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Multiconfiguration linear-response approaches to the calculation of absolute photoionization
cross sections: HF, H20, and Ne
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We describe multiconfiguration linear-response (MCLR) approaches to the calculation of absolute
photoionization cross sections. Three algorithms are described: (i) one in which the MCLR equations
are used to derive the primitive spectrum of excitation energies and oscillator strengths; (ii) one in which
the solutions of the MCLR equations are used to provide the even negative moments of the
photoexcitation-photoionization spectrum; and (iii) one in which a pseudospectrum is obtained directly
in the iterative procedure used to solve the MCLR equations. Either the primitive spectra (i), the mo-
ments (ii), or the pseudospectra (iii) are used as basic quantities in Stieltjes imaging to obtain the photo-
ionization cross sections. Numerical demonstrations with large multiconfigurational self-consistent field
reference spaces are given for the photoionization of HF, H20, and Ne. Comparative calculations are
performed in the random-phase approximation. Results are analyzed with respect to the fulfillment of
gauge invariance, sum rules, basis-set completeness, and choice of correlating orbital spaces. Results for
absolute photoionization cross sections from the MCLR algorithms agree very well with Stieltjes-
imaging cross sections obtained from the serniempirically determined spectral moments of Meath and
co-workers [Can. J. Phys. 55, 2080 (1977); 63, 1616 (1985)], and distinguish the raw experimental cross
sections.

PACS number(s): 33.80.Eh

I. INTRODUCTION

The dynamics of photoionization processes have long
been of considerable interest for experimental and
theoretical studies. By means of energy and polarization
variable excitation sources various resonant phenomena
in continuum spectra of atoms and small molecules have
been discovered and analyzed. More recent experimental
studies focus on spectroscopy of surface adsorbate mole-
cules for which resonances and other spectral features are
interpreted in terms of surface bond strength and orienta-
tion of the adsorbate [3].

A problem in the theoretical description of photoion-
ization resonances lies in the treatment of the scattering
states due to the construction of the explicit continuum
electronic wave functions in nonisotropic potentials.
Conventional scattering approaches relying on asymptot-
ic boundary conditions have met considerable difhculties
in solving this problem, while so-called L methods have
an inherent potential in this respect due to the utilization
of square-integrable basis sets to describe the noncentral

character of the bound and continuum functions. In the
L approaches the many-electron continuum is generally
approximated by an antisymmetrized product of a fixed
target function for the molecular ion and a continuum or-
bital for the outgoing electron, the so-called static ex-
change approximation. Out of the L methods mainly
three branches have been developed: moment-theory ap-
proaches [4,5], K-matrix approaches [6,7], and complex-
basis approaches [8,9].

An appealing feature of the moment-theory ap-
proaches is that they provide a direct generalization of
the bound-state electronic structure methods and even
the very computer codes, with the distinct advantage that
both discrete and continuum states can be treated on a
common basis, using the same point-group symmetry, in-
tegral representations of operators, etc. The correct ener-
gy normalization of the continuous part of the spectra is
obtained from pointwise convergence of the spectral den-
sity. The formal motivation for the moment methods
originates from the fact that, although the solutions of
the Schrodinger equation in a square-integrable basis set
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are proper representations only for the discrete part of
the spectrum, they provide proper representations of the
moments of the spectrum.

In the Stieltjes imaging approach, originally developed
by Langhoff [4,5], a primitive Schrodinger spectrum of
order N is converted to a spectrum (quadrature spectrum)
of order n (n ((N) such that the first 2n moments of the
spectrum are reproduced. This quadrature spectrum is
then used to form the Stieltjes derivative of the integral
oscillator strength distribution that is proportional to the
correctly energy-normalized cross section. The primitive
spectrum has been generated with different techniques, in
particular improved virtual-orbital (IVO) [10] and Lanc-
zos techniques [11]corresponding to the static exchange
approximation for single-channel and multichannel cal-
culations. Common to these approaches is that the pho-
toelectron function is assumed strongly orthogonal to a
fixed target function, and that polarization and correla-
tion of the latter with the photoelectron is not accounted
for. This approach is well justified for high excitation en-
ergies, for which the sudden approximation applies, but
may become more doubtful for slowly escaping photo-
electrons at threshold or at low-lying shape resonances.

The use of linear-response (LR) methods, or polariza-
tion propagators, in connection with moment-theory cal-
culations of photoionization cross sections has been pro-
posed and investigated by Cacelli, Carravetta, and Moc-
cia [7,12,13], Swanstrom et al. [14], and Miiller-Plathe
and Diercksen [15]. The basically applied low-order
method is the random-phase approximation (RPA); how-
ever, the latter authors also exploited the
multiconfigurational time-dependent Hartree-Fock
(MCTDHF) [14] and the second-order polarization-
propagator approximation (SOPPA) [15] methods. With
the recent implementation [16] of multiconfigurational
linear-response (MCLR) [17] approaches for large-scale
reference wave functions [18] it has been possible to ob-
tain excitation spectra for very accurate reference wave
functions. This has been demonstrated in our recent ap-
plication of MCLR to the calculations of excitation ener-
gies and Stieltjes imaging of the photodetachment cross
sections of the notoriously difficult Li system [19]. It
was shown that with a full variational form of the wave
function only small expansions in terms of
configurational and orbital parameters are needed to de-
scribe the exotic electronic structure and to obtain the
shape resonance and the polarizability very accurately.

In the present work we describe how the solutions of
the multiconfigurational linear-response equations can be
used also to describe continuum- (shape-) resonant phe-
nomena beyond the ionization threshold. With the
MCLR approaches a description of the photoionization
dynamics is obtained that also accounts for correlation
(or polarization) of the residual ion to the photoelectron,
and which thus goes beyond the strong orthogonality
condition imposed in static exchange approximations.
The MCLR equations are solved for the primitive spec-
trum of excitation energies and oscillator strengths as uti-
lized in the previous application on Li [19]. In the
present work we also propose an algorithm for solving
MCLR equations that provides the even negative mo-

ments of a photoexcitation-photoionization spectrum
directly. We also show how a pseudospectrum is ob-
tained directly in the iterative procedure to solve the
MCLR equations. Thus either primitive spectra, mo-
ments, or the pseudospectra generated from MCLR are
used as basic quantities in Stieltjes imaging procedures to
obtain the energy-normalized photoionization cross sec-
tions. These approaches are evaluated against each oth-
er. The MCLR pseudospectrum provides some of spec-
tral moments of the primitive spectrum exactly and
some —the higher ones —approximately, but is always
possible to compute, while the primitive spectrum may
not be. The so-called quadrature spectra can then be ob-
tained from the pseudospectra instead of the primitive
spectrum or its moments. This gives an efficient and also
a numerically stable procedure for the final continuous
oscillator strength distribution.

In the following section we briefly present the MCLR-
based approaches for generating photoabsorption-
photoionization cross sections. The Stieltjes imaging
method is al.o presented for cases using the spectral mo-
ments as primary input. In Sec. IV we present the results
for H20, HF, and Ne. We compare the three methods
employed and investigate the degree of gauge invariance
and fulfillment of sum rules, and, furthermore, the depen-
dencies on basis set and reference active space. Finally,
in Sec. V, we discuss the formal and numerical aspects of
the methods and draw some conclusions from the present
investigation.

II. THEORY

A. MCLR approach

A B
B A

X
CO n g —y

0
0

A and B are Hessian-type matrices and X and 6, are
metric-type matrices, which are defined in Eqs. (9)—(12)

Response functions describe how a state, the reference
state, reacts to external or internal perturbations. A sim-
ple time-dependent response function model is obtained
using a self-consistent-field (SCF) state as a reference
state. This approach is often referred to as the random-
phase approximation and is used as a basic level of theory
in the present calculations. Response function methods
have also been derived for

multiconfigur

atio self-
consistent-field (MCSCF) and coupled-cluster (CC) refer-
ence states [20—22] and by using perturbation theory
[23]. In the present work we consider response functions
where MCSCF states are used as reference states. The
MCSCF linear-response functions were derived by
Yeager and Jdrgensen [20]. In a later formulation Olsen
and Jdrgensen derived both the linear and quadratic
response functions. We use this formulation in the
present work. The MCLR approach leads to results that
are gauge invariant and sum rules that are fulfilled exact-
ly in the limit of a complete one-electron basis. The spec-
tral representation of the response function is determined
by a MCLR two-component eigenvalue equation [17]:
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in Ref. 24. In short form, Eq. (1) can be written as the
generalized eigenvalue equations

(E' ' —co„S' ')X„=O . (2)

An interative solution to Eq. (2) requires that linear
transformations are carried out with E' ' and S' ' as
transformation matrices [24]:

'u
2u

'm

m

A B '6

8 A

X

u =P,'

lb
m =S(2)b

2b

(3)

(4)

An algorithm that determines the few lowest eigenvalues
using the linear transformations in Eqs. (3) and (4) was
given in Ref. [24]. This algorithm can be viewed as a
generalization of the Davidson-Liu algorithm for the
symmetric eigenvalue problem and has the same kind of
stable convergence. The special feature of the algorithm
is that it employs the pairwise structure of the LR eigen-
value equations. The feasibility of our implementation of
the MCLR approach lies in the fact that the two matrices
E' ' and S' ' of large dimensions (10 —10 ) are never con-
structed explicitly, and that information about E' ' and
S' ' is only available through the linear transformations
in Eqs. (3) and (4).

The set of transition energies and intensities I co„,I„],
which can be obtained from the MCLR eigenvalue equa-
tion (1), provides the correct spectrum of excitation ener-
gies and intensities in the discrete part of the spectrum,
that is, when co„&Ex ', where E ' is the ionization
potential. For co„)E ', each pair of primitive excita-
tion energies and intensity factors forms a discretized
representation of the continuum, which, however, does
not form a true representation of continuous photoioniza-
tion cross sections. We employ the Stieltjes imaging
technique to extract the correct continuous oscillator
strength density from the discretized spectrum. In the
Stieltjes imaging procedure the primitive spectrum of Eq.
(2) of order N (half-dimension of E' ') is converted to a
quadrature spectrum of order n ( n «N ) such that the
first 2n moments

S( 2k) —y ~—zkf (i)

n (%0)

where

f ( ) —z
/
(0(r(i)[& ) /

—z /r(')f

are reproduced. i denotes x, y, or z. This quadrature
spectrum is then used to form Stieltjes derivatives for the
correctly energy-normalized cross sections. The ap-
proach can straightforwardly be used when the dimen-
sion of E' ' is so small that an explicit diagonalization of
E' ' can be carried out. The first 2n moments can be
determined straightforwardly for large n by summing the
individual contributions to the moments. We have previ-
ously used this approach in our calculation of the photo-
detachment cross sections for Li [19]. We call this ap-
proach the primitive spectrum approach. The Stieltjes
imaging techniques connected to the present MCLR ap-

f (i) p (i))2
&n 3 n ~ n

~(i) ~ t (i)x7"n —I"
n

and the matrices have the paired structure

(7)

(8)

A B
E B A (9)

S[2] —S

Let us consider the diagonal representation of Eq. (2):

[2]
co 0
0 co

(12)

J[2]
I 0 =x's[']x
0 —I (13)

(i) xtr(i)

The spectral moments in Eq. (5) may be written

g(i)( 2k) y (~ )
—2kf (i)

n (%0)

(O~r,. ~n )(co„) "+ co„'(n ~)r, ~[0),
n (%0)

which, using Eqs. (12)—(14), becomes

(14)

(15)

g(i)( 2k) —2 i(i)(~[2] J[2])2k —2e[2] (i)
P

—2 r(i)(E[&] S[&])&k
—&E[&] 'r(i)

3 (16)

The even negative spectral moments can be calculated by
successively solving linear-response-type linear equations
in the original basis:

](i) ~[2] r(i)—2

t(i) —E[2] (S[2]t(i) )

t(i) E[2] (S[2]t(i) )

(17)

(18)

(19)

proaches are briefly presented in Sec. II B.
When the dimension of E' ' is so large that Eq. (2) can-

not be diagonalized explicitly we must resort to a
different approach for determining the photoionization
spectrum. One such approach is to evaluate the spectral
moments in Eq. (5) directly without first resorting to the
primitive spectrum and then use a Stieltjes imaging tech-
nique from that point (a Stieltjes imaging technique for
this purpose is outlined in Sec. II B). We refer to this ap-
proach, further described in the following, as the direct
spectral moment approach. We specifically consider
MCSCF linear-response theory [17],where the excitation
energies and transition moments are determined by the
generalized eigenvalue equation (E[ ] —co„S[ ])X„=O
[Eq. (2)] and
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S( —2k) =(r"')'t" k = 1,2, 3, . . . . (20)

lation of the photoionization spectrum comparatively
with the primitive and the moment spectral approaches.

B. Stieltjes imaging

Note that (r"))'t"z),+)=0 because of the paired struc-
ture. The odd moments therefore cannot be evaluated in
the original basis using this method. The iterative, suc-
cessive solution of the response type of linear equations
makes it possible to treat cases where the dimension of
the MCLR equation is so large that the E ~ and S ma-
trices cannot be stored, much less diagonalized explicitly.
We keep all trial vectors from each successive solution
for t," [Eqs. (17)—(19)] and we find that if we project Eq.
(2) to the subspace of trial vectors and calculate effective
spectral moments from this reduced space then the spec-
tral moments of all orders have converged to a given
tolerance after having solved explicitly t"2,
j =1,2, . . . , m, m being of low order. In the computa-
tions done in this work we found that m =6 was
sufficient to calculate S(k), k = —1, —2, . . . , —15. S(0)
is included in the velocity form but not in the length
form; in the latter case we simply set S(0) equal to the to-
tal number of electrons (the Thomas-Reiche-Kuhn sum
rule).

The direct moment approach requires moments
S( —2k) to be evaluated for large k. The spectral mo-
ments are solutions to sets of linear equations and it
therefore becomes a computationally demanding task to
use this approach. Significant savings can be obtained by
using the pseudospectrum approach, where accurate rep-
resentations of higher moments are obtained by solving
only the sets of linear equations for lower moments. This
accurate representation of higher moments is thus ob-
tained by saving all the trial vectors that are obtained
solving for the lower moments and then projecting Eq. (2)
to the subspace of these trial vectors. The diagonal rep-
resentations of this reduced space representation of Eq.
(2) may be used as in the primitive spectrum approach to
determine spectral moments of high order, summing up
individual contributions to the moments.

The spectral moments are thus determined by building
up a residual space that spans successive solutions for t".
The equations for each moment are solved in a reduced
basis starting from the trial vectors for all lower moments
and generating extra trial vectors using the algorithm of
Ref. [24], taking advantage of the paired structure of the
trial vectors. After the solutions for the desired number
of moments have been determined, the total reduced
space can be diagonalized to yield a set of effective states
and intensities. We call the projected spectrum obtained
the MCLR pseudospectrum which can be used to form
the Stieltjes derivatives and then the Stieltjes cross sec-
tions. The MCLR pseudospectrum differs from the quad-
rature spectrum obtained in the conventional Stieltjes im-
aging procedure (here primitive spectrum approach),
which contains excitation energies and intensities co', "'
and strengths I "' that correspond to abscissas and
weights of a generalized Gaussian quadrature of order n,
and which are made to reproduce the first 2n moments
exactly (see the next section). In Sec. IV we evaluate the
efficiency of the pseudospectrum approach for the calcu-

(.)=j"", ', ,
e —z

where

( e )
dlscl e(c

f;o(e e; )+g (e)—
dE

(21)

(22)

is the oscillator strength density containing contributions
both from the discrete and the continuous electronic
spectrum and e is the excitation energy from the ground
state, the cross section o (co) is proportional to the imagi-
nary part of the polarizability for real values co of the fre-
quency or, alternatively, to the oscillator strength density
in the continuum

o (co) = 1m[et(co)]= g (co) .
47TCO =2'

C C
(23)

Equation (21) is particularly convenient for showing that
the polarizability is a Stieltjes integral as far as
df (e)Ide 0 in the integration range, which is obviously
true for excitations from the ground state. According to
the Stieltjes approach, this kind of integral can be conver-
gently approximated, also on the real axis, as

dF'"'(e)
cc(z) =f, , +R„(z'),

e —z
(24)

where F'"'(e) is an approximate cumulative oscillator
strength multistep function

o, o&~&~",
1

F(n)( )e— ~ f (n) e(n) (g ( e(n)j & 1 1+1
j=1

n

y f(n) (n)(
j=1

given in terms of a quadrature spectrum j e'"),f '")
] that

is defined by the 2n equations
(n)

S( —2k)= g, , „, k =1,2, . . . , 2n .
(&(n))2k ' (26)

Among the possible techniques for extracting the con-
tinuous oscillator strength density and photoionization
cross section from a discretized spectrum, the Stieltjes
imaging (SI) moment method has certainly been the most
applied, following the work of Langhoff and co-workers
[4,5]. The SI approach is based on the hypothesis that an
L calculation, although inadequate to describe the struc-
ture of the electronic continuum, can nevertheless give
converging approximations of the lowest spectral mo-
ments. In the present section we describe the SI pro-
cedures used in connection with the three MCLR algo-
rithms described in the preceding section.

Starting from the Kramers-Heisenberg expression of
the polarizability as a function of a complex frequency z,
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Here the S( —2k) are spectral moments of the true oscil-
lator strength function f (e):

df (e)
p pJ

(27)

which defines, through Eq. (23), a convergent approxima-
tion for the cross section. The calculation of (oem) is then
directly connected to the knowledge of the lowest spec-
tral moments. The moment problem expressed by Eq.
(26) can be linearized by a Pade approximant to give the
polarizability integral

a(z) = g S( —2k)z '" "+R„(z )
k=1

(n)

with

P„,(z )
+R„(z )

Q„(z )

n —1

(29)

,(z')= y a,'"'z" g„(z')=1+y b'"'z" (30)

The pseudospectrum I
e'"),f '"'I is then obtained from the

roots and residues of the Pade approximant. The
coefficients a "' and b "' can be obtained by solving a set
of linear equations

g S ( —2M +2L —2)bL"' = —S ( —2M —2),
L=1

n &M & (2n —1), (31)
M

a~'= g S( —2M+2L —2)b~("),
L=p

0&M &(n —1), (32)

easily derived from Eq. (29). A nontrivial solution of Eq.
(31) can always be found insofar as the S( —2k)'s are mo-
ments of a nondecreasing distribution, but the numerical
implementation of Eqs. (31) and (32) is not convenient if a
very large number of moments is employed. In fact, the
spectral moments are highly redundant and in order to
avoid numerical problems they must be computed with
high accuracy. Several suggestions can be found in the

The convergence properties of expression (25) are such
that by differentiating the approximate cumulative func-
tion F "'(e), an approximate oscillator strength density
dF'"'(e)/de, which will converge to the correct one upon
increasing the order n of the quadrature spectrum, can be
obtained. The derivative of F "(()e) in the energy continu-
um g'"'(e) will be expressed, according to the Stieltjes ap-
proach, as

0, 0(e(e(,")

f (n) +f (n)

g(n)(e) 1 e(n)&e&e(n)
(n) (n) i+1

literature for overcoming this problem if the input of the
SI algorithm is a "variational" spectrum [25,26]. All the
proposed algorithms are essentially based on the use of
more stable quantities, instead of the spectral moments,
to compute the Pade approximants; nevertheless it can be
said that none of these techniques is completely trouble-
free if quadrature spectra of high order are computed,
and the use of double precision in the computer im-
plementation of the algorithms is highly recommended.
For Stieltjes imaging calculations starting from primitive
or pseudospectra, we have adopted the approach suggest-
ed by Langhoff that is based on a continued fraction ap-
proximation of a Stieltjes integral different from the po-
larizability, so that not only the even, but also the odd
negative moments are involved in the Taylor expansion.

The present calculations are all based on the Stieltjes
imaging technique, frequently employed and evaluated
earlier, and inherit therefore the merits and shortcomings
of this technique. The latter refer to finite resolution and
the risk of missing sharper (autoionization) resonances
which can be smoothed out by the Stieltjes imaging. An
example of this is the resonance at 14 eV in the H20
spectrum which appears in high-resolution experiments.
In fact, this finite resolution is connected to the order of
the histogram, i.e., the number of spectral moments that
can be used with confidence. This in turn is limited by
the size of the one-electron basis set. Using a very large
basis set and thus a better discretization of the continu-
um, this resonance feature has been reproduced at the
RPA level [12]. We stress the ease of using Stieltjes im-
aging in connection with the MCLR pseudospectra for
quantitative calculations of the shape resonances.

III. COMPUTATION

The prediction of the photoionization cross sections in-
volves several computational steps. We have carried out
Hartree-Fock (HF), Manlier-Plesset second-order pertur-
bation (MP2), and MCSCF calculations of wave func-
tions, RPA and MCLR calculations for solving the linear
response equations to obtain spectral moments, discrete
excitation spectra, and pseudospectra, and Stieltjes imag-
ing calculations for the photoionization cross sections.
The SIRIUS computer program for wave-function [18] and
linear-response [16] calculations has been used. It is in-
terfaced to the STOCOS [27,28] and HERMIT [29] programs
for generating integrals over oscillating-type functions
and Gaussian-type functions, respectively. Some of the
recent updates of the response part of the sIRIUS program
used in the present work have also been described in
Refs. [30,31]. A preliminary MP2 calculation was per-
formed in order to obtain starting orbitals and physically
sound choices of correlating orbital spaces [32]. The
division into inactive, active, and secondary orbitals can
be rather straightforwardly derived from the MP2 occu-
pation numbers (see Table I) and a posteriori, from the
natural occupation numbers obtained from the MCSCF
calculations. For H20 and HF we distinguish two such
physically sound choices. In the C2, point group these
are given by the complete-active-space (CAS) distribution
of eight valence electrons in 4,2,2,0 orbitals, or, respec-
tively, 6,3,3,1, orbitals of a, bp b& a2 symmetry repre-
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TABLE I. MP2 natural occupation numbers for H20
( & 0.001).

etry

1.9991
1.9840
1.9641
0.0234
0.0118
0.0065
0.0057
0.0009

1.9650
0.0244
0.0063
0.0010

Bj

1.9648
0.0217
0.0057

0.0061

sentation (for HF b2 and b, are components of the vr or-
bitals). For neon we have explored the three- and four-
shell CASSCF and restricted-active-space SCF
(RASSCF) spaces used by Jensen et al. [31] in their cal-
culation of the hyperpolarizability dispersion of neon.
Thus the CASSCF space consists of all electron distribu-
tions within 2s, 2p, 3s, 3p, and 3d subshells. The three-
shell RASSCF contained single and double excitations
within these subshells (from n =2 to n =3 subshells). In
the four-shell RASSCF the n =4 subshells 4s, 4p, 4d, and
4f are added. The core orbitals were kept inactive in all
calculations.

Two types of basis sets were chosen. One type consist-
ed of oscillating Slater functions (STOCOS) of the form

X„( (g, K, r, 9,$)= A„(g,K)r" 'e ~"cos(Kr)1'( (g, P)

(33)

containing one-center expanded (OCE) Slater and tri-
gonometric functions [27,6] coupled to angular momen-
tum functions. Such basis sets are known to have double-
to triple-g quality for ground states of simple hydrides,
and have some remarkable properties for the description
of electronic continua over a wide range of energies. The
basis sets used are practically equivalent to those em-
ployed earlier with the static exchange approximation for
H20 [33] and HF [34]. The basis set for the excited or-
bitals was chosen for a balanced description of the oscil-
lator strength density. Stable results in all regions of
spectra are found with a Anal basis set containing
111 (HF) and 92 (HzO) s,p, d,f functions, distributed
in C~U symmetry as 52a, , 24b2, 24b, , 11a2 and
44a „21b2,21b „6a2, respectively. High values of nl
quantum numbers were included for the adequate
description of the electronic cloud localized to the hydro-
gen atoms. Oscillating functions of s, p, and d sym-
metries were added on top of the Slater functions, with K
parameters ranging from 0.2 to 1.3 and AX =0.2 chosen
for the description of the shape resonance region 20 eV
above threshold.

The second type of basis set employed consisted of gen-
erally contracted approximate-natural-orbital (ANO)
Gaussian basis functions [35]. These were augmented
with functions with small even-tempered exponents to de-
scribe the continuum cross sections. For H20
we used the 105-CGTO (contracted Gaussian-type
orbital) basis set of Miiller-Plathe and Diercksen [15]. It

was originally optimized in Ref. [36] to reproduce the
Thomas-Reiche-Kuhn (TRK) sum rule at the RPA level,
and augmented with more diffuse functions. The suitabil-
ity of this basis set has already been explored by Miiller-
Plathe and Diercksen [15] in RPA and second-order po-
larization propagator calculations of the photoionization
cross sections of the water molecule. For HF a systemat-
ic basis-set investigation was conducted, testing require-
ments of both very large and very small orbital exponents
and orbital contractions. The requirement is that the
basis set should span the ground state with an extended
basis set, the excited states, including Rydberg states, and
the low-energy continuum. Contracted versus uncon-
tracted core functions were also tried. The first basis set
is the one from Lazzaretti et al. [37], which here is left
uncontracted. It includes F 14s 8p 4d functions, H
8s3p ld functions, and is here augmented with further F
(5s, 6p, 2d, lf) and H (ls) scaled functions, giving a total
of 127 functions. The second Gaussian basis set is a con-
ventional extended basis set (F:6s,4d, 2p; H:3s, lp) aug-
mented with scaled 6s, 6p, 6d, and 4f functions (scaling
factor 1.8 for s,p, d functions and 3.24 for f functions)
giving a total of 136 contracted basis functions. The ex-
tra exponents are provided by the authors on request.
For HF and H20 the calculations were carried out at the
ground-state equilibrium geometries [R(OH) = l. 811 096
a.u. a=104.4499' R(HF)=1.7328 a.u.]. For neon we
have adopted the basis set of Maroulis and Thakkar [38]
that recently has been evaluated for the hyperpolarizabil-
ity dispersion of neon [39,31].

The order of the histograms used in the Stieltjes imag-
ing were 2 —9 for H20 and HF and 2 —6 for Ne. The
Stieltjes imaged values were smoothed by using polyno-
mial fitting, giving a variation for different orders of
roughly 5%.

IV. RESULTS

In this section we present the RPA and MCLR
moment-theory results for the total photoabsorption-
photoionization cross sections for water, hydrogen
fluoride, and neon. The energy range covered is 0—60 eV,
thus including valence-type excitations but excluding ex-
citations of the core electrons. At low energies the pho-
toionization cross sections may differ from the calculated
photoabsorption cross sections because of the occurrence
of molecular decay channels different from ionization,
which reduces the photoionization e%ciency. At higher
energies, beyond 20 eV, the photoionization efficiency is
equal to 1. The dependency of the results on the parame-
trizations of the theory is explored. The relevant quanti-
ties in this respect are the choice of the one-particle and
the correlating N-particle (active space) basis sets in the
MCLR procedure, the gauge invariance between length
and velocity forms for the dipole operator, and the choice
between the primitive-, spectral moment-, and pseudo-
spectral forms of the MCLR method. Except for photo-
ionization cross sections, we also present the discrete ex-
citation energies, the Cauchy spectral moments describ-
ing zeroth S(0) (Thomas-Reiche-Kuhn sum rule), the
second S( —2) (dipole polarizability) moments, and also
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higher moments, and compare these with derived experi-
mental moments if available. We also apply the Stieltjes
imaging procedure to the moments that have been de-
rived from experimental cross sections in a semiempirical
fashion by Meath and co-workers [1,2]. For this we have
applied Eqs. (29)—(33) given in Sec. II B. The so recon-
structed cross sections provide a test on the internal con-
sistency of the experimental data as well as of the Stieltjes
imaging procedure itself.

A. Hydrogen fluoride

The only reported theoretical photoionization cross
sections of HF are those of Cacelli et al. [12] obtained
from single- and multichannel static-exchange-
approximation (SEA) and RPA calculations, and by Fae-
gri and Kelly [40] and Hitchcock et al. [41] from SEA
calculations. Experimental dipole oscillator strengths and
cross sections have been given by Salama and Hasted
[42], Carnovale and Brion [47], Hitchock and Brion [44],
Carnovale, Tseng, and Brion [45], and by Kumar and
Meath [2]. The latter put together different sets of exper-
imental data to derive the dipole oscillator strengths dis-
tributions and spectral moments.

Figure 1 displays HF absorption cross sections, ob-
tained by applying the Stieltjes imaging procedure to
pseudospectra calculated in the RPA, MCLR 422, and
MCLR 6331 approximations, compared with the results
for experimental cross sections obtained by Brion and
Thomson [46]. As for Hzo, we obtain a consistent pic-
ture for RPA vs MCLR with an excellent gauge invari-
ance. However, RPA still tends to give somewhat too
large cross sections for higher energies. On the other

20

hand, the MCLR 422 and 6331 results are virtually iden-
tical, indicating convergence with respect to correlating
space already at the 422 level thus fulfilling the rule of
thumb of having one correlating unoccupied orbital per
strongly occupied valence orbital. Figure 2 shows RPA
results for the different basis sets described in Sec. III.
Tables II and III show corresponding results for spectral
moments with different basis sets and active spaces, and
Table IV shows discrete excitation energies and oscillator
strengths obtained by RPA, MCLR, and experiment.

As seen by the plots in Fig. 1, the theoretical cross sec-
tions for HF at the shape resonance are notoriously too
low compared to the data derived by Tseng, Carnovale,
and Brion [45] or by Brion and Thomson [46], while at
higher energies the computed cross sections are some-
what lower. The deviation is definitely larger than what
can be ascribed to the choice of basis set or active space
in the MCLR procedure. In this connection we also ex-
plored the geometry dependence of the cross sections, but
have not found it large enough to sustain a notion of a
"vibrationally enhanced" resonance.

Carnovale, Tseng, and Brion [45] used a so-called con-
stant ionic state (CIS) technique from which partial and
total oscillator strengths are derived after modification
for analyzer transmission and Bethe-Born factors. The
relative photoabsorption was placed on an absolute oscil-
lator strength scale by normalizing the total area under
the photoabsorption curve to the number of valence elec-
trons using the TRK sum rule (modified by 0.26 for
Pauli-principle-forbidden transitions). They then plotted
the photoionization efficiency of HF obtained by dividing
the sum of CIS partial oscillator strengths by the total
photoabsorption oscillator strength. The ionization
efficiency was observed to rise at the onsets of the X H
and the A X+ channels and Battened out to 1 above 22
eV. However, the efficiency at 21 —22 eV was found to be
significantly larger than 1 (about 1.1), something which
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FICx. 1. HF absorption cross section obtained by applying
the Stieltjes imaging procedure to the pseudospectrum calculat-
ed in the CAS-6331 approximation (solid line), CAS-422 ap-
proximation (dashed line), and in the RPA (dotted line). Big
dots indicate values obtained by applying the Stieltjes imaging
procedure to the semiempirical negative moments reported by
Kumar and Meath [2] while crosses indicate results for experi-
mental cross sections reported by Brion and Thomson [46].
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FIG. 2. HF absorption cross section obtained by applying
the Stieltjes imaging procedure to the primitive spectrum calcu-
lated in the RPA (length gauge) for three different basis sets:
STOCOS (solid line), "Gaussian-big" (dashed line), and
"Gaussian-laz" (dotted line), explained in Sec. III.
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TABLE II. Spectral moments [S(k)] for HF molecule in dipole length and velocity gauges. RPA
and MCLR (CAS-422) calculations in length {l)and velocity (v) gauges for z (cr) and y (m ) moments.
Lazzaretti basis set. S(0) "I"entry represents the results for sum rule in mixed representation.

k RPAz1 RPAzv RPAyl RPAyv MCLRzl MCLRzv MCLRyl MCLRyv

9.865

5.717
7.077
9.843

14.72
23.11
37.46
62.08

9.837
5.661
5.710
7.075
9.843

14.72
23.08
37.38
61.90

9.857

4.474
5.377
7.920

13.49
25.43
51.32

108.3

9.766
4.885
4.401
5.301
7.828

13.36
25.24
51.00

107.8

9.858

6.149
7.910

11.34
17.41
27.92
46.14
77.85

9.827
5.835
6.151
7.926

11.37
17.46
27.98
46.20
77.89

9.848

5.095
6.783

11.09
20.90
43.27
95.30

218.5

9.752
5.101
5.006
6.686

10.97
20.74
43.05
95.00

218.1

was related to the uncertainties in the electron transmis-
sion function for low-energy electrons [45]. It is there-
fore not unplausible that the deviation between theory
and experiments around the shape resonance at 20—25
eV, which is recovered in all calculations (active spaces
and basis sets), can be related to the experimental uncer-
tainties in this energy region. Unfortunately no later HF
measurements confirming or disproving the results of
Carnovale, Tseng, and Brion [45] have, to our knowledge,
been reported, something that probably is related to the
difticult handling of this sample.

In order to explore the experimental discrepancy fur-
ther we computed the cross sections using the semiempir-
ical spectral moments of Kumar and Meath [2]. These
authors constructed the final differential oscillator
strengths (DOS's) [and the differential oscillator strength
distributions (DOSD's)] using several sets of original data
covering different energy regions. The original data for
the differential dipole oscillator strengths, df/dE, are
modified according to constants determined by certain
constraints related to the TRK sum rule and to molar re-
fractivity data for the relevant energy interval. In some
cases, as for HF [2] (see Sec. IV B) the dipole polarizabili-
ty S( —2) is also used for the construction of the modified
DOS's, the DOSD's, and then the (other) spectral mo-
ments S(k). For HF the original cross sections (propor-
tional to df ldE) were taken from Hitchock and Brion

—3

9.837
5.661
5.710
7.075
9.843

14.72
23.08
37.38
61.90

8.793
5.710
5.766
7.140
9.926

14.82
23.21
37.52
62.04

9.827
5.835
6.151
7.926

11.37
17.46
27.98
46.20
77.89

8.699
5.795
6.104
7.886

11.37
17.55
28.27
46.89
79.39

TABLE III. Spectral o (z) moments [S(kl] for HF with
different basis sets and active spaces. A: RPA calculations with
Lazzaretti basis set. Velocity form. B: RPA calculations with
"big" basis set. Velocity form. C: MCLR-4220 calculations
with Lazzaretti basis set. Velocity form. D: MCLR-6331 calcu-
lations with "big" basis set. Velocity form.

D

[44], Carnovale and Brion [47], and Salama and Hasted
[42]. The results for the negative moments are given in
Table III together with the RPA and MCLR data. The
final Stieltjes imaging values for the cross sections using
the Sk values constructed by Kumar and Meath [2] are
given in Fig. I as circles. Results are presented for
different numbers of moments used (6, 8, or 10). As for
neon (see Sec. IV C), the obtained cross sections are in ex-
cellent agreement with MCLR computed cross sections,
regardless of the number of moments actually used. Con-
sidering this agreement between theory and results from
modified experimental moments, the excellent gauge in-
variance, convergence of computational parameters (basis
set), choice of correlating method, viz. , RPA (no correla-
tion), SOPPA (Sec. IV B), MCLR-CAS, and MCLR-RAS
(see also Sec. II C), we are confident that the theory can
distinguish between the experimental results for HF and
also other molecules of similar size (see further discussion
on HzO and neon data in Secs. IV B and IV C).

One should in this context stress the good values of di-
pole polarizability and the gauge invariance obtained
[5.45ao (length) and 5.39ao (velocity)] to be compared
with, for instance, the pseudo-natural-orbital
configuration-interaction (PNCO-CI) value of 5.50aii of
Werner and Meyer [48], and an interpolated value of
5.601ao given by Kumar and Meath [2]. The good polar-
izability is consistent with a good description of the pho-
toionization cross sections at low energies, since with
small energies (co's) and large oscillator strength distribu-
tions (df/de) the cross-section spectrum gives particu-
larly large contributions to the polarizability (note
a=S( —2) ~ f z [df (co)/co ]). The shape resonance re-

gion is, however, not so sensitive to the fulfillment of the
TRK sum rule, since this involves excitations to high en-
ergies.

The agreement obtained for the MCLR photoioniza-
tion cross sections with the data derived by Kumar and
Meath [2] is gratifying also from the point of view that
the dipole oscillator strength distribution and spectral
moments S(k) relate to a number of other important
properties for a molecule, i.e., the straggling (k = —1),
stopping (k =0), and total (k =1) inelastic cross
sections of fast charged particles, dipole polarizabilities
(k = —2), charge densities at the nuclei (k =2),
static and frequency-dependent polarizabilities
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TABLE IV. Vertical singlet excitations for HF.

Symmetry

1y 1y+

~RPA

14.85
15.66
16.15
16.48
16.84
16.96
17.22
17.30
11.67
14.54
15.53
16.12
16.20
16.21
16.28
16.59

fRPA

0.0407
0.1204
0.0130
0.0103
0.0054
0.0021
0.0081
0.0005
0.0321
0.023
0.0009
0.0089
0.0000
0.0055
0.0037
0.0002

fRPA

0.0410
0.1215
0.0129
0.0105
0.0056
0.0022
0.0085
0.0005
0.0320
0.0320
0.0009
0.0088
0.0000
0.0055
0.0036
0.0002

MCLR

13.76
14.85
14.99
15.33
15.54
15.69
15.93
16.02
10.90
13.47
14.30
14.83
14.91
15.05
15.52
15.31

I a
&MCLR

0.0030
0.0070
0.0733
0.0756
0.0076
0.0112
0.0146
0.0005
0.0391
0.0174
0.0011
0.0009
0.0067
0.0037
0.0003
0.0043

fMCLR a

0.0029
0.0069
0.0724
0.0755
0.0799
0.0113
0.0152
0.0005
0.0391
0.0172
0.0011
0.0009
0.0067
0.0036
0.0003
0.0041

b
~expt

15.21
15.35
16.47

10.35
13.03
13.91
14.57
15.52
16.20

'The oscillator strengths are given for one component of the degenerate H excitations.
Experimental 0-0 energies from Hitchcock and Brion [44] and Douglas and Greening [49]. The assign-

ment of experimental transitions to the symmetries follows Cacelli, Carravetta, and Moccia [33].

(k = —2, —4, —6, . . . ), and dispersion energies
(k = —1, —3, . . . ). The efficient evaluation of the spec-
tral moments by means of the techniques described in
Sec. II A can thus provide important means for calcula-
tions of such properties.

B. Water molecule

Most previous theoretical calculations of photoioniza-
tion cross sections for water have been carried out in the
static-exchange and the random-phase approximations;
see, e.g. , Refs. [34,12] and references therein. The focus
in these studies have mostly been on the partial photoion-
ization cross sections, where the coupling between
different ionization channels (defined by the molecular or-
bitals ionized) is neglected. However, multichannel cal-
culations (MCSEA, MCRPA) have also been carried out
in order to explore the effects of channel coupling on the
total cross sections [12]. In the recent study of Miiller-
Plathe and Diercksen [15] the RPA calculations were
augmented with calculations employing the second-order
polarization propagator methods in order to explore the
role of correlation on the partial and total cross sections.

Many experimental investigations of the photoioniza-
tion cross sections of water have been conducted; see e.g.,
results from Tan et al. [50], Brion and Thomson [46],
Katayama, Huffman, and O'Bryan [51], Reilhac and
Damany [52], and Haddad and Samson [53]. The various
experimental results are reproduced in Fig. 3. Note the
deviation between the experiments in the region between
20 and 30 eV, where the most recently presented cross
sections, the ones by Haddad and Samson [53], are
significantly larger than those given earlier. The solid
line in Fig. 3, reproducing the present pseudospectral re-
sults from the 422 MCLR calculations, clearly agrees
best with the cross sections by Tan et al. [50] and Brion
and Thomson [46], while for larger energies the best
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FIG. 3. H20 absorption cross section (solid line) obtained by
applying the Stieltjes imaging procedure to the pseudospectrum
calculated in the CAS-422 approximation (length gauge). Ex-
perimental results are indicated by crosses (Tan et al. [50] and
Brion and Thomson [46]), circles (Katayama, Huffman, and
O'Bryan [51]),triangles (Reilhac and Damany [52]), and squares
(Haddad and Samson [53]).

agreement is with the data of Reilhac and Damany [52].
For small excitation energies the comparison between
computed photoabsorption cross sections and measured
photoionization cross sections is hampered by the fact
that not all molecular decay channels lead to ionization.
However, beyond approximately 20 eV the photoioniza-
tion efficiency is close to 100%.

Repeating the calculations giving the results of Fig. 3,
but using the velocity gauge of the dipole operator, we
obtain practically the same results. The gauge invariance
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is excellent, the deviation being 1% or 2%, to be com-
pared with the experimental uncertainty of some 10%.
This observation is confirmed by Tables V and VI, which
present dipole length and velocity results for oscillator
strengths of discrete excitations and for spectral mo-
ments, respectively. The results from corresponding
RPA calculations are given by Figs. 4 (length) and 5 (ve-
locity). We see that the gauge invariance of the cross sec-
tions are excellent despite the fact that some variations in
the primitive spectrum can be noted, at least for higher
energies. The gauge invariance in RPA is good, although
somewhat poorer than in the MCLR case. It should be
pointed out that with the linear-response theory em-
ployed the gauge invariance refers to the completeness of
the one-electron basis set and not to the level of correla-
tion as such. Comparing the absolute cross sections, the
RPA calculations give larger cross sections in the full en-
ergy range, with a satisfying overall experimental agree-
ment, although less good than in the MCLR case. Thus
our MCLR results improve the RPA results, but the
latter compares better with the experimental results of
Haddad and Samson [53] in the 20—30 eV range.

The SOPPA results of Muller-Plathe and Diercksen
give lower cross sections than the RPA results. The
worse agreement between SOPPA results with respect to
the more recent experiment of Haddad and Samson [53]
in the 20—30-eV region was explained as being due to an
overestimation of the 1b2 orbital cross section and was
traced to a shortcoming in the SOPPA approximation.
However, the present MCLR results reinforce the SOP-
PA results, insofar as a very good agreement with the ex-
periment of Tan et al. [50] is obtained. In the compar-
ison with experimental results one has to bear in mind
the uncertainty of published dipole oscillator strength
data, with typical errors between 5% and 20% [2]. This
seems to be confirmed by the present investigation on
H20, and also for HF and Ne.

In an attempt to distinguish between the experimental
data we have used experimental moments Zeiss et al. [1]
derived in the same manner as in Ref. [2] for HF. Unfor-
tunately, the lack of higher moments made it impossible
to cover all the relevant parts of the spectrum in the same
manner as for the HF spectrum. The Stieltjes imaged
cross sections were obtained as 20 Mb at 14 eV and 22
Mb at 18 eV.

HzO absorption cross sections obtained by applying the
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FIG. 4. H20 absorption cross section (solid line) obtained by
applying the Stieltjes imaging procedure to the pseudospectrum
(bar diagram) calculated in the RPA approximation (length
gauge).

C. Neon atom

Being isoelectronic with H20 and HF, the neon atom
fulfills the same zeroth-order (TRK) sum rule for the in-
tegrated photoexcitation-photoionization cross sections.

Stieltjes imaging procedure to the primitive spectrum
(primitive spectrum approach) gives, in both velocity and
length gauges, results virtually identical to those obtained
by the pseudospectral approach. Figure 6 collects the re-
sults for the absorption cross sections (RPA approxima-
tion, length gauge) for water obtained by applying primi-
tive and pseudospectral approaches and also those ob-
tained from moments (direct spectral moment approach).
It is clear that the best shape of the photoionization
curve is obtained by primitive and pseudospectral results,
while a deviation can be noticed for the moment-
generated cross sections. It is clear from our investiga-
tion that the moment method is more demanding from
the numerical point of view, requiring rather many mo-
ments to be given with high precision. Because the pseu-
dospectrum is obtained from the MCLR calculations
with basically the same efFort (see Sec. II A), this pro-
cedure is preferable.

TABLE V. Spectral moments [S(k)] for HzO molecule. R denotes RPA, M denotes MCLR calcula-
tions with 4220 active space and with basis set described in Sec. III ~

k RA]U M Al I M 3t U R B2 U M B2 / M B2 U R Bl U M BI I M Bl U

0 9 756
—1 6 950
—2 8 433
—3 12.88
—4 22 98
—5 45.61
—6 97.41
—7 218.4
—8 506.3

9.374
15.48
29.93
64.27

147.7
355.3
879.9

9.738
7.185
9.322

15.43
29.84
64.01

147.0
353.3
874.5

9.795
7.406
9.119

13.22
21.07
35.67
62.99

114.7
213.8

9.753
14.72
24.46
43.30
80.25

154.1

305.2

9.776
7.564
9.682

14.64
24.35
43.12
79.89

153.4
303.6

9.646
6.429
7.731

12.75
26.51
64.70

174.9
503.1

1501.

9.277
17.46
41.70

116.0
353.9

1139.
3782.

9.629
6.758
9.060

17.15
41.09

114.5
349.5

1125.
3739.
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FIG. 5. Same as Fig. 4 but with the velocity gauge (dashed
line).

Thus the order of the cross sections relating as
(Ne) & g(F) & g(O) at low energies is reversed at higher
energies. The maximum of the cross section is also shift-
ed to lower energies along this sequence. These trends,
followed also by N (NH3) and C (CH4), have been ration-
alized by Debies and Rabalais [56] in terms of the num-
ber of hydrogen atomic orbitals in the molecules and the
radial extent of the 2s and 2p orbitals, which increases as
the atomic number decreases from Ne to C.
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Figure 7 compares results for the Stieltjes imaged Ne
absorption cross sections obtained from the pseudospec-
trum calculated in the MCLR-CAS, MCLR-RAS, and
RPA approximations. We find the CAS and RAS results
to be virtually identical. For higher energies they coin-

FIG. 6. H20 absorption cross section obtained by applying
the Stieltjes imaging procedure to the primitive spectrum (solid
line), to the pseudospectrum (dashed line) and to the even nega-
tive moments (dotted line) calculated in the RPA approximation
(length gauge).

TABLE VI. Vertical singlet excitations for H20.

Symmetry

1 1Ai- Bl

~RPA

8.61
11.11
11.85
12.51
12.66
12.86
13.20
13.30

fRPA
I

0.0455
0.0118
0.0000
0.0202
0.0139
0.0074
0.0032
0.0022

fRPA

0.0449
0.0117
0.0000
0.0201
0.0137
0.0070
0.0031
0.0024

~MCLR

7.81
10.07
10.72
11.29
11.47
11.71
12.25
12.40

IfMCLR

0.0530
0.008 3
0.000 1

0.024 2
0.018 8
0.008 1

0.000 8
0.001 8

fMCLR

0.0524
0.008 2
0.000 1

0.023 9
0.018 4
0.007 8
0.001 0
0.001 7

a
~expt

7.440
9.998

10.640
10.990
11.122
11.374

'A l-'A l 10.86
11.40
12.72
13.24
13.62
14.01
14.48
14.75

0.0711
0.0309
0.0220
0.0000
0.0009
0.0060
0.0177
0.0110

0.0706
0.0309
0.0216
0.0000
0.0009
0.0060
0.0173
0.0109

10.04
10.43
11.52
12.35
12.63
13.11
13.61
13.80

0.023 6
0.079 2
0.026 3
0.000 01
0.000 1

0.008 5
0.020 7
0.013 3

0.023 3
0.079 0
0.025 8
0.000 01
0.000 1

0.008 4
0.020 3
0.013 2

9.850
10.171
11.057
11.432
12.9

'A, -'B 12.51
12.70
14.27
14.34
15.05
16.39
16.87
16.95

0.0018
0.0500
0.1513
0.0000
0.0189
0.0004
0.1398
0.0721

0.0018
0.0498
0.1509
0.0000
0.0181
0.0004
0.1411
0.0718

11.39
11.96
13.42
14.25
14.49
15.43
15.77
17.01

0.022 7
0.025 5
0.046 2
0.034 2
0.138 2
0.001 2
0.205 3
0.0223 1

0.022 4
0.025 4
0.046 4
0.034 5
0.1370
0.001 5
0.205 0
0.022 4

11.041
13.8
16.9

From Ref. [54]; see also Ref. [55]. The assignment of experimental transitions to the symmetries fol-
lows Cacelli, Carravetta, and Moccia [34].
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FIG. 7. Neon absorption cross section obtained by applying
the Stieltjes imaging procedure to the pseudospectrum calculat-
ed in the CAS (solid line), RAS (dashed line), and in the RPA
(dotted line) approximations. Big dots indicate values obtained
by applying the Stieltjes imaging procedure to the semiempirical
negative moments reported by Kumar and Meath [2], while cir-
cles and crosses indicate experimental results by Marr and West
[57] and Wuilleumier and Krause [58], respectively.

cide with RPA results, while for the energy region with
enhanced cross sections between 30 and 40 eV there is a
difference; RPA pushes the cross section peak to higher
energies. For neon we adopted one sole basis set [38], the
one that recently was evaluated for the hyperpolarizabili-
ty dispersion of neon [39,31]. Figure 7 also includes ex-
perimental results by Marr and West [57] and Wuilleu-
mier and Krause [58]. The data given by the latter au-
thors constitute an averaged compilation of four different
experimental tabulations [59,60,61,57]. An uncertainty
between 4—8% was estimated for the total cross sections
obtained this way. It can also be noted that the error
bars for the partial cross sections derived from the
averaging procedure were largest at the position of the
shape resonance, where the experimental-to-theoretical
deviation is at its largest. Above 50 eV the sets of experi-
mental and theoretical data agree well, mutually and
internally. In order to check the possible origin of the
deviation we applied the Stieltjes imaging procedure to
the semiempirical negative moments reported by Kumar
and Meath [2] obtained by imposing similar constraints
as in the cases of H20 and HF (see previous sections).

Results are shown in Fig. 7 for cross sections obtained
with 6, 8, and 10 spectral moments. Again we can notice
an excellent agreement between cross sections obtained
this way and those obtained from MCLR (CAS, RAS)
pseudospectral data. Table VII shows the spectral mo-
ments for neon obtained by various methods.

V. DISCUSSION AND CONCLUSIONS

We have presented multiconfigurational linear-
response theory for photoionization and photodetach-
ment cross sections in atoms and molecules. From the
solutions of the MCLR equations the primitive spectrum
of excitation energies and oscillator strengths are ob-
tained. We have shown that these solutions can be used
to provide the even negative moments of the
photoexcitation-photoionization spectrum. We have also
shown that the pseudospectrum can be constructed
directly in the iterative procedure to solve the MCLR
equations. Either the primitive spectra, the moments, or
the pseudospectra are used as basic quantities in Stieltjes
imaging to obtain the energy-normalized photoionization
cross sections.

From the numerical point of view the use of MCLR
pseudospectra gives close to identical results as the pro-
cedure based on the MCLR primitive spectrum. The use
of (MCLR-generated) spectral moments are, however,
found somewhat inferior in this respect. We find for
H20, HF, and Ne that the inclusion of electron correla-
tion is significant but also that small correlating spaces
seems to be sufficient. The choice of a one-particle basis
set is more crucial; however, for the type of systems stud-
ied here, convergence with respect to the basis set can
easily be achieved. Successive enlargement of the corre-
lating space can also easily be accomplished, e.g. , by us-
ing criteria from perturbation theory. In general we find
excellent agreement between the dipole length and dipole
velocity gauges using RPA and MCLR. A good agree-
ment of the second-order sum rule, the polarizability, is a
prerequisite for a good representation of the cross sec-
tions at the low-energy resonant region, while the
fulfillment of the TRK sum rule requires a more balanced
description of the whole spectrum, also including core ex-
citations into the high-energy continuum. Higher nega-
tive spectral moments become progressively more impor-
tant for determining the low-energy cross sections
correctly.

With RPA- or MCLR-generated spectra a separate
channel interpretation is not possible to obtain since the
different orbital excitations are mixed, and there is no

TABLE VII. Spectral moments [S(k)] for neon atom from Ref. [31].

—3

CAS

2.598
2.397
2.634
3.239

3-shell

2.564
2.340
2.567
3.099

RAS 3-shell RAS 4-shell

2.594
2.388
2.618
3.210

Estimate

2.642+0.049
2.471+0.081
2.711+0.093
3.406+0. 196

Expt. '

2.669
2.533
2.886
3.686

'Reference [62].
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unique way to identify the cross sections for the individu-
al channels. On the other hand, this means that one
avoids the artificial discontinuities at the ionization po-
tentials that the separate-channel approximation may
cause by summing up cross sections from the indepen-
dent channels. Experimentally, such discontinuities are
not observed since channel coupling smooths the cross
sections in the vicinity of the ionization potentials. The
effect of the inclusion of channel interaction is significant
for the total cross sections in the shape resonance region
around 20 eV of the presently investigated species. For
example, in the water cross-section spectrum, this turns
up in the determination of the partial cross sections for
the Ibz orbital channel [12,15].

A problem in common moment-theory calculations is
the occurrence of discrete states embedded in the contin-
uum. The presence of such states leads to discrete-
continuum interactions that may alter the total cross sec-
tions in the relevant energy regions. The effects of this
type of interaction have also been treated by Stieltjes im-
aging procedure but using the 5 energy interaction of the
Hamiltonian instead for constructing the basic discrete-
continuum interactions [12]. The occurrence of quasi-
discrete states may also lead to a discrepancy between ab-
sorption cross sections and ionizations cross sections [63],
due to fluorescence decay or dissociation of these discrete
states. Here rules of thumb are used to determine if these
states are included or not. For RPA the relevant ioniza-
tion potentials are given by Koopman*s theorem, while
MCLR intrinsically includes relaxation. In the
multiconfigurational linear-response approach, the chan-
nels are coupled by the choice of correlating orbital space
(active space). The occurrence of an interaction with
quasidiscrete states (autoionization) is accounted for in-
sofar as it can be described as excitations within the or-

bital space encompassed by the ground-state active space.
In practice, the active space is chosen by the correlation
contributions to the ground state (natural occupation
numbers), and it is difficult to know a priori if the ap-
propriate orbitals are included or not.

The use of MCLR makes it possible to go beyond the
static exchange approximation based on the strong ortho-
gonality condition for the photoelectron. The photoion-
ization dynamics described by the correlation of all elec-
trons (polarization of the residual ion) including the pho-
toelectron is therefore accounted for in principle. This is
particularly important for low-lying resonances and cross
sections close to threshold. Practically, the calculations
of the cross sections at low energies will still be difficult
since these require exceedingly rich basis-set representa-
tions of the primitive spectrum just above threshold in
order to obtain stable cross sections in this region.
MCLR, like previously employed RPA, SOPPA, and
MCRPA, fulfills sum rules and is gauge invariant in the
limit of a complete basis set. These propagator-oriented
approaches are thus more attractive than the static ex-
change approaches in this respect. The use of MCLR
means that the body of photoionization resonance calcu-
lations can be enlarged to encompass difficult and exotic
cases. It includes general open-shell states with unusual
electronic structures with strongly correlated wave func-
tions. In particular, it can address molecular anions for
which a good correlated treatment of the ground-state
wave functions is a necessity. The photodetachment of
these species will be the subject of forthcoming studies.
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