves all the features of two-electron capture as a genuine four-body
problem. The proposed second-order theory provides a fully adequate description of the fact that, in an
intermediate stage of collision, both electrons move in the field of the two Coulomb centers. The previ-
ously devised boundary-corrected first Born (CB1) approximation can be obtained as a further
simplification of the BCIS model if the invoked two-electron Coulomb waves are replaced by their long-
range logarithmic phase factors defined in terms of the corresponding interaggregate separation R. The
BCIS method is implemented on the symmetric resonant double charge exchange in collisions between a
particles and He( ls ) at impact energies E ~ 900 keV. The obtained results for the differential and total
cross sections are compared with the available experimental data and satisfactory agreement is recorded.
As the incident energy increases, a dramatic improvement is obtained in going from the CB1 to the BCIS
approximation, since the latter closely follows the measurement, whereas the former overestimates the
observed total cross sections by two orders of magnitude.

PACS number(s): 34.70.+e, 82.30.Fi

I. INTRODUCTION

Double charge exchange in collisions between bare nu-
clei and heliumlike atomic systems has been the subject
of numerous theoretical investigations at intermediate
and high impact energies. Most of the previous studies
proceed through the use of McGuire and Weaver's [1]
independent-particle model (IPM) [2—16], in which the
interelectron Coulomb interaction is replaced by an ap-
propriate average field, such as the well-known
Roothaan-Hartree-Fock atomic model potential [17,18].
The essence of the IPM is in treating double charge ex-
change as two independent single-electron transfers. This
implies that the overall transition probability for the total
event is reduced to the product of the two partial proba-
bilities for each of the invoked electrons. Such a model
ignores some of the finest physical effects, namely, elec-
tronic correlations which make the double charge
transfer fundamentally difFerent from the single-electron
capture process [19]. Electron correlation effects can be
roughly incorporated within Crothers and McCarroll's
[20—23] independent euent model which, however, still
determines the total probability as the product of the two
individual probabilities.

A substantially different approach to the problem of
high-energy two-electron transfer has recently been un-
dertaken by Belkic and Mancev [24,25], who introduced
the four-body extension of Cheshire's [26] second-order
continuum-distorted-wave (CDW) method. This CDW
theory is a strict generalization of the single charge ex-
change formalism to double-electron transfer with no fur-
ther approximations and without recourse to the IPM

nor to the probability product theorem. The CDW ap-
proximation of Refs. [24,25] naturally incorporates the
usual static as well as dynamic correlation effects and
preserves the correct boundary conditions. Such a four-
body CDW model is found to yield excellent agreement
with the experimental data on total cross sections for H
formation in H+-He double-electron transfer [24,25].
Another second-order distorted-wave model of the im-
pulse approximation type has been proposed by Gravielle
and Miraglia [27]. Their approximation also takes full
account of the electronic correlation effects and the prod-
uct of single-electron probabilities is not imposed as the
starting point of the development. It should be
remarked, however, that despite the fact that the
methods of Refs. [24,25,27] go beyond the IPM by resort-
ing to the four-body distorted-wave formalism, only the
CDW theory possesses the total scattering wave func-
tions with adequate asymptotic behaviors at large in-
teraggregate separations. We recall that the impulse ap-
proximation always violates the correct boundary condi-
tions and this is particularly true for the channel in which
it explicitly allows for the continuum intermediate states
[28] for both single [29] and double charge exchange [27].

Much more than single-electron capture, two-electron
transfer requires inclusion of the second- and higher-
order effects via double or multiple scattering phenomena
at high energies. This is because (i) the high-energy cross
sections for double charge exchange are considerably
smaller than the corresponding data for single-electron
capture, so that any (even small) deficiency of theories is
expected to induce significant errors in the final results.
In addition, (ii) unlike the single-electron capture from
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heliumlike atoms or ions by completely stripped projec-
tiles, double charge exchange in the same collisional sys-
terns always promotes two active electrons, for which
more variants of the double Thomas scattering could ac-
tually take place [30] as the incident velocity is augment-
ed. This couple of arguments leads us to the conclusion
that the first-order theories for two-electron transfer
should have a sizably smaller upper energy limit of their
applicability than in the case of single charge exchange.
According to the well-documented evidence concerning
the one-electron capture processes, the total cross sec-
tions obtained by means of the boundary-corrected first
Born (CB1) approximation [31—49] have been observed
to be systematically in excellent agreement with the mea-
surements at intermediate ( ~ 100 keV/amu) and high en-
ergies but, of course, below the region where the Thomas
double scattering becomes important. Due to reason (i)
above we expect that for double charge exchange, the
breakdown of the first-order perturbation theories should
occur even at those higher impact energies for which the
Thomas double scattering is negligible. Indeed, the four-
body CB1 approximation introduced by Belkic [50,51] re-
vealed that this first-order theory is fully satisfactory only
in a limited intermediate-energy range, hence the need for
the introduction of second-order theories for double
charge exchange. The CDW approximation does not
transparently separate the contributions coming from the
first- and second-order effects. The four-body generaliza-
tion of the boundary-corrected second Born (CB2) ap-
proximation from single [52—56] to double charge ex-
change would be a highly recommended method which
could tell us, in a perfectly clear manner, about the rela-
tive importance of the neatly separated first- and second-
order terms. However, such a CB2 model is very difficult
to implement without obligatorily resorting to statistical
methods of the Monte Carlo type [57,58], which would
require a tremendously large amount of (industrial) CPU
computer time. Therefore, it is important to devise a
theory which would overcome the above limitations of
the CDW and CB2 model by (1) transparently incor-
porating first- as well as second-order efFects and (2) pro-
viding a relatively easy framework for numerical compu-
tations. This is achieved in the present work, where the
boundary-corrected continuum-intermediate-state (BCIS)
approximation is developed. From the computational
point of view, the BCIS method is as easy as the CDW
approach, since in both cases the transition amplitudes
are reduced to the readily obtainable triple numerical
quadratures in impulse space. On the other hand, an in-
spection of the transition probabilities in the BCIS and
CB1 methods reveals that they both have the same per-
turbation potentials. Furthermore, the total scattering
wave functions of the BCIS and CB1 models are the same
in one of the asymptotic channels (entrance or exit, de-
pending upon whether we are considering the prior or
post form of the transition amplitudes). The only
difference is, however, in the other channel since the
BCIS method employs the electronic continuum inter-
mediate (Coulomb) wave functions centered on the pro-
jectile or target nucleus. A product of two such full
Coulomb waves each containing explicit electronic coor-

dinates always appears in the BCIS model. As a further
simplification of the BCIS theory, we can formally obtain
the CB1 method in which the product of the Coulomb
waves is replaced by its appropriate logarithmic phase
factors, but in the vector variable R of the interaggregate
separation. Hence, any difference found between the re-
sults of the CB1 and BCIS theories ought to be directly
attributed to the importance of the full Coulomb elec-
tronic continuum intermediate states. Whether such a
difference could also be numerically relevant is another
question, which will be answered in the present study by
providing comparisons between the theory and experi-
ment.

Atomic units will be used throughout unless stated oth-
erwise.

II. THEORY

Zp + (Zr' e „e2 );~ (Zp' e „ez )f +Zz. (2.1)

The parentheses in the double-charge-exchange process
(2.1) symbolize the bound state, whose quantum numbers
are given by the collective label i or f. I.et us denote by
R the position vector of P relative to T. Further, the po-
sition vectors of e, 2 relative to P, T and the middle point
of the internuclear axis R will respectively be represented
by s, z, x, 2, and r, 2, so that the interelectron distance r»
can be introduced by r&2=~r, —rz~, where
r»=x, —x2=s, —s2. We adopt the well-known impact
parameter formalism of the scattering theory, in which
the relative internuclear motion is described by a classical
rectilinear trajectory R=p+vt, where t denotes time.
The target nucleus T is assumed to be at rest, so that the
constant relative velocity vector v will, in fact, be the in-
cident speed. The so-called impact parameter p has its
customary meaning, with the important constraint
p v=o

The full scattering states Vf(r„r2, t) of the entire
four-body system with outgoing or incoming boundary
conditions are described by the time-dependent
Schrodinger equation:

(2.2a)

where H=H0+ V is the total Hamiltonian given as the
sum of the kinetic-energy operator H0 and the complete
interaction potential V:

I q2 $ y20 2 P'l P T2

Zp Z7V=
R

Zp Zp Zp

S) $2

ZT 1+
Xp P'»

(2.2b)

For rearrangement collisions such as the two-electron
transfer process (2.1), it is useful to split the operator H
into two equivalent forms: K =H;+ V; =Hf + Vf, where

We examine a collision in which the nucleus P of
charge Zp is impinging upon a heliumlike atomic system
consisting of two electrons e, and e2 bound to the nu-
cleus T of charge Zz-, i.e.,
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H;f are the entrance and exit channel Hamiltonians,
whereas V,.f represent the corresponding perturbation in-
teractions:

will be ignored in the present work. The asymptotic
channel states 4,*. f from (2.5a) are the solutions of the
following equations:

ZT
H; =Ho+ VT ——Ho-

x)
ZT 1+
x2 r)2

. aH fi '4,+f ( r 1,r2', t ) =0 (2.6)

ZpZT
V;=

Zp

S)

Zp

$2

Zp
Hf =Ho+ Vp ——Ho-

S)

1+
~z r&2

(2.3a) where H f=H;f+Vf with V f being the asymptotic
(R ~~ ) values of the perturbations V, f, i.e.,
V =Zp(ZT —2)/R and Vf'=Zz(Z1, 2)/R.

We shall next introduce the distorted waves y,
+—.f as a

solution of the following differential equations:
T

ZpZT
Vf = ZT ZT

x
$

(2.3b) aH f U fi g'f(r„r2't)=0, (2.7a)

The impact parameter dependent transition probability
P;f(p) for the double-electron capture reaction (2.1) is
defined as the square of the absolute value of the transi-
tion amplitudes A,f (p), i.e., P f (p) = lA;f (p) . The
quantities A;f(p) are given as the projection of the total
wave functions %',+—. f onto the final Nf or initial 4,+
asymptotic states in the pertinent limit t ~+ ~ or
t —+ —oo:

A;f(p) = lim (elf llIt+ )
t —++ oo

lim ffdr, dr2@f *(r„r2,'t)qt,+(r„r2,t),t~+ oo

(2.4a)

A;f (p) = lim ( 1Itf 4,+
t —+ —oo

lim ffdr, dr2%'f "(r„r2,t)C1,+(r„r2', t) .
t ~—oo

(2.4b)

The initial and final asymptotic states 4,—.f are introduced
by [59]

@,*f(rl,r„t)=4,f(r„r„t)&+—(R),
where &—(R)=exp[+iv;in(uR + v t ) ] and

(2.5a)

—t(E, ft+v tl4+v r . /2+ tr 1v212
; f rl, r, ;t =tp;f xl, x2 e

(2.5b)

with v;=Zp(ZT —2)/u, vf =ZT(Zz —2)/v, and v = lvl.
In general, the prior P,f(p) and post Pf(p) forms of the
transition probability are different from each other due to
the unavailability of the exact bound state wave functions
trav;f for the two-electron systems. In a case study [50],
appropriate corrections were introduced with the pur-
pose of consistently defining the initial and final unper-
turbed channel states N; f, irrespective of whether or not
the bound state wave functions y; f satisfy the exact ei-
genvalue problems: (H; E; )tp,.(x„x2)=0 —and
(Hf Ef )tpf (s„s2)=0, where E; and Ef are the corre-
sponding exact binding energies. These corrections ap-
pear in the transition amplitudes as certain perturbation
potential operators, which are demonstrated [50] to pro-
vide corrections of the order of —(10—15)% and as such

where U;f are certain distorting potential operators,
which must be chosen in accordance with the imposition
of the correct boundary conditions,

lim y,
—f(r„r2, t)= lim 4,*. f(r„r2, t) .t~+ oo t —+goo

(2.7b)

It is then easily shown that the post transition amplitude
A,f(p) can be written as

A 'f(p)= i f —dt f f dr, dr2[( Vf + Uf )gf (r„'r2,'t)]"

Xq',+(r„r2', t ), (2.8a)

provided that lim, „f fdrldr~f lent, =0. Similarly,
the prior form A;f(p) of the transition amplitude be-
comes

A,f(p)= i f —dt f fdr, dr21Itf *(r,;r2,'t)

X [( V;+ U, )y,+(r, ;r2, t )],
(2.8b)

if the following condition is fulfilled:
lim, + f fdrldr2qtf *y,+. =0. The corresponding post
and prior total cross sections are defined as follows:

g;&(o02)= fdpl~+f(p)I'. (2.9)

In obtaining the transition amplitude A,f(p), we shall
presently make the following approximation for the com-
plete scattering wave function 4,+ and distorted wave

Xf '

(rl r2 t) + (rl r2 t)

f (rl, r2, t ) 4f (rl, r2, t )
(2.10a)

U Vf f
Next we look for the distorted waves g,+(r„r2, t) in the
following simple factorized form:

(2.10b)

X' (rl r2 t ) @i(rl r2 t)+' (2.11a)

Upon inserting (2.11a) into Eq. (2.7a), it is at once seen
that the function X,+ satisfies the equation [59]

The distorting potential Uf consistent with the choice
(2.10a) is given by
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(2.11b)
1 1 Zp Zp—T)+—V'~+ +
2 2 Sl $2

L

The distorted wave g; from (2.1la) will possess the correct asymptotic behavior (2.7b) if Eq. (2.11b) is solved subject to
the boundary condition

t'[E,—t+((./4)u t+(1/2)v. r)+()/2)v. r&
—v, ln(ug u —t))lim; = lim e (2. 1 lc)

The present choice of the distorting potential U,- is
identical to that of the four-body CDW approximation
[24,25]:

where 9 =exp[+iv~Tln(uR + u t)] with, F, standing
for the usual symbol for the Kummer conQuent hyper-
geometric function [60], v~T= Z~Z Tluand

U; = —V, + g V.(p;(X„X2).V~t&
X)&X2)

(2.11d) N (vtt )=—I (1+iv)r )e vtr =Z t/tu(lt: =P, T ) .

(2.12b)

X,F, (i vt, & l, i us 2+ t v.s2), (2.12a)

where the symbol o indicates that any function from the
domain of the definition of operator U; must be given in a
form which factorizes out the initial orbital y;. This re-
quirement guarantees that the operator U; will not have
any singularity at the eventual nodes of the function y;.
The merit of choice (2.11d) is that it makes Eq. (2.11b)
solvable exactly in the form

X;= [N+(vt, ) ] 0+,F) (i vp, l, i us, +i v s, )

Since the following relation holds true,

lim (uR u t)=—lim (usj+v s ) (j =1 2), (2 12c)
t —+ —oo t~ —oo

it is immediately obvious that the boundary condition
(2.llc) of function X,. is fulfilled. In this manner, the
simultaneous choices (2.10a), (2.10b), and (2.11d) deter-
mine the boundary-corrected continuum-intermediate-
state approximation. Hence, the post form of the transi-
tion amplitude in the BCIS method is given by

A,f(p)= i[N+(vt )] —f dt f f dr(dr2rrtf *VfCt;0+)F, (ivp, l, ius, +iv s, ))F, (ivp, l, ius2+iv. s2),

where

(2.13a)

2 1V"= V +U =Zf f f T g x) xp
(2.13b)

Similarly, we shall briefly proceed to determine the prior form of the transition amplitude within the BCIS approxima-
tion. This time, the choices of the distorting potentials U; and Uf are given by

2 1U;= —V;, Uf Vf+ g Vit((tf(sl S2) Vio
tf'f sl&s2

so that

A,f(p)= i[N (vr)—] f dt f fdrldr2@f Q V;"tran;+)F)(ivT, l, iux) +iv Xl))F)(i.vr, l,iux2+iv x2), .

(2.14a)

(2.14b)

where

V; = V;+U. =Zd= . . = 2
s

(2.14c)

R;f*(g)= f dp e'" t'A;f (p)',1
(2.16)

Given the final results (2.13a) and (2.14b), the corre-
sponding full quantum-mechanical transition amplitudes
T,f (ri) are obtained from the Fourier transforms:

Concerning the symbol t& in Eq. (2.14a), a remark similar
to the one made after Eq. (2.11d) applies to the functions
from the domain of definition of operator Uf. Also, both
the initial and final scattering state wave functions occur-
ring in the prior form of the BCIS approximation satisfy
the proper boundary conditions, as readily verified by
means of the relation (2.12c) and

lim (uR+u t)= lim (uxj+v xz) (j=1,2) . (2.15)t~+ oo t —++ oo

where R f(ri) =Tf (q)/2tru and ri=(21 cosp„,g sing„, 0) is
the transverse momentum transfer. Written in a compact
and physically transparent way, the expressions from
(2.16) become

T,;(q)= &f-,q, l
vf'I' &,

Tf(g)=(f IV I
+, q

where
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&R;s],s2lf, qT&=e " ~ (R)g f(s]
—2iqT R—(i/U)ZT(ZP —2)ln(vR+v R)T T P S],S2

(R;x„x2l i ) =0+(R)yf (x„x2)y „(s])y+„(S2)
(i/v )ZPZTln(UR —v R) + +=e p;(x„x2)&(u „(s])ip „(s2),

(R;S„S2lf ) =& (R)qf(s„s2)qv (x])(i)v (x2)
—(i /U)ZpZTlll(UR+V R)P T

Pf Sl&S2 Pv X] 0 v X2

(R;x],x2li+, qp ) =e &+(R)&p, (x„x2)
—2iq .R+ (i /u )Zp( ZT —2)ln( v R —v.R)P P T &tu;(x„x2),

(2.18a)

(2.18b)

(2.18c)

(2.18d)

and

2qT R—v (s, +s2)= —2qp. R—v (x, +x2), (2.19a)

+- +
2qp T +9—

g v, q =v+ (2.19b)

Quantities tp „(s ) and y„(x.) appearing in Eqs. (2.18b)
and (2.18c) are the well-known electronic continuum
Coulomb functions in the attractive fields —Zz/s and
—ZT/x. with outgoing and incoming boundary condi-
tions, respectively,

(p
—(r)=[e j I (1+iZ/p)]e'P'

X,F, (+iZ/p, 1, +ipr —ip r) . (2.20)

Matrix element Tf (ri) from (2.17) which represents the
prior form of the transition amplitude can be interpreted
in the following plausible way. The incident particle
scatters on each of the three constituents of the target
(ZT;e„e2), In the entrance channel, collision between
the projectile P and target (T, 2e ) results in the accumu-
lation of the Coulombic phase factor
&+ =exp[(i/u )Zp(ZT —2)ln(uR —v R)]. On the other
hand, in the exit channel, the scattered projectile P in-
teracts with the target nucleus accumulating the phase
factor 0 =exp[ —(i/u)ZpZTln(uR+v R)]. At the
same time, the interaction of P with the two electrons el
and e2 leads to double ionization of the target (T,2e).
The ionized electrons propagate in the Coulomb field of
Zz in a particular direction with the momentums

I

21Zp Zr /u —
1

g T]n( uR +v R )=pu e (2.21a)

(i j )Z uZ p]n( rR uv+R) (i j)Zu(pZ r2)ln( vR —v R)
g

—
»& I& T e

2iZpZT/u —imp]n(vR —v R)p T (2.21b)

where (R =2vR =2ZR. /u (I&: =P, T). The corresponding
post and prior forms of the total cross sections are subse-
quently found to read as

Tf (g)
Q;f (a () ) = f d g (2.22)

respectively, where

Kl =K2 =v. Finally, the capture of the two electrons
occurs from these intermediate ionizing states (capture
from the continuum) because the electrons are traveling
together with the projectile in the same direction and the
attractive force between Z~ and el 2 is sufficient to bind
them together into the heliumlike atomic system
(Z;e„e2)f. This is a quantum version of the well-
known Thomas classical double scattering. An analogous
and symmetric situation can also be pictured in the case
of the post form from T;f+(g) of the transition amplitude
given in (2.17).

For the purpose of making the analytical part of the
calculation easier, we shall reduce the product of the two
Coulomb logarithmic terms % '0+ and 0 *&+ in Eq.
(2.17) to only a single phase factor relevant for the com-
putation of the total cross sections:

+ (i /u)ZT(Zp —2)ln(vR+v. R) (i/v)ZpZT]n(uR —v R)—vg T p e

Tf(7/i)=X+ f f fdRdx, dx2e ' '(uR+v R) &pf(s„s2)&p;(x„x2)

2X
R ,F, (ivp, 1&]us]+iv s, ),F](ivp& 1&ius2+iv. s2) &

X2
(2.23a)

Tf (ri)=g f f f d—Rds, ds2e ' ' (uR —v.R) pf(s] s2)&p((x] x2)

2X
R Sl

]F](ivT& l&iux]+iv x, ),F, (ivT& 1 i x &+u2vxi2),
$2

(2.23b)
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dQif PiPf kf + 2 2
~(Tf (g)~ (ao/sr), (2.24)

with N +—=ZT P [N+—(vP T ) ] . We see that the integrands
in Eq. (2.22) are independent of the internuclear Coulomb
potential Vz&=Z&Zz-/R. The only function in the tran-
sition amplitudes of the BCIS method which incorporates

2IZpZz /v
the term VPT is the phase factor (pv ) which, how-
ever, gives no contribution to the total cross sections [28].
Notice that the four-body CB1 approximation can for-
mally be obtained from (2.23a) and (2.23b) replacing the
confluent hypergeometric functions ]F](i vP, l, ius
+i v. sz ), ]F](ivT, l, iuxf +i v x~ ) by their asymptotic
forms exp[ —ivPln(us +v s. )], exp[ i vTl—n(Ux
+v x. )], with subsequent use of the limits t~+ oo

by means of (2.12c) and (2.15), and finally retaining
the Coulombic phases exp[ —i vPln(vR —v R)),
exp[ ivT—ln(UR+v R)], respectively. Despite the ap-
pearance of the functions depending upon the vector of
the internuclear distance (R), these latter two Coulomb
logarithmic terms are also asymptotic electronic phases,
since si, xj (j= 1,2) are indistinguishable from +R as
t~ + oo.

In addition to the total cross sections Q;f, we are
presently interested in the computation of the angular
distributions of the projectiles scattered into the solid an-
gle 0=

t 8, (t ] around the direction of incidence, which is
situated along the initial wave vector k;. As usual, the
eikonal differential cross sections dQ;f—/d 0 are defined in
the center-of-mass system by the relation

where p; and pf are the reduced masses of the aggregates
[P;(T,2e)] and [T;(P,2e)], respectively. The ratio
kf /k; of the magnitudes of the final and initial wave vec-
tors in Eq. (2.24) is close to unity, since the heavy projec-
tiles scatter mainly in the forward direction at high im-
pact energies. The scattering angle 0 is identified from
the relation: 21=2]]tv sin(8/2), where p is the reduced
mass of the projectile and target nucleus. Calculation of
the angular distributions dQ;f /dQ becomes particularly
convenient in the BCIS approximation when either of the
two-electron atoms is neutral, i.e., for Z~=2 or Zz-=2.
In such a case, the products of the logarithmic Coulomb
phase factors from (2.21a) and (2.2lb) will again reduce to
the single term & *0+=exp[2(i/v)ZTln(vR —v R)] or

*&+=exp[2(i/U )ZPln(UR +v R) ]. Hence, a trivial
modification of the parameters gP T and the signs + of
the term v R in the function ln(UR+v R) from Eqs.
(2.21a) and (2.2lb) enables us to obtain both differential
and total cross sections from the same algorithm associat-
ed with the BCIS method. An analogous but simpler
reasoning also applies to the CB1 approximation.

III. CALCULATION OF MATRIX ELEMENTS T;f ( g):
METHOD j.

Let us first outline the present method 1 for the calcu-
lation of the scattering integrals contained in the matrix
elements Tf(g) from (2.23a) and (2.23b). For this pur-
pose, it will prove convenient to employ the following in-
tegral representation for the logarithmic Coulomb phase

'&Kfactors (UR+v R) "with K=P, T:

( UR +v.R )
'~& — '

d ( )'4 —i( vR+v. R)r(0+, -+)
27Tl C

(3.1)

—A(K /2
where JV(g]~ ) =I"(1

if'�

)e — (E=P, T). Here C represents an open contour encircling counterclockwise (positive
direction) the branch point singularity at the point v=0. There is a branch cut along the positive real axis in the com-
plex ~ plane connected with Eq. (3.1). For the two confluent hypergeometric functions in Eqs. (2.23a) and (2.23b), we
shall used the mixed quadrature techniques by expressing, F, (i vx, l, i gx. ] ) and, F, (i vx, l, i gx.2) through the contour in-
tegral representation and the real quadrature, respectively, as follows:

(0, 1 ) ivK —1 —i vK is)g)
+ + ~ ~ K

]F](ivx, l,ig] )= .
'

d~]T] (T]—1) e2' (3.2a)

~ ~ K 1 I vK —1 —I vK I ~~gZ
K

]F](ivy, l, i/2 ) = f d12T2 (1—72) e
B(tvx, 1 —]vx. ) 0

(3.2b)

where gj. =us +v.sj, g =Ux +v.x~ (j=1,2), nd
B(x,y ) is the beta function defined in terms of the gam-
ma functions I (x) and I (y) by [60]

B(x,y)= = dzz" '(1 —z)~ ' . (3.2c)
I (x)l (y)
I (x+y) 0

The contour C, in Eq. (3.2a) is closed and encircles in the
positive direction the two branch point singularities at
~]=0 and ~] = 1. In connection with Eq. (3.2a), the com-
plex 7, plane possesses a branch cut along the segment

from 0 to 1 on the positive part of the real axis. Further-
more, at the point where the contour crosses the real axis
to the right-hand side of 7, = 1, we have that
argT]=0=arg(1 —~]). Inserting (3.1), (3.2a), and (3.2b)
into (2.23a) and (2.23b) we obtain the expressions for
Tf (g). These read as follows:

Tlf( I)=N+(vP T)WP T f A (%2)Gf(vl;~2), (3.3a)
0 72

where we utilized the property N '(vx ) =N+(vz ),
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(o+, +) ~o+, i+ i

Gif ( ri; r2 ) N—( vp z. ,
' g'T p ) dr d r(f( vp» g&» r, r( )gif ( rl; r, r» r2 ),

1

N+(v)JV(g ) ~+ 1

41r2 B((vz, 1 (—vz )

(3.3b)

(3.3c)

f(v;g;r, r, )=( r—)'~ 'r( '(r, —1) ', h +—(r2)=

with N+ (y ) given in (2.12b) and

g f(ri'r r'i r2 ) =ZT p f f fdR dro(dr02(pf (si s2 )e

72

1 —
w2

1 Vp T

(3.3d)

Xexp[+2iqp T R iv—(ro(+F02)+ir, g, r+ir2(2p r] 1
(p;(x„x2) . (3.4)

CO2

Here the vector co& becomes x and s for the assignments
+ and —of the superscript, respectively (j=1,2).
Method 1 consists of subdividing the nine-dimensional in-
tegrals given by Eqs. (3.4) in such a way that we first car-
ry out the quadratures over the electronic matrix ele-
ments and then perform the remaining outermost in-
tegration over R. Thus, we shall have

a=Zz. —az, P=Zp bs, —az=bz=5/16=0. 3125 .

(3.6c)

Parameters a and P are the effective charges of the target
and projectile nucleus defined by (3.6c) in terms of Zz. p
and the inner Slater screening az =b~ =0.3125. Hence
Eq. (3.5b) can be put into the following forms:

where

(3.5a)
Vf(R) = —2Zr p[A —(R)—%—(R)],

with

(3.7a)

2
9&~f ( R ) =ZT p f f d ra(d co2(pf ( s» s2 )

1 1

CO
~ CO2

A —(R)=A —(,(R)A2 0(R),
(3.7b)

Xexp[ iv (ro(+—F02)+ir(g,

+(r202 ]V '(xI x2) (3.5b)

The illustrative explicit calculation of the integrals
G;f (g;r2) from Eqs. (3.3b) will be carried out by using the
well-known uncorrelated one-parameter wave functions
for the heliumlike atomic systems given by

S—(R)=—A +—
, (1(R)A2 0(R),

A —+k(R)= f dm ky
—ii(ro, R) (k=0, 1),1 +

CO~

(3.7c)

where the superscript + are respectively associated with
the vectors coj =xj, s~ (j= 1,2),

((p;(x(, x2)=P (x()P (x2),

(pf (s„s2)=P&(s, )(i&(s2)
(3.6a)

with the corresponding approximate binding energies—a, —P used instead of the exact E; f (variational or
experimental) values and

1/2

P(x)= e

(3.8a)
—iv

&
si+[ ls&U. +l Rv+(s&+R1]~J

( +R) s( )Yap sg~ e 0'a sj 0'p sj

(3.8b)

$(i(s~ ) =
1/2

e ' (j=1,2),
(3.6b)

The two-center scattering integrals in Eq. (3.7c) are car-
ried out by using the standard Fourier transform:
f(p)=(2') fdre' 'f(r) and its corresponding inverse
expression f(r) = fdp e '1"f(p). This yields

)1
—k —iq. -R

J, k ~ &(1 J
( lq q l2+p2)2( lq +q l2+a2)2 k

(3.9a)

(2p)1
—k

AJ k(R)=4 N pe

—iq. R—iqT-R e
'

(lq, —qpl'+P')' "(lqf+qr, l'+aj)' ' (3.9b)
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where N &=N N&, qx. =qz+r. v (j =1,2, k =1,2), and

qp, +q? = —(1—rj)v —=—v? =q?J. +qp, a =a i—r, u, /3 =P i—r u . (3.10)

Inserting the results (3.7a) —(3.7c), and (3.9b) into Eq. (3.5a), we carry out the integration over variable R, so that the ex-
pressions for G;f (?i;r2) from (3.3b) become

G +—(ri r2)= —2Z? [A' ' '(2) —A' ' '(1)]

G]f (?I;r2) 2Z p[BI 2 (2) B22 (1)]

(3.11a)

(3.11b)

where

' (n) = a "N &N(vp, 'gz )f dr dr]p]p2(iur)
~ n —1

1, 2 7T C Cl

q1d q2xf(,;g,;, , )f f
(Iq] —qp]l'+P])"'(lq]+q, l'+~') '

( I q2
—q» I'+P? )"'(

I qz+ q& I'+ t ') '(
I q]+q2+ rv I' —~u')"

(3.12a)

and

(, , ) 256 3 ~ n —1B„„' ' (n)= 13 "N pN(vT'gp)
' dr ' dr]A]~(iur)"1' 2 7T C Cl

dq, dq2
Xf(vT, (p., r, r])f' f

(Iq, —
qpl +0 )" (lq]+qr] '+~]) '

In particular, we have that

( q2
—

qp I'+0')"'(lq2+q?'2I'+~2) '(lq]+q2+~l' —~u')"
(3.12b)

(a&, a2)
A2; '(2)=IV ]?[8Z '.]?' p (vp, gT', —rv;qp], —q?. qp2 q?. ]

(2,2) & 1' 2(l)=A' p[8Z i? i? (Vp kT . rv qp] qT qp2 lT)]

B', '(2)=A' i?[6"Z ' b'] b2 (vr, gp', . rv;qp q?'] —qp, —qT2)]

(2 2) i a]' a2 IB ' (1)=%]?[GZ .„,„2 (vT, gp,
' —rv, q„—q», q„—q?])]

(3.13a)

(3.13b)

(3.13c)

(3.13d)

with JV i?=(16lrr)N pand

y? =k+iur, a,? =a, iur?, Pb,
=—b iur (j=1,—2), (3.14a)

g4

Bb, Bb Ba BA,
'

g4

a~, a~, aa, aa, '
g4

(3.14b)

where the symbol [ ] signifies that once all the partial differentiations are completed, the content of the square brackets
must be taken at the following sets of the values of the invoked parameters: [A, =0;a] 2=a, b, 2=P],

(P+ +) (P+ 1+)
Zr. ' 'r (v, g, q;p„?r];p2, N2)=N(v;() ' dr ' dr]f(v;g;r, r])

1

1d q2X
(

I q] —p] I'+ y])( I q] —?r] I'+ g)
1

( I q2
—p2I'+ y2)( I q? —~2I'+ &?)( I q]+ q2

—ql'+ y')
(3.15)
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where

f f dt A'(t, t2 ),
2 0 A2 0

(3.16a)

~(t, t2)=, N+(vp)N *(gT)

1Vp
CK

2F&(igT, ivp I'x ')

(3.16b)

We show in Appendix A that this eightfold integral can
analytically be reduced to a two-dimensional quadrature.
Thus, for example, in the case of Eqs. (3.13a) and (3.13b)
we obtain

(a&,a2)
Zr, ;p„,pb2(vp&5T& rv&qp» qT&qp2& qT)

integrals over real variables ~2, t2, and t, which all range
from 0 to 1, as can be seen from Eqs. (3.3a), (3.11a),
(3.11b), (3.16a), and (3.27a).

IV. CAI.CUI.ATION OI' MATRIX KI.EMITS T;g (,q):
METHOD 2

In this section we shall develop an alternative method
for calculation of the basic matrix elements T,&(g) .from
Eqs. (2.23a) and (2.23b). This procedure, hereafter called
method 2, will depart from the two real integral represen-
tations of the type (3.2b) for both confluent hyper-
geometric functions iF, (ivy, l, ig ) with j=1,2. Then
we shall have

Tyi(g) =[N+(vp T)] (Ap T) f f dr, dr2f*(r»r2)
0 0

((T)=I (1+igT)e and where 2F, is the
standard Gauss hypergeometric function [60] of one vari-
able I =1—a'5'/P'y'. All the other quantities entering
into Eqs. (3.16a) and (3.16b) are listed in Appendix A.
An analogous result is obtained for the integrals (3.13c)
and (3.13d) by repeating the same procedure. Hence by
performing the straightforward partial differentiations in-
dicated in Eqs. (3.13a)—(3.13d), we can conclude that
method 1 finally provides the basic matrix elements
T&(g) from (3.3a) in the form of the three dimens-ional

where

f (~, )=—h —(r, ), h+—(r )=

and

f—(ri, r2) =f—(ri)f—(r2),
1Vp T

(4.2)

(4 3)

X T~(g;r„~2),
(4.1)

T&'f (ri&1 i&72)=ZT f f f dR dto, dt02yi (s»s2)(vR v.R)

Xexp[+2iqp T R iv .(to—, +to2)+i(, ' r, +i'm& r2]' 1
g;(xi&x2)

C02
(4.4)

with N+(vp T ) and JNz~ given respectively in Eqs. (2.12b) and (3.3c). Here the vectors t0, and F02 have the same meaning
as in Eq. (3.4). In method 2, we again first carry out the integrations over the electronic coordinates, thus leaving the
remaining outermost integral over R for the end of the calculation. Hence,

T&(g;r&, r2)= fdRe ' (vR+v R) P&(R), (4.5)

where quantities P&(R) are defined in Eq. (3.5b). Of course, in deriving the results for VI(R) with the one-parameter
orbitals (3.6a), we will again encounter integrals (3.9a) and (3.9b). This time, however, we shall perform the integrations
over q, 2 before carrying out the R integral, in the same manner as in our previous work concerned with the CB1 ap-
proximation [51]. To this end, we need the Feynman parametrization integral:

dt t" '(1 t) '[At+B(—1 —t)]
(n —1)!(m—1)! 0

(4.6)

where n, m are certain integer numbers. Then we can carry out the integration over q, 2 with the help of the expres-
sions [36]

iq R 2

dq = (1+AR )e'P
(lq —pl +A, ) 4x

iq-R 2

f dq —
( 3 +3gR +g2R 2 )e iP.R —AR

(lq pl +&{, ) 24&{,

(4.7a)

(4.7b)

with q being a real vector and Re&{,)0. In this manner we arrive at the following results for integrals (3.9a) and (3.9b):

~ j~k(R) =2~P, a N pe C2 —k(R)

Alk(R)=2majp' "N pe C2:k(R),

(4.8a)

(4.8b)
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withN p=N Np,

C —, (R)=f dt, + (1+6*,R)exp( —iQ —, .R—b, *, R),
1

t, (1 t—, )
C2 (R)=f dt2 + [3+36&R+(bz ) R ]exp( i—Q2 R. —b2R ),

2

and t I+ =t„ t =1—t),

(4.9a)

(4.9b)

Q,
+ =q»t, —qr(1 t, ), —Q, =qpt, —

qT, (1 t, ), q—x, =qtr+r, v,

(b,*) =uj tj(1 tJ )+ [p—~,p ]tj+ [a,a~](1 tj ), b—j
+—=++(bj+—

)

(4.10a)

(4.10b)

where Re[(h +—
) ])0 and quantities a, P are given in Eq. (3.10). With the help of these results, the matrix elements

A and S from Eq. (3.7b) become

A*(R)=4m x +N pe
— ' A (R), (4.11a)

(4.11b)

where

A —(R)= f f dt, dt, e 'Q " (1+6,, R)[3+36,,+—R+(b, +—
) R ]

t( tz(1 —t2)
(4.12a)

B*(R)= dt dt e 'Q ' [3+35*R+(6 ) R ][3+36,*R+(b, ) R ],t)t2(1 t, )(1 —t2)—
o o (Q +—

, ) (+2~)
1 1 2 2

x —=z u, y
—=x*z*, z+=a, z =P, u+=P, P2, u =a&a2,

Q
+ Q++Q+ Q+ Q++Q+

(4.12b)

(4.12c)

(4.12d)

This analysis fully determines the objects 9';f (R) from Eq. (3.7a). However, for the specification of the matrix elements
Tf(q; r„r2) from Eqs. (4.1) and (4.4), the results of the following auxiliary integrals are required:

I+=fdRe 'Q (1+6*,R)[3+36&R+(5*)R ](uR+v.R)

=3I~ +36 I2 +62(3b) +b~ )I3 +b) (h2 ) I4

J+— e iQ R ——5—R[3+3+SR +(Qk)2R 2][3+3+SR+(Qk)2R 2](uR+v R) T PR'
=9Io +95.+I +, +3[(h—, ) +36,—, b—2+—(b2 ) ]I~ +3k —, b2E*I3 +(b, *, ) (b2 ) I4

where

I„*=fdRe 'Q ' R" '(uR+v R)

(4.13a)

(4.13b)

(4.13c)

Once a detailed algebra is accomplished by means of the partial differentiation technique, we obtain the following re-
sults of a simpler version of the Nordsieck [36,61] integrals I„*for n ~ 4:

and

I,+ =4~r(1 —g„-)V+-,

I+, =8+I"(1 i gT p)—DP (1+i—gT pC +), ——

I2 = 8 r(1 g'Tp) (A l gTpB )'D
g+

I3 167TI (1 igTp) + (Ap igTpBtt )
(D )V

D+ 2 +
I+=16+I (1 ig )

— (A—+—+if B*),
(gk )2

(4.14a)

(4.14b)

(4.14c)

(4.14d)

(4.14e)
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V—=A,—(B—
) A,

—=—ig B =—2A,
+—(vb, —+i Q

—v),
( g —)'+ (b —)'

U —1, D +=— =A,—6—, A —=A, +—(6—
)++++ ' ++

A+ =1—4A —, B =—1+2A —C —, C—=C—[4+(1+igTp)C —],
A p~ =6(1—2A —), Bi3 =2A —Cp +3Dp~, Dis =2—(1—igT p)C —,

Cp =C—[18+9(i+if Tp)C +—(1+igT p)(2+i(T p)(C —
) ],

Thus, the auxiliary integrals I and J—*from Eqs. (4.13a) and (4.13b) take the form

1~=8~r(1 lg )D—V (7 +lg 5 ),
J+—=12nl'(1 igT—p)9' +—(v—+igT piz+ ), —

A+—=6[16(A —
) —12A + 1],

B—=4( A ) Cy —12A ~Dy +3(3—gz. p ),
C—=C—[ 96 +72(1 +(gTp)'C +16(1+jgzp)(2+, iver p)(C +—

) +(1+igr p)(2+i(T p)(3+i(T p)(C*) ],
D +=(1 —if—r p)C [6+(1+igTp)C —

]—6 .

(4.15a)

(4.15b)

(4.15c)

(4.15d)

(4.16a)

(4.16b)

(4.16c)

(4.16(l)

(4.16e)

(4.17a)

(4.17b)

where

70+=3(l —A+) —2b,z*(3b,+i+a,2)A p+ + +261 (bz+)zAy + 2

50+=3(C++B+)+2hz+(3bi +~2+-)Bl+-, * +2~1 (bz )'By + 2

+3+6/+(Q+)z2[(P+)z+3P+P++(P+)z]Z+A +4++++(Z+)2(Z+)2 A++4(Z+)2(pk)2(Z+)2 A+
a 1 2 P p 1 2 y

=3+2[2(hi ) +36 i hz +2(bz ) ]A +8[(b i ) +2(b i ) hz +3(b i ) (Az ) +26 i (hz ) +(Az ) ](A )

+485,—, hz [(b,—, ) +(bz ) ](b,—) (k—
) +128(h —, ) (bz ) (b —

) (X—
)

iz
—=2k, —[3C—(b,—) +[(6—, ) +36,—, bz—+(hz ) ]B—++26,+—

, bz
+—k—(6—

) B(i +—23(b,
+—

, ) (bz ) I, By j . —

(4.17c')

(4.17d)

(4.18a)

(4.18b)

These expressions enable us to write the quantities T&(ri; r„rz) from Eq. (4.4) as follows:

2vrv o o (Q+, )3(gz+)s

where

&—=8(A.—) y
——e—v—, 9+—=8(iL—+) 5 e+p- ——

y
—=(6—, ) +2hz (b, +—

) [3(b,—+, )
—2b. *, bz +(bz ) ]A,

+—+166+—
, (bz ) (b,—) (A,

—
)

(4.19)

(4.20a)

(4.20b)

(4.20c)

(aP) z —(z iy, u)(z — irzu), e —= +
—

z
U (&) )' (4.20d)

This step of the analysis completes the calculation of the
matrix elements T;&(g;ri vz) ln terms of the two-
dimensional integrals over the real variables t& and t2
both belonging to the interval [0,1]. Thus the final results
of method 2 for the basic quantities T&(ri) from Eq. (4.1)
are given by four dimensional num-erical quadratures

over the real variables ri z E [0,1] and t i z & [0,1].
Hence, this procedure of the calculation is less scient
than method 1 from the preceding section. Nevertheless,
method 2 has its own merits because it can be extended to
the excited states and highly correlated con6guration in-
teraction (CI) orbitals [62,63] in a much easier manner



47 INTERMEDIATE IONIZATION CONTINUA FOR DOUBLE. . . 3835

than in the case of method 1. In the present work,
method 2 will serve as an independent check of the nu-
merical results obtained by means of method 1.

Q;f*(mao ) = f dry g~ T;f*(g)) (5.1)

Here, rather than performing the remaining quadrature
over g by the usual scaled Gauss-Laguerre method, we
shall resort to an appropriate change of variable with the
purpose of concentrating the integration points near the
forward cone [34], where the total cross section peaks:
ii=&2(1+u)/(1 —u), with u H[ —1, +1]. This yields

Qf(m'ao)=N~ Np, rf du l'I 'f(u)I', (5.2)

where the quantities N~ z. and 'l,.f(u ) are defined in Ap-
pendix B. In particular, method 2 provides the matrix
element 'i;f(u) as a four dimensi-onal real quadrature
from 0 to 1. The present algorithm developed to com-
pute the total cross section (5.3) through the five
dimensional quadrature is thoroughly described in Ap-
pendix C.

As an illustration of the presently proposed BCIS ap-
proximation, the differential and total cross sections are
computed for the following syrnrnetric double charge ex-
change:

He ++ He(ls )~ He(ls )+ He + (5.3)

for which there is no post-prior discrepancy. The results
obtained are shown in Tables I and II and Figs. 1 and 2.
We shall first inspect the differential cross sections in Fig.
1 at 1.5 MeV by comparing the experimental data of
Schuch et al. [16]with the present results obtained in the
BCIS and CB1 approximations. The CB1 method exhib-
its an unphysical and experimentally unobserved dip at
0&,b=0. 112 mrad. At this particular scattering angle,
perturbation potentials V& and V, from Eqs. (2.13b) and
(2.14c) vanish identically due to the cancellation of the
contributions of the opposite signs corning from the
terms +2/R and —1/co

&

—1/c02, where co. =x or
co. =s . As seen from Fig. 1, in a narrow cone near the
forward direction, which otherwise contributes dorn-
inantly to the observables Q;f, the differential cross sec-
tions of the CB1 approximation grossly overestimate the
experimental findings. On the other hand, the BCIS

V. THE RESULTS OF THE NUMERICAL
COMPUTATIONS

We emphasize that from the results presented in Sec.
IV for the BCIS method, one could also readily deduce
the corresponding formulas relating to the CB1 approxi-
mation. This is accomplished by setting the Sommerfeld
parameter vz equal to zero in the Coulomb continuum
intermediate states and redefining appropriately [50,51]
the constant gJ;. In this way the present algorithm
developed for the BCIS theory is easily adjusted to yield
the results in the CB1 model also. We observe from Eqs.
(4.1), (4.4), and (4.19), that the quantities Tf(g) do not
depend upon the azimuthal angle P„, i.e., Tf (g) =Tf (ri)
and, therefore,

theory is observed in Fig. 1 to provide a substantial im-
provement over the CB1 model. First of all, the dip in
the angular distribution obtained in the BCIS method
disappears, despite the fact that perturbation potentials
Vf, are also present in the transition amplitudes

T;~' ' '. The reason for this is in the interference of the
dip due to the vanishing of the potential V;" or Vf" and a
minimum produced by the presence of the two continu-
um intermediate states y„(x, z) or y „(s, 2). In addition
to the eikonal strong forward peaking, there are two ad-
ditional structures in the curve predicted by the BCIS
model, namely, a minirnurn and maximum at 0&,b=0. 14
mrad and 0&,b=0.21 mrad, respectively. Thomas double
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5.57[ —15]
4.62[ —15]
3.84[ —15]
3.19[—15]
2.66[ —15]
2.23[ —15]
1.87[ —15]
1.58[ —15]
1.34[ —15]
1.14[—15]
9.74[ —16]
8.37[—16]
7.23[ —16]
6.27[ —16]
5.46[ —16]
4.78[ —16]
4.19[—16]
3.70[ —16]
3.27[ —16]
2.90[—16]
2.58[—16]
2.31[—16]
2.07[ —16]

TABLE I. Theoretical differential cross sections
dQ/*/dQ:—(dQ f+/d Q)~,b (cm /sr) as a function of the laborato-
ry scattering angle 0=0&,b (mrad) at incident energy 1.5 MeV
for the double-charge-exchange reaction He + + He( ls )~ He +(1s )+ He +. The displayed results are obtained by
means of the present boundary-corrected continuum-
intermediate-state (BCIS) method using the uncorrelated one-—Z(r&+r2)
parameter orbitals of the type (Z /m)e ' for the initial
and final helium bound states with the effective nuclear charge
Z = 1.6875. The prior and post differential cross sections

dQ;f /dQ and dQ;& /dQ are identical to each other for the reac-
tion under study and they are denoted by the common label
dQ/dQ:—dQ,&+/dQ. The numbers in brackets denote multipli-
cative powers of ten.

dQ
dQ
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TABLE II. Theoretical total cross sections Q;f (cm'), as a
function of the laboratory incident energy E (keV) for double-
charge-exchange reaction He ++ He( ls )~ He +(1s )
+ He +. The displayed results are obtained by means of the
present boundary-corrected continuum-intermediate-state
(BCIS) method and the boundary-corrected first Born (CB1) ap-
proximation of Ref. [50] using the uncorrelated one-parameter—Z(ri +r2)
orbitals of the type (Z'/~)e ' ' for the initial and final
helium bound states with the effective nuclear charge
Z=1.6875. The prior and post total cross sections Q,f and Q;f
are identical to each other for the reaction under study and they
are denoted by the common label Q —=Q;&.

of the Thomas double scattering. None of the theoretical
curves displayed in Fig. 1 are folded with the experimen-
tal angular resolution function. Once this folding is ac-
complished, as exemplified in Ref. [16], the convoluted
data of Deco and Griin's IPM model of the CDW theory
are significantly reduced only at the scattering angles
from 0&,b=0.01 mrad to 0&,b=0. 1 mrad. This reduction
is smooth, ranging from a factor of —3. 1 at 0& b=0.01
mrad to —1.2 at 0&,b=0. 1 mrad. A similar behavior is
expected to be found also in the present BCIS approxima-
tion.

E (keV)

900
1000
1250
1500
1750
2000
2500
3000
3500
4000
5000
6000
7000

BCIS

1.89[—19]
1.10[—19]
3.19[—20]
1.05[ —20]
3.89[—21]
1.57[ —21]
3.17[—22]
7.96[—23]
2.37[—23]
8.11[—24]
1.31[—24]
2.95[—25]
8.69[—26]

Q (cm)

CB1

8.11[—19]
5.16[—19]
1.87[ —19]
7.75 [ —20]
3.54[ —20]
1.75[ —20]
5.10[—21]
1.78[ —21]
7.07[ —22]
3.12[—22]
7.65[—23]
2.35[—23]
8.55 [ —24]
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scattering for reaction (5.3) takes place at O~,b=0.24
mrad, but the energy of 1.5 MeV is too small to exhibit
this effect clearly in the measurement. Otherwise, as can
be seen from Fig. 1, overall agreement between the BCIS
method and the experimental data can be considered as
fairly good. We should point out that the measured
findings on dg/dQ relate to double capture into all
(ground and excited) states of He, whereas the theory ac-
counts only for the transition 1s ~ 1s . The minimum in
the full curve in Fig. 1 would be partially filled in by in-
clusion of the excited states of He. A similar effect has
previously been noticed in Ref. [33] in the case of single-
electron capture treated within the CB1 model. The
main purpose of Fig. 1 is to clearly demonstrate the
inAuence of the electronic intermediate ionization con-
tinua onto the differential cross-section data by direct
comparison between the results of the four body versions-
of the BCIS and CB1 methods. Nevertheless, it would be
instructive to plot on the same figure the corresponding
findings of the independent-particle model, which has
successfully been used in the previous computations.
Hence, we show in Fig. 1 the angular distribution ob-
tained using a version of the CDW approximation, de-
vised by Deco and Griin [13,16] within the IPM and
configuration-interaction (CI) wave functions. There are
some undulations in the differential cross sections
dgcDw/dA similar to those reported previously in Ref.
[28] in the case of one-electron capture by protons from
helium. Around the critical angle 0&,b=0.24 mrad, only
a shoulder is seen in the dotted curve of the CDW model,
since the impact energy is too small to exhibit a net effect

-15
10

-16
10

0

I
I

It & I & I s I & I s I r I tw I t

1 2 3 0 5 6 7 8

e„b(10 rad)

FIG. 1. Diff'erential cross sections dQf /dQ—:(dgf—/dQ)~, b

(cm /sr), as a function of scattering angle 0—= 0&,b (mrad) in the
laboratory frame of reference at incident energy E=1.5 MeV
for the double-charge-exchange reaction: He ++ He
—+ He+ He +. The displayed theoretical curves relate only to
the transition 1s'~Is'. The full line represents the results of
the present boundary-corrected continuum-intermediate-state
method. The dashed line is due to the boundary-corrected first
Born approximation introduced in Refs. [50,51] for two-electron
transfer. Both computations employ the uncorrelated one-—Z(r +r& )
parameter orbitals of the type (Z /~) e ' with the
effective nuclear charge Z=1.6875 for the initial and final
bound states of helium. The prior and post differential cross sec-
tions dg;f /dQ and dg;f /dQ are identical to each other for the
reaction under study and they are denoted by the common label
dg/dQ—=dg;f /dQ. The dotted line represents the results of
Deco and Grun's independent-particle model of the CDW ap-
proximation with the CI wave functions (Refs. [13,16]). None
of the quoted theoretical data are folded with the experimental
resolution function. Experimental data (including double cap-
ture into all bound states of He): &&, Schuch et al. (Ref. [16]).
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The total cross sections for process (5.4) are shown in
Fig. 2 at impact energies ranging from 900 keV to 6
MeV. We have also extended the computation of Ref.
[50] and obtained the results of the total cross sections by
using the boundary-corrected first Born (CB1) approxi-
mation in the energy range EE[0.9,6] MeV. We em-
phasize again that the perturbation potentials V;"f are the
same in the CB1 and BCIS theories. Both methods satis-
fy the correct boundary conditions in the entrance and
exit channels of the general reaction (2.1). However, un-
like the CB1 approach, the second-order BCIS method

10

-20
10

10

E
LJ

C5

-22
10

-23
10

-2L
10

-25
10

-26
10

0.9 1

I

2

E(M ev)

I I

S 6 7

FIG. 2. Total cross sections, as a function of laboratory in-
cident energy E (keV) for the double-charge-exchange reaction:
He ++ He~ He+ He +. The depicted theoretical curves re-

late only to the translation 1s —+1s . The full line represents
the results of the present boundary-corrected continuum-
intermediate-state method. The dashed line is due to the
boundary-corrected first born approximation introduced in
Refs. [50,51] for two-electron transfer. Both computations em-
ploy the unco rrelated one-parameter orbitals of the type—Z(r& +r2)(Z' jm. )e ' with the effective nuclear charge Z=1.6875
for the initial and final bound states of helium. The prior and
post total cross sections Q;f and Q;f are identical to each other
for the reaction under study and they are denoted by the com-
mon label Q—=Q;f. The dotted line represents the results of
Deco and Griin's independent-particle model of the CDW ap-
proximation with the CI wave functions (Refs. [13,16]). Experi-
mental data (including double capture into all bound states of
He): o, Pivovar, Novikov, and Tubaev (Ref. [77]); b., McDaniel
et al. (Ref. [78]); V, DuBois (Ref. [79]);, Castro de Faria,
Freire, and de Pinho (Ref. [80]);and ~, Schuch et al. (Ref. [16]).

takes full account of the Coulomb continuum intermedi-
ate states of both electrons in either the entrance or exit
channels. Hence, by comparing these two theories, we
would learn about the relative importance of these inter-
mediate ionization electronic continua. The outcome of
such a comparison is evident and self-explanatory from
Fig. 2. The BCIS method provides the cross sections
which are much smaller than the corresponding results of
the CB1 approximation throughout the energy range un-
der consideration. The difference between the findings of
the BCIS and CB1 methods increases as the impact ener-
gy is augmented reaching even two orders of magnitudes
at 6 MeV. Such a pattern is explained by the following
argument. The two electrons are intermediately found in
the on-shell continuum states of the projectile nucleus be-
fore the actual double capture takes place. Since the elec-
trons are not staying in these continuum states in the
final stage of the collision, the probability for double-
electron transfer to a discrete state in the projectile
Coulomb field is reduced. The obtained reduction seen in
Fig. 2 is so significant that the mechanism of having the
two electrons in the continuum intermediate states, as in
the BCIS method, becomes dominant over the simple pic-
ture of the CB1 model, according to which the electrons
are free in the intermediate stage of collision involving
double charge exchange. A comparison between the
present results and the available experimental data on to-
tal cross sections is also displayed in Fig. 2. The BCIS
method is found to be in satisfactory agreement with the
measurement. Also shown in Fig. 1 are the total cross
sections of the Deco-Griin [13,16] IPM model of the
CDW approximation with the CI wave functions, which
compares favorably with the experiment. It is seen in
Fig. 1 that the most dramatic improvement of the BCIS
over CB1 approximation is observed at impact energies
belonging to the interval [0.9, 3] MeV. At the two largest
energies (5 and 6 MeV) considered in the experiment of
Ref. [16], the results of the BCIS model are seen from
Fig. 2 to significantly overestimate the measured data.
This is partially due to the fact that the BCIS method al-
lows for the full electronic continuum intermediate states
only in one channel (entrance or exit). If we account for
these intermediate ionization continua symmetrically in
both asymptotic channels, as properly done within the
four-body CDW approximation [24,25], then the total
cross sections should be further reduced in relation to the
BCIS method. This follows from an argument analogous
to the one put forward in the above discussion concern-
ing the relation between the CB1 and BCIS models. The
other reason for a possible explanation of the discrepancy
between the BCIS theory and the measurement at 5 and 6
MeV is an experimental underestimation of the true total
cross sections, namely, the results reported in Ref. [16]at
these two energies relate to the "partial" cross sections

0
Q defined by Q~=2sr J o d9(dg/dH), where 8 is a
certain maximal value of the acceptance angle. Schuch
et al. [16] have determined 8 with confidence at 1.5
MeV, since they measured the differential cross sections
at this energy. That same value of 0 was also used at 4
and 6 MeV at which, however, no data on dg/dO were
recorded in Ref. [16]. A correction due to the proper
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determination of L9 at 5 and 6 MeV could enlarge the er-
ror bar seen in Fig. 2 by another estimated [16,64]
amount of roughly 30%.

VI. CONCLUSION

We have studied the role of the intermediate ionization
continua in the problem of the two-electron capture from
heliumlike atomic systems by bare nuclei at high impact
energies. The analysis is accomplished within the
distorted-wave four-body formalism by devising a
second-order model termed as the boundary-corrected
continuum-intermediate-state approximation. The total
scattering wave functions of the four-body BCIS theory
satisfy the proper boundary conditions in both initial and
final asymptotic channels. In addition to the long-range
Coulomb distortions of the plane waves for the relative
motion of the two charged aggregates, we account for the
intermediate ionization continua of the two electrons in
either the entrance or exit channel depending upon
whether we are dealing with the post or prior form of the
transition amplitude. The effect of these continuum in-
termediate states is observed to be striking in the case of
the symmetric resonant double charge transfer in +-
He( ls ) collision at high energies. Reduction of the total
cross sections for about two orders of magnitude at high
energies is recorded in the BCIS method in comparison
with the corresponding results of the boundary-corrected
first Born model, which incorporates only the direct col-
lisional path without any double-electron scattering
effects. As to testing the theory against the measurement,
the BCIS approximation is found to yield results which
are in good agreement with the available experimental
data on differential and total cross sections for two-
electron capture from helium by cx particles at high in-
cident energies. More work is required to firmly establish

I

the validity of the present second-order method in corn-
parison with the experimental data on asymmetric col-
lision systems exhibiting double charge exchange, as well
as with other second-order theories, notably the rigorous
four-body extension of the continuum-distorted-wave
theory recently devised by Belkic and Mancev [24,25].
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APPENDIX A

where

p1

(lq2 —Q21'+~2)'
' (Ala)

Q2 P2t2+K2( 1 —t2 ),

&2 —Ip2
—

~&l t2(1 t2)+yQtp+~p(1
(Alb)

Inserting (Al) into Eq. (3.15) we arrive at the following
expression:

Here we calculate the integral (3.15) from the main
text. We first utilize the Feynman parametrization tech-
nique, such as

1

( I q~
—p2I'+ yP( Iq~

—~21'+ &2)

(5),52) (0+, ~+) (0, & ) 1

Z .' ' (v, g, q;p„~,;p„~,)=$(v;g) ' dr ' dr, f(v;g;r, r, ) dt, K(t, ),
1

where

L(t~, q, )
K(t2)= dq,'

(Iq~ —p~l'+y~)(Iq~ —~~I'+g) '

and

1
L(t2, q, )= dq2 z z 2 2 2

( Iq2
—Q21'+ ~2)'( Iq~+ q, —ql'+ y')

Using the simple analytical result of the two-denominator integral in the form [65—67]

(A2a)

(A2b)

(A2c)

dp 2

1

p +A, p Q) +p
we deduce

1

P co +(A, +p)
(A3a)

1
L(t2 qi)=

b,, ~q,
—Q~'+g' '

where Q =q —
Q2 and b, =y+ Az. Therefore, Eq. (A2b) becomes

772 1
'

( Iq&
—

p& I'+ y &)( Iq&
—

~& I'+ g)( I q&
—Ql'+ &')

(A3b)

(A4a)
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This is the well-known Dalitz [65] three-denominator integral whose general result was obtained by Lewis [66] (for the
most general Dalitz-Lewis integrals involving the momentum space hydrogenic orbitals with spherical harmonics en-
countered in applications within the CB2 approximation, see Belkic [67]):

1 OO 1

(p'+~')( Ip
—Pl I'+Pl )( Ip —P2~'+P2) o aot'+2Pot+ yo

m2 &0+V &o
—aoyo

ln
v'n'. .y—. o. v'—nl .—y.

(A4b)

where

ao=P, (zI~ +z2~ )[p2+(A, +P2) ],
I 0 ~P1P2(2+zl +z2)+P2(~ +pl +Pl)+Pl(~ +p2 P2) &

yo=P2(z' , +z2 )[p, +(A, +P, ) ],
and

1
z1,2 2 [ ~pl P2~ +Pl+P2+ V [ Pl P2 +Pl +P21 4P1P2I

2P&P2

(A58)

(A5b)

(A5c)

(A5d)

If we employ the final analytical result of the Dalitz-Lewis integral (A4b) in terms of the elementary logarithmic func-
tion, we would afterwards be forced to carry out the integrals over T and T, in Eq. (A2a) by means of the numerical
methods. However, as it will be shown shortly, these two integrations (T, T, ) can be carried out analytically, provided
that we utilize the intermediate expression in (A4b) given as a real quadrature over t from 0 to ~. By so doing, we shall
first introduce the change of variable t' =Pl(z 1

~ +z &~ )t in the integral over t in Eq. (A4b) and obtain the result

with

1 OO 1

(p'+~')( Ip
—

pl i'+Pl)(lp —p2i'+P2) o At'+2Bt+ C
' (A6a)

~ = ~» —P2~'+(S 1+P2)'

B =A, 2 +p2(A, +p, +pl )+p, (A 2+p 2 +p22),

C=[p, +(A+p, ) ][p2+(k+p2) ] .

In this manner, integral K(t2 ) from Eq. (A4a) reads as follows:

1K(t2)= dq,
(q, +5, )(~q, —u, ~ +y, )(~q, —w, ~

+b, )

277 oo

dt
2

1

at +2bt+c
where

a=~u, —w, ~ +(y, +5) =~p, —Q +(y, +b)
b =a5, +(5,+u, +y, )b, +(5,+w 1+6 )y, ,

c =[u, +(5,+y, ) ][w, +(51+6,) ],
ul =Pl —Kl, W, =Q —Kl, u 1

=
July, Wl = [Wl f

Inserting the result (A7a) into Eq. (A2a), we arrive at the expression

) dt2 1Z, ,
", ', (vgqp„K, ;P„K2)=2lr'X(vg)g '

dT
' dr f(vgTTl) f dt

Ci at +2bt+c
In the particular case of Eqs. (3.13a) and (3.13b) of the main text, we shall have

(a&, ~&3

„;P„,J3„(vP kT Tv 'qP1 'qT IP2 qT)

(0,~ ) (0, & 3 ) dt2 1=2' N(vP~gT) f ' dr/ drlf (vP~gT'7 Tl) f f dt
C c) a't'+2b't+c'

(A6b)

(A6c)

(A6d)

(A7a)

(A7b)

(A7c)

(A7d)

(A7e)

(AS)

(A9a)
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where bs =a, as i—v (yp+ top), (Al ld)

a'=a —2ap~+2a~~I —2a&~~, ,

b'=b —2bp~+2b~~, —2b)~~i,

c =c 2cp7+2c 7 i 2cg77 i

and

a =wT+g(„g(, =g+b„g=k, +62,

(A9b)

(A9c)

(A9d)

(Aloa)

cp=o~Pp~ Pp=uT v iv—g,

Cy =lOpP~, 0 p=lU CiU
2

c&=2ioppp, c&=a]+b& .

(A12a)

(A12b)

(A12c)

(A12d)

c =o. p, o =v +c, , p =g, +uT, g, =/+a, ,

a p
=w T v i v g„—a

T
= w—T"v i v—g„as

= —2v 2

(A10b)

(A10c)WT=UT+v, uT —2qT+t2v, tz =( 1 —Tz)t2

b =b)co +a, a +gy, co =a, +g +uT,
—U2+Q2 +a 2

bp=a, ap+b, cup ,'iuy—, —cup=uT v ivg—,

(a, , a, )Z);P, P ( P KT ~ qP1
—qT qp2 'qT )

(A 1 la)

f f dt A'(t, t, ), (A13a)
2 062 0(A 1 lb)

(A 1 1c) whereb =a, a +gyp —,'ives—, yp= u —ivb—, ,

For the purpose of having an integral over the Pnite
lower and upper limits, which are more convenient for
subsequent numerical computations than the original in-
terval [0, ~ ], we shall change the integration variable in
Eq. (A9a) according to t'=t/(1+t) so that

lgT 1 1Vp 1 l Vp
N (o+, ) (0+,1+) ( r) &1 (T)

dT d7
2 ~ (5' —P'), +P' +( ' —y'), — (A13b)

with N=N (vp)JV(gT),

a'=
—,'[(a 2b +c —)t +2(b —c )t+c ],

/3'=(ap 2bp+cp)t —+2(bp cp)t+cp, —

y'=(ar 2b~+ c~—)t +2(b~ —c~ )t+c~+a',
5'=(as 2bs+cs)—t +2(bs cs)t+—cs+i3' .

(A14a)

(A14b)

(A14c)

(A14d)

avoided by the argument of analytical continuation.
Borowitz and Klein [69] realized that the Nordsieck [61]
technique also remains valid for noninfinitesimal values
of parameter X and this fact was utilized intensively in
the case of the excitation problem in atomic scattering
[69—71], as well as in single-charge-exchange reactions
[72,73].

lVp
I

X 2F) (i g T, ivp, 1;x ), '(A15)

~gTZZ
with N ((T ) = I (1+igT )e and where 2F1 is the
standard Gauss hypergeometric function [60] of one vari-
able,

The quantity JV(t, t2) belongs to the class of the well-
known Nordsieck [61] integrals, whose final result is
presently obtained as the following concise expression:

igT

JV(t, t, )=, N+(vp )N *(gT )a'

APPENDIX 8

N~ = ~N(v~) ~'= e
sinh(~vx )

(Bla)

+ — 2
N~ =4N nl, ng = .

h( ~ ),

48ZT p
(aI3) z +—

,

(Blb)

In this appendix we provide a list of the quantities en-
countered in Eq. (5.3) of the main text. Thus, we have

2

X=1- a'5'
(A16)

where ~N (v)~)~=~N (vx. )~=~N(v)~)~ and

'1;I(u)=(JKP T) f f dr, dry (T„T,)F (T„T,—) . —

Note that Nordsieck [61]unnecessarily limited himself to
small values of the so-called dam ing parameter A, ap-
pearing as the exponential term e "in his space integral
of the bremsstrahlung matrix element. This subsequently
led some authors [68] to conjecture that Nordsieck's [61]
powerful complex contour method is valid only for
infinitesimally small positive values A, . Such a limitation
is, however, only a matter of convenience and can be

(B1c)

Further,
1 1

F~I(&1,&2) u- f f dt, dt, t+-, t, (1——t, ) ll —(u ), (B2)
0 0

'M —(u )=(B—
) (& +i gT PQ ),— (B3a)—

(~+1)'(~2+)'
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(87a)
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]
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+(1+igT p)(2+i (T p)(C —
) ],
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C —=C +—[96u, +72(1+ig pT)u, C +—
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+(1+ijT p )(2+i gT p )(3+igT p )(C—
) ],

(89c)
D —=(1—i (T p)C —[6u, +(1+igT p)C —]—6u, . (89d)

APPENDIX C

(85a)

—qp. v(ro —ro it2)

+ + Z
2q -v= —vq, 2q .v= —vq, e—=

p ~ T ~ (Q+)2

4qT p =2(1+u )+(q ) u „
4q qp= —2(1+u )+q+q u, ,

(85b)

(85c)

(85d)

—
q v(r+ T t, t ), —

b =(1 t, )(1 —t2)(u Ti'r2+—roqT'v)+(qT v V)T

Here we shall outline the details of the present algo-
rithm pertinent only to method 2, since it is more compli-
cated than method 1. The numerical work invoked in
method 1 can be directly set up by analogy to the device
which we are going to expose. The functions f (Ti, T2)
defined in Eqs. (4.2) and (4.3) possess the integrable
branch-point singularities at ~, 2=0 and ~, 2=1. The
standard Cauchy regularization of the whole integrand in
Eq. (81c) can be readily accomplished by first rewriting
the expressions for 'l,.f (u ) in the following way:

q =qT2+uia, q&=qp+u&p, ui =1—u, t =ti+t2,
(86a)

'l, f(u ) =At p*Tf h
+—(T, )X—(T2),

0 72
where

(C la)

to 2 ty V 7 it] +7 2t2, %0—'TI +%2,
2 2

q
—=u+

v

(86b)

&o=rit2+T2t„T =T,(1 t, )+T,(1 —t, )=To T—+, —
(86c)

to =t 2tit2

X (T2) JRPT f h (T&)F (ri T2),
0

(Clb)

where quantities F are defined in E—q. (82). Then the
Cauchy subtraction procedure for simultaneous regulari-
zation of the branch-point singularities at ~& 2=0 and

~, 2=1 implies

(Ti, T2) —Ti[F—+(1,T2) —F—(0, r~)] —F—(0,T2)

+[F (1~&2)—F (0,T2)]f drih —(T, )+F—(0,72)f h (ri) . .
0 0

(C2a)
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] d7~
A.p z- J h —

(r, ) = 1,
0

(C2b)

The two last integrals in Eq. (C2a) can be calculated
analytically by means of the P function (3.2c) with the re-
sults

1~p T dr)/l (rl ) l VP T&

V. =X*(0)+i&„V,*,
X (r~) —r~ Vr —X*(0)

Vp (r~) =h+—(r~)

(C4b)

(C4c)

l 1'j,&(u ) = V +—sinh(~vp r) dry vp (rg) (C4a)
0

with

so that

l 1X (rz) =X (rz)+ —sinh(vrvp r) dr)xt3 (r), rp),
77 0

(C3a)

where

(C3b)X~ (rq) =F—(O, rp)+l vp rx& (rp),
F (1 ))rp) r(xr~(rp) F (0~1))

Xp (r„r~)=h*(r, )

(C3c)

Xr—(r~)=F (l, r~) —F—(O, r~) . (C3d)

An entirely analogous technique applied to the integral
over the variable 72 yields the final results:

(C4d)

These Cauchy regularized integrations over 7, and 72 are
now well adopted for the present application of the
universal Gauss-Legendre variable-order numerical quad-
ratures. We also employ the same quadrature rule to the
other three integrations over the variables t

& z C [0, 1] and
u E [ —1, + 1]in Eq. (5.2) of the main text.

Another convenient method [74] to handle the singu-
larities at 7& 2=0 and 7, 2=1 is further implemented in
our computations, namely, we first split the interval
r &[0,1] into two subintervals [0,1/2] and [1/2, 1] for
j=1,2. Then we change the integration variables in the
first and the second subintervals according to 7 =

—,'e
Q

and 7- = 1 —
—,
' e ', respectively. This yields

'1;~(u)=X*(0)+ sinh(rsvp r) f duze '[ V& (e '/2)+ V& (1—e '/2)], (C5a)

where

X +—(rz) =F—
(O, rz)+ sinh(vrvr p) du &e '[X& (e '/2, rz)+X& (1—e '/2, rz)],

277 0

X —(r~) —X —(0)
Vp (rq)=h+—(r~)

72

(Csb)

(C5c)

(C5d)

I du, e 'f(u )= I du e' 'f(u, . /k . )
0 0

(C6)

is required to obtain the accurate result with the low-
order Gauss-Laguerre quadrature. Some numerical ex-
periment is necessary to select the optimal values of the
scaling parameters A, ~ 0. Only certain values A,"~"of R-
are retained, which make the final result insensitive to
variation of A,J. around A,"p" (j=1,2). Note that in most
applications in atomic physics, the Gauss-Laguerre quad-
rature rule necessitates a scaling of the type (C6) in order

The integrals over the variables u~ (j=1,2) have the
branch-point singularity at 7- = ~. This singularity,
however, is never reached in practical computations due
to the presence of the overall multiplying cutoff function
e ' in the integrands in Eqs. (C5a) and (C5b). This time
we apply the scaled Gauss-Laguerre quadrature methods
to compute the integrals over u

&
and u 2. Here, a scaling

of the type

I

to stabilize the convergence while increasing the number
of the integration points. When the order of this quadra-
ture method is augmented, the upper integration limit,
which in practice always remains finite, is also increased.
For this reason, the larger number of the quadrature
pivots does not necessarily yield a better result. This is
particularly true if the function under the integral sign
possesses one or more maxima and otherwise is negligible
elsewhere, as recorded in most applications of atomic
scattering theory. In such a case, by taking a larger set of
integration points one would also spend a considerable
amount of the CPU time computing the values of the in-
tegrand which essentially do not contribute to the final
result of the integral with a prescribed accuracy. The
change of integration variable u ~u /A, , in (C6) scales
the Gauss-La guerre quadrature points to the region
where the integrand f(u. ) peaks, provided that the op-
timal values k" "of the parameter A, are chosen.

We have also implemented yet another method of com-
putation of integrals of the type
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IJ=f deja (1—z. ) f(~ ),. (C7)

where f(rj ) is a regular function in the interval
~ H [0, 1]. This alternative procedure consists of isolat-
ing the singularities at rJ. =O and w =1 by splitting the
interval [0,1] into three subintervals according to
[0, 1]=[O,e~ )+. [eI, 1 —ej. ]+[I—ej. , 1], where e is a posi-
tive infinitesimally small number:

1 —6'.
J+ J+ g lv

J J

(C8)
IVg 1 IVg

Now the whole integrand ~ ~ (1—7 )
~f(r )

=gtc(rj. )f(rj ) in the second integral over the middle in-
terval [e, 1 —ei] becomes regular and smooth, so that
the standard Gauss-Legendre quadrature can be directly
used in this case. On the other hand, the first and the
third integral on the right-hand side of Eq. (C8) are cal-
culated analytically. This is accomplished by expressing
the integrand gx. (~ )f(~ ) as a series expansion in powers
of r and 1 —r for r E[O, e ] and rJ. E[1—ej, 1], respec-
tively. The coefficients of these power-series expansions

are determined numerically from an efficient Aitken algo-
rithm originally devised in Ref. [75]. In this way, the first
and third integrals in (C8) become a trivial task with sim-
ple analytical results.

It should be remarked, however, that due to the fre-
quent occurrence of integrals of the type (C7) in the ap-
plication of the distorted-wave scattering theory to realis-
tic problems, there is a need for a general purpose algo-
rithm. Although the three methods for the computation
of integral (C7) discussed above are presently thoroughly
tested and proven convenient, since they all yield the
same results, we are convinced that the most efficient
quadrature method would be the one which will generate
the integration points by directly incorporating the trou-
blesome terms gx(r ) into the appropriate weight func-

tions. Such an accomplishment should be feasible with

the help of the Jacobi polynomials, despite the singulari-
ties of the function gx(rj) at rJ=O and ~I=1. Recall
that, similarly, while computing the integral of the type

f Id xu(x)f(x), where f(x) is a regular function and

u (x) = I /+ I —x, the term u (x) can readily be included
in the weight function of the Chebyshev [76] quadrature
methods even though u (x) becomes singular at x =+1.
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