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Matrix continuum distorted-wave approximation for electron capture
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Different aspects of relativistic distorted-wave models for electron capture in ion-atom collisions are
analyzed. In particular, the nonrelativistic limit of the matrix continuum distorted-wave approximation
is studied for reactions with or without change in the electron spin.
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I. INTRODUCTION

The use of different distorted-wave models to describe
electron capture in relativistic ion-atom collisions has
been a matter of interest in recent years. This has been
associated with the development of great new accelera-
tors which have allowed the obtention of beams of mul-
ticharged heavy ions at high velocities [1].

In our former works on the subject we have developed
distorted-maoe approximations where initial and final
four-spinors representing the electronic clouds in the en-
try and exit channels, respectively, were distorted by sca-
lar functions. These functions, which appeared multiply-
ing the initial and final bound-state spinors, were first
taken as ultrarelativistic projectile and target continuum
factors, respectively. These scalar factors (which when
multiplied by free-particle spinors are ultrarelativistic ap-
proximate solutions of the continuum in the second-order
Dirac equations related to the projectile or target nu-
cleus) were also interpreted as diagonal matrix distortions
with identical elements [2]. This approximation, called
the ultrarelativistic continuum distorted-wave (UCDW)
approximation was thus expected to be valid only
at ultrahigh relativistic energies (y )) 1 with
y = [1—(u/c) ] '~, where v is the impact velocity and c
the speed of light). Moreover, in the nonrelativistic limit
(c~~ ), UCDW does not recover the nonrelativistic
continuum distorted-wave (CDW) approximation [3]. In
subsequent works [4,5] a relativistic symmetric eikonal
(RSE) approximation was introduced, where the scalar
continuum factors of UCDW were replaced by their
asymptotic limits before or after the collision, given by
eikonal phases. The RSE approximation, which could be
considered as a symmetric version of the relativistic
eikonal one (RE) [6], does not recover the nonrelativistic
symmetric eikonal (SE) [7] approximation as c~~. So,
UCDW and RSE are not a relativistic extension of CDW
and SE, respectively, even though they have been
developed following the philosophy of these approxima-
tions, that is, distorting the bound states by scalar contin-
uum factors or eikonal phases. A main goal in introduc-
ing the UCDW and RSE approximations was to describe
the electron in the simultaneous presence of the fields of
the projectile and target nuclei in both the entry and exit

channels. In this more realistic representation, the elec-
tron bound to the target nucleus (projectile) is at the same
time in a continuum state of the projectile (target nu-
cleus) in the entry (exit) channel. Calculations developed
by Deco and Rivarola [4] for high-velocity relativistic re-
actions showed that RSE underestimates existing experi-
mental data. In addition, it was demonstrated [4] that
when the impact velocity is reduced, charge exchange
without (with) electron spin flip calculated in the RSE ap-
proximation gives total cross sections lower (larger) than
in the relativistic target continuum distorted-wave ap-
proximation (RTCDW). In RTCDW only one channel is
distorted, the final one, by a target continuum factor.
Recently [8], this behavior of RSE was studied at the lim-
it of low impact velocities (/3=v le~0), confirming our
previous predictions for higher energies, but now in com-
parison with the one-channel distorted RE approxima-
tion [9].

In order to introduce a model which could represent
the whole collision-energy range, we introduced [10) a
matrix continuum distorted-wave approximation
(MCDW). Matrix operators associated with the
projectile-electron and target-nucleus-electron interac-
tions were chosen to distort the initial and final bound-
state spinors, respectively. As will be reexplained in this
work, these matrix operators are constructed with rela-
tivistic continuum states of the electron in the potential
of the projectile or target nucleus. This approximation
reduces now to the nonrelativistic CDW as c~~ and to
UCDW as y ~~ and can be thus considered as the rela-
tivistic version of the CDW model, including as particu-
lar cases the two limit models mentioned above. More-
over, to have a good representation of differential cross
sections, the theoretical models must reproduce the
Thomas's peak, characteristic of a two-step mechanism
of electron capture. This is the case of MCDW but not
for distorted models where only eikonal phases are used,
such as the RE and RSE approximations.

Also, it must be noted that the use of symmetric mod-
els avoids post-prior discrepancies of the transition am-
plitudes. If only one channel is distorted, the loss of this
property must be paid.

Finally, we remark that the RSE, UCDW, and MCDW
approximations have been developed satisfying appropri-
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ate boundary conditions. This means that the informa-
tion corresponding to the long-range Coulombic behavior
of perturbative potentials is contained in the respective
initial and final distorted wave functions.

In this work, we show that MCDW not only goes
asymptotically (as c~~) on the nonrelativistic CDW
but also that, for the spin-Hip reaction, MCDW gives
cross sections that are negligible compared with the case
without spin Aip as the energy of the collision decreases
to the nonrelativistic domain. This will serve to clarify
some criticism made by other authors [8]. Atomic units
will be used throughout except where otherwise stated.

II. THE LOW ASYMPTOTIC LIMIT
OF THE MATRIX CONTINUUM

DISTORTED-WAVE APPROXIMATION

(Hf la, , )sf =( —lca'v, +/3c'+ v,' i—a, , )a f 0
P

(lb)

where a and /3 are the Dirac matrices, rT (rp) and t ( t')
are the electron position vector relative to the target nu-
cleus (projectile) and time as measured from S (S'), re-
spectively. Also, VT is the electron —target-nucleus po-
tential with respect to S, and V~ is the electron-projectile
potential with respect to S'.

Initial and final four-spinors N, and Nf are distorted
by matrix operators X, and Xf, so that distorted initial
and final wave functions (seen from S and S', respective-
ly) result in the following:

(2a)

Let us consider for simplicity a bare heavy ion of nu-
clear charge Zz impacting on a monoelectronic ion
(atom) target of nuclear charge ZT. Reference frames S
and S' are fixed on the projectile and target nucleus, re-
spectively, and the straight-line version of the impact-
parameter approximation is used. Exact initial and final
bound-state functions 4,- and 4f, representing the elec-
tron moving around the target nucleus and projectile, re-
spectively, satisfy the Dirac equations:

(H, —iB, )@,=( ica 7—, +/3c + VT —iB, )@,=0, (la)

(2b)

If with H we denote the Dirac total Hamiltonian as de-
scribed from S, we have

H = —ica V, +./3'c + Vz. +LE,T

where L is the matrix operator which transforms the sca-
lar potential Vz to the scalar and vector potentials re-
ferred to S. Then the initial perturbative potential 8'
(associated with g;) can be obtained using Eq. (la) in the
total Dirac equation [10],so that

(H —iB, )y, = W;g, = [
—ica V, X;+LV'X, —c X, +c /3X, /3

—iB,X, ]4&;

+[—ic((xL, —X,a).V', 4, +c~(/3X, —X,/3+X; —/3X, /3)4;] . (4)

is now chosen to make zero the first term of the
right-hand side (rhs) of Eq. (4), that is,

[
—ica V', X, +L VpX, —c 'X, +c'/3X, /3 i B,X, ]=0—.

Transforming Eq. (5) into the reference frame S', we have
the resulting simpler equation [11]:

where the two first columns represent exact continuum
four-spinors of the electron-projectile interaction. The
third and fourth columns which complete the determina-
tion of X,' are obtained exchanging the two upper com-
ponents with the two lower components of the first and
second columns, respectively. Then the perturbative po-
tential is the result:

W;y;= —ic(~;—X;a) V, 4;

[ ica V, X, +—Vp i B, ]X,'—+c'PL,'/3=0,
P

(6) +c (/3X, —X;P+X, —/3X;/3)4; . (8)

with

X,'=T 'exp( —ic t)X,

and where T is the operator which transforms the spinors
seen from the reference frame S' into the frame S. Ex-
cept by the last matrix /3 appearing in the last term of Eq.
(6), this equation corresponds to the Dirac one associated
only with the electron-projectile interaction. Our interest
is in describing the electron in a bound state of the target
but at the same time also in a continuum state of the pro-
jectile in the entry channel. Let us try to construct the
matrix L,' with exact relativistic continuum vectors of the
electron in the presence of the projectile. It can be easily
shown that a solution of Eq. (6) is given by a matrix X,'

Up to this point, no approximations have been used
and 8', is in exact correspondence with y,-. In a similar
way we can proceed with the exit channel. However, in-
stead of working with numerical exact continuum wave
functions, we use an analytical approximate solution of
Eq. (6). This approximation avoids tedious and compli-
cated calculations associated with the utilization of nu-
merical wave functions and also allows one to go deeper
into the physical interpretation of the distortion used.
The solution is constructed by using the Furry matrix
[12] 0, and is expressed in the form

X,'= exp( inc t iyv rp)Q—,
—T.

with
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II, = exp(nZ~ /2u)l (1 iZt, lv )[1 —(i /2yc)a V, ]
P

fl&= exp(mZr/2v)I (I+iZrlu)[1 —(i /2yc)a V, ]

X,F, (iZ~/u; I;iy(urp+v rz)), X,F, (iZr /u; 1; i y—( urr +v r r ) ), (13)

Equation (11) can be interpreted in the following way:
The initial bound spinor as seen from S is translated to
the frame S' through the application of the operator
T '; then, the operator 0, , instead of being applied to a
plane-wave spinor, acts as a distortion of the initial
bound state; and finally, the operator T acts to translate
the initial wave function to S again.

Proceeding in a similar way with the distorted final
wave function, we obtain the approximate solution

yi -=( T 'Q/T)4/

where Qf is the Furry operator

(12)

where 1 is the identity matrix. The matrix 0;, when act-
ing on a plane-wave spinor, generates relativistic
continuum-state solutions of the Dirac-Coulomb equa-
tion, describing the electron as moving in the field of the
projectile as seen from S'. This is the case when 0; is ap-
plied separately to each one of the two first columns of
T . If this result is multiplied by the exponential factor
given by (9), we obtain appropriate relativistic continuum
states of the electron moving with velocity —v with
respect to the projectile.

Then, the initial distorted-wave function is the result

y;=—(TQ;T ')4&; .

which, when applied to plane-wave spinors, will give con-
tinuum states of the electron as moving in the presence of
the target nucleus and observed from S. It is obvious
that when the distortion X, = TA, , T ' is used, Eq. (5) is
solved approximately. Moreover, as we will use quasire-
lativistic Darwin spinors to describe the initial and final
non-distorted-wave functions, Eqs. (la) and (lb) will also
be solved in an approximate way. Otherwise, we must
deal with complicated calculations associated with the in-
troduction of exact continuum- and bound-state spinors.
Exact Coulomb-Dirac wave functions have been used to
describe the electron states for ionization reactions [13].
The Coulomb-Dirac continuum wave function has been
represented by a partial-wave expansion. Due to numeri-
cal dim. culties, the partial-wave summation is restricted
to angular-momentum quantum numbers ~~ ~ 10. The
convergence of the summation is unsatisfactory at high
kinetic electron energies. The problem is partly correct-
ed by using relativistic Furry (Sommerfeld-Maue) and
Darwin wave functions [12). In the MCDW model the
distortion continuum factors correspond to high-energy
electrons (electrons moving with velocities in modulus
equal to the collision velocity). Therefore, the use of
Darwin wave functions and Furry distortions operators is
justified in the present case. Then, the first order of the
transition amplitude as a function of the impact parame-
ter p can be written as [10]

A,&(p)= —i J dt J dr&. [Ty&(rp, t')] W, y,+(rr, t)

i f —dt /dry. [Ty&(rl„t')] [ ic(aTA—;T ' —TQ,;T 'a) V, +;

+c (PTS),;T ' —TQ.;T P+TQ, T ' PTQ;T 'P)4—, ] . (14)

A;I(p) =(2m. )
' Jdg%;&(q) exp( i g p), —(15)

where %;&(g) is the scattering matrix element as a func-

Expression (14) is equivalent to Eq. (48) of Ref. [10],
where Darwin spinors are used to represent the initial
and final K-shell bound states. For the reaction without
electron spin Rip, it is easy to show that as c —+ ~, we re-
cover the E-K shell nonrelativistic CDW approximation.
Moreover, for ultrarelativistic velocities (y~ ~ ), we ob-
tain the UCDW model. So, even using approximated ini-
tial and final distorted spinors, we recover the corre-
sponding asymptotic energy limits. This is an indication
of the consistence of the approximations used.

When the impact energy decreases, the case with
change of the electron spin is expected to give negligible
contributions compared with the process without spin
Aip.

In order to give a numerical evaluation of the cross
sections, we use the transformation

I

tion of the transverse momentum transfer g. Using some
approximations, %;&(g) can be calculated as indicated in
Refs. [10] and [14]. For the cases with and without spin
flip, we thus obtain analytical expressions for R;f(7))
which are easy to compute. Also, we must note that as
c~~, we recover the nonrelativistic CDW matrix ele-
ment A,&(g) [10].

Differential and total cross sections can then be com-
puted by using the expressions

=Mpy v i%,&(vg)i (16)

and

c7 d g if
respectively.

In Table I, total cross sections for the H++H(1s) reac-
tion at nonrelativistic impact energies from 50 keV up to
10 MeV are presented for the cases with and without spin
Aip. It appears that when the collision velocity decreases,
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TABLE I. Non-spin-flip and spin-flip total cross sections for
H++H(1s) electron capture (in m ). The MCDW results are
present calculations based on Ref. [10]. The CDW results are
obtained from Ref. [3]. The numbers in square brackets give
the power of 10 multiplying the preceding number.

Theory

MCDW

shown to come from interferences between intermediate
projectile and target continuum states [17,18]. The dip
also appears as a spurious structure at the lower impact-
energy case. Calculations with a matrix continuum
intermediate-state approximation (MCIS) are also
presented for both cases. In this model, introduced by

Energy (keV)

50
100
250
500

1000
2500
5000

10000

CDW

6.95 [
—21 ]

6.39[—22]
1.38[—23]
4.83[—25]
1.29 [

—26]
8.42[ —29]
1.68[ —30]
3.19[—32]

Nonflip

6.94[ —21]
6.37[—22]
1.37[ —23]
4.81[—25]
1.29[ —26]
8.40[ —29]
1.68[ —30]
3.21 [ —32]

Flip

5.75[ —30]
1.46[ —30]
1.67[ —31]
2.57[ —32]
3.32[ —33]
1.84[ —34]
1.88[ —35]
1.81[—36]

1Q

10

(a)

MCDW presents the correct behavior in the sense that
spin Hip becomes less and less important in comparison
with the non-spin-Aip case. Also, non-spin calculations
are compared with nonrelativistic CDW results using
Ref. [3] (see also Belkic, Gayet, and Salin [15]). The
agreement obtained is excellent.

In Table II our results are compared with calculations
previously presented [8] but using the relativistic
Oppenheimer-Brinkrnan-Kramers (ROBK), RE, relativis-
tic first-order Born with Coulomb boundary conditions
(R1B) [16], and RSE approximations. As done before,
the system studied is H++H(ls) but at 100 keV impact
energy. A good qualitative agreement with the other
theories is obtained, with the exception of RSE which, as
discussed before, fails at this low velocity.

In order to obtain a stringent test of the convergence of
the MCDW approximation on the nonrelativistic CDW
one, we also compare differential cross sections for the
system indicated above at the nonrelativistic 300 keV and
10 MeV collision energies for the non-spin-Rip reaction.
The agreement between MCDW and CDW results is so
close that they cannot be distinguished in Figs. 1(a) and
2(a). Moreover, for the 10-MeV case, the relativistic
model reproduces a pronounced dip overlapping the
Thomas's peak which in the nonrelativistic models is

U C
O

10

10

10

-30
10

10
-2

lab

(b)

20

TABLE II. Non-spin-flip and spin-flip total cross sections for
H++H(1s) electron capture (in atomic units) at 100 keV.
ROBK, RE, R1B, and RSE results are extracted from Ref. [8].
The MCDW results are present calculations based on Ref. [10].
The numbers in square brackets give the power of 10 multiply-
ing the preceding number.

-32
10

I

1Q

e&~b( &0 deg )

15 20

Theory

ROBK
RE (prior)
RE (post)
R1B
RSE
MCDW

~nonflip

1.22[0]
1.99[—1]
1.99[—1]
2.25[ —1]
5.3[—2]
2.27[ —1]

4.39[—10]
2.83[—10]
2.83[—10]
1.76[—10]
6.3[—3]
5.20[ —10]

~ flip /~nonflip

3.60[ —10]
1.42[ —9]
1.42[ —9]
7.82[ —10]
1.2[ —1]
2.29[ —9]

FIG. 1. (a) Theoretical differential cross sections (der /d0) ~ ~

for electron capture without spin flip in the
H++ H(1s) —+H(1s)+H+ system as a function of the laboratory
scattering angle 0 for an impact energy of 300 keV. The
theoretical models shown are, MCDW; —- —.—,MCIS;
———,CDW (indistinguishable from MCDW in this figure).
(b) Same as (a) but for the case with spin flip, (do /d 0)~ .
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McCann [19],only the entry channel is distorted by using
the same initial distorted-wave function as in MCDW.
The agreement between MCIS and MCDW differential
cross sections is very good, except that MCIS, as expect-
ed, only shows one peak that does not present interfer-
ence effects. Also, nonrelativistic Eikonal calculations [7]
are displayed in Fig. 2(a). The RE-differential cross sec-
tion must converge to them at the energy considered. It
is evident from the observation of the figure that the
characteristic peak of the two-step mechanism of electron
capture will be not represented by RE. Non-spin-Hip
differential cross sections calculated with the MCDW
and MCIS approximations are introduced in Figs. 1(b)
and 2(b) at 300 KeV and 10 MeV impact energies, respec-

Theory

ROBK
RE (prior)
RE (post)
R1B
Close coupling
RSE
MCDW

~nonflip

1.74[ —3]
1.40[ —4]
1.40[ —4]
1.16[—4]
1.42[ —4]
2.26[ —5]
1.60[ —4]

1.27[ —5]
8.16[—6]
8.16[—6]
3.98[—6]
8.14[—6]
2.73[—6]
7.36[—6]

~ flip /~nonflip

7.30[ —3 ]
5.83[—2]
5.83 [ —2]
3.43[ —2]
5.73[—2]
1.21[—1]
4.62[ —2]

TABLE III. Non-spin-Aip and spin-flip total cross sections
for 1s-1s electron capture (in atomic units) for U ++U '+ col-
lisions at 500 MeV/amu. Same captions as for Table II. The re-
sults of 36-state coupled-channel calculations are extracted from
Ref. [8].

10

—6
10

fg

10

10

10

6 C
D &

10

2
2

3
e (10 deg )

[ab

tively. It is clear that the spin-Aip case gives differential
cross sections several orders of magnitude lower than the
case without spin Aip. Also, the spin-Aip figures show a
double scattering peak. Interference effects appear again
in MCDW even if a smooth valley now replaces the pro-
nounced dip of the case without spin Aip. It must also be
noted that electron spin cannot change in the electron-
capture reaction if the projectile is not deflected from its
original direction. This is a qualitative distinctive
characteristic of the spin-Aip case.

The comparison of Tables I and II and Figs. 1 and 2
are a convincing test of the low-velocity convergence of
the MCDW and a severe indication of the adequacy of
the approximations made during the obtention of J7;f(g).
The MCDW approximation thus constitutes an excellent
tool to estimate also spin-Hip contributions in the case of
electron capture even at nonrelativistic velocities.

The RSE approximation has also been shown to fail in
comparison with other theoretical predictions, even at a
relativistic velocity corresponding to a collision energy of
500 MeV/amu, for the impact of U + on U '+. In Table
III we compare our MCDW results with ROBK, RE,
R1B, and close-coupling calculations [8], all of them ob-
tained with bound-state Darwin wave functions. The
agreement of MCDW with these theories is very good,
even if for this case the validity of the use of Darwin
wave functions could be questioned because Z~ T/c ((1.
In our calculations, Darwin spinors are affected by nor-
malization factors as given by Deco and Griin [20]. It
has been shown that when scalar eikonal phases are used
to distort bound spinors, the associated perturbative po-
tentials present spurious spin-Aip contributions as c~~,
and this criticism was suggested to be valid also for the
UCDW and MCDW approximations [8]. We have
shown in this work that such spurious contributions do
not appear in MCDW in the nonrelativistic energy re-
gime. Also, it must be noted even though these perturba-
tive potentials will also appear related to the distorted
channel in models where only one channel is distorted by
an eikonal phase, it has been shown that this spurious be-
havior is mathematically eliminated in such cases [8).

0 1 2 3 5

e[~b [1Q deg )

FIG. 2. (a) Same as Fig. 1(a) but for an impact energy of 10
MeV. In addition, —..—..—,SE from Ref. [7]. (b) Same as
(a) but for the case with spin Hip, (do. /d 0 )

~ ~.

III. CONCLUSIONS

The MCDW behavior at nonrelativistic energies has
been studied for electron capture in ion-atom collisions
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where the electron spin changes or remain unaltered.
For the reactions without spin Aip, it has been shown
analytically and numerically that MCDW approximation
goes on the nonrelativistic CDW approximation as
c~~. For the case with spin fIip it has also been nu-
merically proved that the MCDW gives negligible contri-
butions to the cross sections compared with the non-
spin-Aip case as the impact energy decreases. Therefore,
the MCDW does not exhibit unphysical effects in the
nonrelativistic domain in contrast with other symmetric

theories such as RSE and UCDW. The MCDW which
also goes on the UCDW as y —+~ thus constitutes a
powerful tool to describe charge exchange for all col-
lisions velocities for which the impact-parameter approx-
imation may be used.

Differential and total cross sections have been present-
ed and qualitatively analyzed for the cases with and
without spin Hip. The present work sheds light on a re-
cent paper [8] where the points analyzed here were dis-
cussed.
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