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Evaluating dynamic multipole polarizabilities and van der Waals dispersion coefficients
of two-electron systems with a quantum Monte Carlo calculation: A comparison

with some ab initio calculations
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We present some systematic calculations of dynamic multipole polarizabilities and van der Waals
dispersion coe%cients for the helium atom and H2 molecule with a quantum Monte Carlo calculation.
Using an original method based on a gauge-invariant formalism we also report some ab initio results
of the same quantities. In light of the results we discuss the advantages and drawbacks of both
approaches in comparison to prior theoretical results,

PACS number(s): 31.20.Di, 31.90.+s

I. INTRODUCTION

Dynamic multipole polarizabilities determine a num-
ber of properties of systems interacting with external
electric fields. In particular, they can be closely related
to the van der Waals dispersion coefFicients that describe
the long-range interaction of atoms and molecules. It is
well known that such quantities which formally involve
all the excited states of the system (both the discrete
and continuous part of the spectrum) are very difficult
to evaluate with accuracy. To illustrate this, it is quite
instructive to point out that, for the rather elementary
case of the helium atom, it is only in 1976 that Glover and
Weinhold [1] were able to determine some high-quality
upper and lower bounds of the dynamic dipole polar-
izabilities; more interestingly, these bounds were tight
enough to rule out the majority of previous theoretical
and experimental predictions.

A number of approaches based on O,b initio meth-
ods has been devised to obtain dynamic polarizabilities.
Among the numerous ab initio models currently in use
(corresponding to various levels of accuracy) we may cite
the self-consistent-field configuration-interaction (SCF-
CI) and the full-configuration-interaction (FCI) methods
[2—4], the multiconfigurational time-dependent Hartree-
Fock or multiconfigurational linear response (MCTDHF
and MCLR) [5, 6], the random phase approximation
(RPA) [7], or the more elaborate second-order polar-
ization propagator approximation (SOPPA) [8, 9], and
a time-dependent gauge-invariant (TDGI) method intro-
ducing a dipole-moment factor in the SCF-CI approxi-
mation [10—13].

Very recently, Caffarel and Bess have presented a
method of computing response properties with quantum
Monte Carlo (QMC) [14]. Basically, this scheme re-
lies on the possibility of connecting the imaginary-time-
dependent dynamics of the unperturbed system (the

time-dependent Green's function closely related to quan-
tum response properties) with the transition probabil-
ity density of a diffusion process. As a consequence,
the usual perturbational components of the Rayleigh-
Schrodinger perturbation theory may be expressed in a
natural way in terms of stochastic correlation functions
of the perturbing potential. These correlation functions
are then computed from random walks in configuration
space generated using the transition probability density
(Langevin techniques). The salient features of this ap-
proach will be presented with some detail in Sec. II. It
is interesting to note that such a scheme is formally very
similar to that of standard molecular dynamics, except
that Newtonian trajectories are replaced here by Brow-
nian trajectories (mimicking the "diffuse" character of
quantum mechanics).

The chief advantage of the QMC approach with respect
to cb initio schemes is that no basis-set expansion nor ex-
plicit summation over a large, but necessarily incomplete,
set of basis functions are introduced. It is, of course, a
fundamental property of QMC, considering the impor-
tance of such aspects in cb initio schemes. Other origi-
nal features include the possibility of computing several
response properties (e.g. , dipole, quadrupole, octopole,
etc. , components) in one single Monte Carlo run; the
possibility of having a rigorous estimation of the error
bars on results (a difficult task for ab initio methods);
the very favorable computational aspects of QMC (rnem-
ory requirements are perfectly bounded —no calculation
and storage of huge numbers of bielectronic integrals; the
computer codes are short, simple and very well suited for
vector and parallel computing), etc. All these aspects will
be illustrated in this paper.

The quantum Monte Carlo perturbation formalism has
been fi.rst applied to the problem of the interaction of
two helium atoms at short distances [14]. Some prelim-
inary calculations concerning the dynamic dipole polar-

47 3704



47 EVALUATING DYNAMIC MULTIPOLE POLARIZABILITIES. . . 3705

izability of helium have also been reported [15]. In this
paper we are concerned with the presentation of some
more systematic calculations of dynamic multipole po-
larizabilities and van der Waals dispersion coefBcients for
the helium atom and H2 molecule. These results are pre-
sented together with some ab initio calculations of the
same quantities we performed by using an original for-
malism based on a TDGI method [12] derived in the spirit
of the variation-perturbation approach [16,17] later used
by Karplus and Kolker [18] for the time-dependent inter-
action. The very different features of QMC and ab initio
approaches are emphasized and the advantages and draw-
backs of each of them are discussed in comparison with
the most accurate theoretical results available [1,19—41].

Just before completing this work we received a paper
from Huiszoon and Briels in which the static dipole po-
larizabilities of helium and H2 (at equilibrium geometry)
are computed using a differential-diffusion Monte Carlo
method [42]. In fact, their approach is very similar to
ours as presented in Refs. [14] and [15], and in the present
work, except that a branching process is used in their
simulations (like in most QMC methods designed so far
to compute total energies).

The organization of this paper is as follows. In Sec.
II, the quantum Monte Carlo method for computing re-

sponse properties of two-electron systems is presented.
We also give a brief presentation of the TDGI ab initio
method we shall use for making some comparisons (in
particular, when no ab initio data are available). Section
III presents calculations of dynamic multipole polariz-
abilities (both in real and imaginary frequencies) for He
and H2. In Sec. IV we present some results concern-
ing van der Waals dispersion coeKcients. Finally, some
concluding remarks are presented in Sec. V.

II. METHODS

A. Quantum Monte Carlo

Dynamic multipole polarizability components of an N-
electron system at frequency ~ are given by

~t""(~) = ~i"'(~) + ~i (~) (1)
with..+( ) ) - (4o1Qt" 14")(O'* I

Qt" 14'o)
E, —Ep+u

nP"+(w) may be rewritten in terms of the Laplace trans-
form of the following centered two- (imaginary) time cor-
relation function:

d~ e+ Cq;q;(~),

where

Qi" —= (&o I Qi I 4), ~ =~, ~. (5)

(6)
where R is a compact notation for representing a point
in the 3N-dimensional configuration space, that is B =
(ri, ..., rN), where N is the number of particles of the
system. It should be noted that the stationary density,

p(R), of the diffusion process (obtained by letting t go to
infinity in the preceding formula) is nothing but the usual
quantum-mechanical probability density associated with
the ground-state wave function

p(R) = &o

In practice, a Gaussian short-time version of the transi-
tion probability density (6) is used to generate stochastic
trajectories of the diffusion process:

1 3NI2

(R Rg g]) I I

—[R' —R—b(R)Dtj /26t

(8)

where the so-called drift vector b responsible for impor-
tance sampling is given by

The important point is that such correlation func-
tions may be computed by using simulation techniques
based on diffusion processes. To do that, we intro-
duce a Markovian diffusion process in configuration space
whose transition probability density is closely related to
the imaginary-time-dependent Green s function associ-
ated with H. More precisely, the transition probability
density employed here is

Rl~
p(R ~ R', t) = ' ) P, (R)P, (R')e '

Po(R)

where Q~t stands for the multipole operator: b(R,) = (9)

and p, are the eigenfunctions of H (the Hamiltonian de-
scribing the isolated atomic or molecular system) with
the corresponding energies E,. It is easy to see that

I

The effect of drifting the mean value of the Gaussian
function (8) is to increase the efficiency of the simula-
tion by keeping the configurations in important regions
of phase space. The two-time correlation functions are
formally defined in terms of the stationary and transition
probability densities as follows:

Cq;q;( ) = ([Qi"(R(0)) —Qi ][Qt"(R(~)) —Q,"])

dRodRi [Qi (Ro) —Qi ]p(RO)p(Rc Ri, 7.) (Qi" (Ri) —Qi ), (1O)
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where () denotes the average with respect to stochastic trajectories. The validity of Eq. (10) is easily checked by
inserting expressions (6) and (7) into (10) and comparing with (4). In practice, such averages may be calculated
from random walks generated from Eqs. (8)—(9) and by averaging the two-time product of Q's along them. However,
at this point this scheme is rather formal since the ground-state wave function of H [whose expression is needed to
construct the drift vector (9)] is generally not known. In fact, it is possible to avoid this problem by introducing a
new difFusion process defined from a known trial wave function QT instead of the exact one [43]. In order to compute
the very same correlation functions, it is possible to show that one just has to introduce a suitable weight factor in
the preceding averages (for a detailed presentation, see [14] and [43]). For example, the two-time correlation functions
in which we are interested here are expressed as

— "' Z a. )d

t —++oo —f'~)~ E I(R(s))d sy

where averages of the right-hand side of the equation are
defined with respect to the diffusion process built from
a trial wave function @T. In fact, formula (11) is noth-
ing but a generalization of the well-known Feynman-Kac
formula [43]. The quantity EL, appearing in the weight
(Feynman-Kac) factor is defined as

EL, = HIT/4T

and is usually referred to as the local energy.
As discussed in length in [14] it is important to em-

phasize that the formalism presented here is effective for
systems having no more than two electrons (no antisyrn-
metry constraints from the Pauli principle). In theory
bigger systems could be treated by introducing some pro-
jecting weights with appropriate antisymmetry. In prac-
tice, doing this introduces a dramatic sign problem at
large times which renders the simulation very delicate
to perform. Note that the commonly used fixed-node
approximation cannot be employed for computing multi-
time correlation functions (even if the exact nodes of the
ground state were known, see [14]). Some proposals to
control this diKculty have been very recently proposed
by one of us [44, 45]. However, the situation is not yet
fully satisfactory.

tional wave function.
We have shown elsewhere [12] that the use of a first-

order wave function which combines a polynomial func-
tion g(r) and both true spectral states P„and quasi-
spectral states g allows us to reach accurate values for
static and dynamic polarizability components. For the
case of dipole polarizabilities (Qi = u) the expression of
this first-order wave function is

N M

11') =g" (r)l&o)+ ). 4 14-)+).c" IO-),
n (&0} m

(14)

where g(r) is a first degree polynomial function of the
electronic coordinate:

g" (r) =) a" u with u v=xy z

when the electric field lies in the v direction. P„are the
true spectral states built from Slater determinants

B. Ab initio TDGI method

Since this original ab initio method has been described
in detail in Ref. [12], only its main features will be given
here. The dynamic polarizability components [Eqs. (1)—
(2)] may be obtained from a time-dependent variation-
perturbation approach [18) using the following expres-
sions:

and g is a quasispectral series determined by Slater
determinants selected using the following threshold:

g(4olvl@ )
H m —EO

with

where H is the Hamiltonian of the unperturbed (isolated
system), Po is its ground-state wave function, Eo the cor-
responding energy, and

l
1 ) the first-order perturba-

with H = (g lH[g ).
The computation of the dynamic polarizability re-

quires the calculations of c„,c"„,and c factors ob-
tained by projecting Eqs. (13) (for +co and —w) on vlPo),
lP„), and lQ ). This leads to a system of two linear sets
of equations to be solved.

When the origin is fixed at the electronic centroid, the
dynamic dipole polarizability components are given in
atomic units by
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~t=l(~) = ).a" (~u) + ) .c (Alul& )
+,to +,n

+).c" (&olu14-) (15)

III. DYNAMIC MULTIPOLE POLARIZABILITIES
FOR HE AND H

with u, v, m = x, y, z and (mu) = (Po] Q,"' m, u~ [go) (n,
being the number of electrons).

We have reformulated the TDC I expressions for
the imaginary frequency-dependent dipole polarizability
a;(ice) in order to calculate the dispersion coefficients via
the Casimir-Polder formula [46]. The two systems of lin-
ear equations become identical but twice greater than for
real frequencies. The resolution is made as described by
Koch and Harrison [47].

Quadrupole polarizability components are obtained in
the same way by replacing the dipole moment operator
by the quadrupole moment but the polynomial function
j(r) has not been used in this case.

obtained using full CI (FCI) calculations or explicitly cor-
related wave functions [I, 24, 37]. Note also that, in the
case of He, Glover and Weinhold [I] have used a method
for calculating rigorous upper and lower bounds to dy-
namic dipole polarizabilities using explicitly correlated
wave functions. To study the reliability of QMC and
TDGI methods, our values are to be compared to these
almost exact results when possible.

Let us first discuss the QMC results. As emphasized
in Sec. IIA a central role is played by the trial wave
function used. The closer the exact solution of the trial
wave function is, the smaller the fluctuations of the lo-
cal energy (12) are, and the better the simulation for
a given amount of computer time is. In practice, one
of the best trial wave functions available for the system
under consideration is generally chosen. The wave func-
tion may have a rather arbitrary form since only its first
(drift vector) and second derivatives (local energy) are
to be calculated (no integrals to perform). Highly and
explicitly correlated trial wave functions (i.e. , including
the interelectronic distance) are generally used. Here, we
have chosen a rather simple form

A. He 47 = lls(rq))lls(rz)) exp
j. +br» (16)

Tables I—IV present the dynamic dipole, quadrupole,
and octopole polarizabilities of helium as calculated
by QMC and TDGI (present work), and various ab
initio methods for comparison. The most commonly
used method for evaluating dynamic polarizabilities
is certainly the time-dependent Hartree-Pock method
(TDHF). TDHF results may be largely improved by us-
ing a MCSCF wave function as reference (MCTDHF)
instead of a single one [25]. However, for a simple two-
electron system such as He nearly exact results may be

with

3

lls(r)) = ) c, exp( —A, r),

where parameters a, 6, A, , and c, have been optimized to
minimize the energy. With our optimized trial wave func-
tion (a = 0.5; b = 0.51571; cq=0.00698; cq ——0.36714;
cs —0.537 62; Aq=4. 462; A2=2.8955; As=I. 5689) we re-

TABLE I. Dynamic dipole polarizabilities o.(cu) (in a.u. ) of He for real frequencies (in a.u. ).
GW stands for Glover and Weinhold [1, QMC for quantum Monte Carlo, and TDGI, TDHF [25],
MCTDHF or MCLR [25], SOPPA [27, and FCI [26] for the corresponding ab initio methods.
Statistical errors on the last digit of QMC results are indicated in parentheses.

Frequency u

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75

QMC
1.382(16)
1.386(17)
1.398(17)
1.418(19)
1.449(22)
1.490(25)
1.546(31)
1.618(39)
1.715(52)
1.846(73)
2.031(111)
2.318(188)
2.858 (399)

TDGI
1.3827

1.3984

1.4478

1,5404

1.6974

1.9696

2.5091

4.1308

GW
1.3834(8)
1.3872(8)
1.3990(8)
1.4191(8)
1.4485 (8)
1.4885(9)
1.5412(9)
1.6096(10)
1.6983(11)
1.8145(13)
1.9705(15)
2.1875(18)
2.5091(23)
3.0391(34)
4.1184(73)
8.1640(761)

n((u)
TDHF
1.3214

MCLR
1.3821

1.3354 1.3976

1.3797 1.4467

1.4619 1.5385

1.5995 1.6938

1.8327

2.2741

1.9621
2.1753
2.4897

3.4320 4.0339

soppA
1.3674
1.3712
1.3826
1.4022
1.4307
1.4695
1.5205
1.5866
1.6722
1.7840
1.9334
2.1402
2.4441
2.9380
3.9173

FCI
1.3846
1.3885
1.4003

1.4500

1.5431

1.7009

1.9746

4.1527

'Reference [42]: n(0) =1.38(1).
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cover 89%%uo of the correlation energy. Stochastic trajecto-
ries in the six-dimensional con6guration space are gen-
erated using the Gaussian transition probability density
(8) with

where the Qi's are the dipole (t = 1), quadrupole (I = 2),
and octopole (l = 3) operators given by (only one com-
ponent for each multipole moment has been considered
because of spherical symmetry)

b(R) = (17) Ql +1 + +2~

Ci(r) = ((Qi —Qi)(0)(Qi —Q&)(~)), l = 1, 2, 3 (18)

TABLE II. Dynamic dipole polarizabilities o.(~) (in a.u. )
of He for imaginary frequencies (in a.u. ). GW stands for
Glover and Weinhold [20], QMC for quantum Monte Carlo,
and TDGI for the cb initio method. Statistical errors on the
last digit of QMC results are indicated in parentheses.

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0,80
0.85
0.90
0.95
1.00
1,10
1.20
1.30
1.40
1.50
2.00
3.00
4.00
5.00

QMC
1.382(16)
1.378(16)
1.366(15)
1.347(14)
1.322(12)
1.291(11)
1.256(9)
1.217(7)
1.175(6)
1.132(5)
1.088(4)
1.044(4)
1.001(4)
0.958(4)
0.916(4)
0.875(4)
0.836(4)
0.799(4)
0.763(4)
0.729(4)
0.696(3)
0.635(3)
0.581(3)
0.532(2)
0.488(2)
0.449(1)
0.305(l)
0.1647(7)
0.1016(3)
0.0686(1.5)

n(ice)
TDGI
1.3827

1.3675

1.3242

1.2587

1.1788

1.0918

1.0035

0.9180

0.8377

0.7637

0.6964
0.6358
0.5813
0.5326
0.4891
0.4501
0.3075
0, 1659

GW
1.3834(8)

1.370(10)

1.322(7)

1.257(5)

1.178(4)

1.090(3)

1.002(2)

0.917(2)

0.836(2)

0.762(2)

0.695(2)

0.580(1)

0.449(1)
0.3069(9)

Reference [42]: a(0)=1.38(1).

As usual when using a step-wise procedure to generate
trajectories, a finite time-step error is introduced (the
"short-time error" ). In order to reduce it significantly we
have used the acceptance-rejection procedure presented
in Refs. [14] and [48], essentially a standard Metropo-
lis algorithm based on a Langevin move. To keep the
short-time error under control, we have repeated our sim-
ulations for different time steps of decreasing magnitude
up to some value for which the time-step error is signi6. —

cantly smaller than the statistical one. A typical value of
the time step for the simulations presented here is 0.01
a.u. The following autocorrelation functions have been
calculated:

Q. =-', ( '+ ')--,'("+ ')
Qs &~i + &2 g&1(yi + zi) ——',~2(v2 + z2),

where x, , y, , z, denotes the position of electron i Av. ery
important feature of this type of approach is that the
different correlation functions are computed from a com-
mon set of random walks. Only integrands change when
computing different averages. It should be noted that
within the framework of cb initio methods computing
polarizabilities corresponding to different multipole mo-
ments requires in theory as many calculations as dif-
ferent operators. In practice, this is not strictly true
(the perturbation-independent part of the calculation is
evaluated only once; it is possible to take advantage of
eKcient algorithms for solving simultaneous equations,
etc.), but the cost remains larger Fig.ure 1(a) (upper
curve) presents the dipole correlation function Ci versus
~ as calculated for several statistically independent sets of
random walks (here, only eight curves have been drawn).
The location of the different curves gives a visual repre-
sentation of the dispersion of QMC results. The number
of independent calculations done for any result presented
in this paper is always of the order of 100, the error bars
given in the tables being estimated from these statisti-
cally independent sets of trajectories. As usual when
computing correlation functions it is important to realize
that the long-time regime may be difBcult to reproduce.
The reason for that is the exponential decay of the func-
tion, together with the presence of an error bar more or
less constant as a function of time. We illustrate this
difBculty by showing the logarithm of C(~) in Fig. 1(b)
(lower curve). The theoretical expression (4) indicates
that lnC should become linear for suKciently large times
(the slope representing the gap in energy of the system).
In practice, this is what happens for large enough times
(here, around r = 2 a.u. ); however, at too large times
(here, around ~ & 3 a.u. ) the noise dominates. To corn-

pute polarizabilities and van der Waals force constants
[Eqs. (3) and (22)] the correlation function must be inte-
grated over the entire time domain. Therefore, we must

pay special attention to the long-time domain. The strat-
egy employed here is simple. We determine at large times
a range of time values where the correlation function de-
cays as a single exponential and for which the noise is still
small. On this interval a fit of the correlation function
as a single exponential is performed. This representa-
tion for C(w) is used for ulterior times. In the short-time
regime, the data are represented analytically via a spline
interpolation procedure. Accordingly, the integrations
involved in (3) and (22) are expressed as a finite sum
(the number of QMC points) of Laplace transforms of a
third-order polynomial (spline part) plus a trivial residue
corresponding to large times. Here also, as in the ease
of evaluating properties related to different multipole op-
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erators, it is important to stress that we do not need to
do two separate calculations when both imaginary- and
real-frequency polarizabilities are needed. Indeed, once
the multipole correlation function has been computed as
a function of time over a sufBciently large range of time
values, evaluating multipole polarizabilities at zero or ar-
bitrary frequencies (real or imaginary) and even van der
Waals dispersion coeKcients is just a matter of perform-
ing a few trivial analytical integrations. Let us now have
a closer look at our QMC results. A first observation is
that the results obtained are good since in all cases (Ta-
bles I—IV) they are compatible with the estimated exact
values. This is, of course, expected since QMC results
are supposed to be exact and free of any systematic error
(such as the choice of the basis set in ab initio methods).
The only relevant quantity here is the magnitude of the
error bar defining the accuracy of the QMC simulation.
According to the central-limit theorem, the error bar be-
haves as c/~T, where T is the computer CPU time which
is directly related to the total number of Monte Carlo
steps performed. c is a constant depending on different
factors such as the quality of the trial wave function used
and the amount of statistical correlation between succes-
sive configurations generated and the nature of the oper-
ators involved in the averages. Since in the present work

6n( bc(o)
C(0)

&4o I
~Q2'14o) —(4o I

~Qt'
I 4o)

(go I

~Qt'
I 4o)

(19)

where

~Q~ —= Qi —Qi.

A crude estimate of these errors may be obtained by com-

a common set of trajectories has been used to compute all
the quantities presented, differences in statistical errors
are mainly due to the nature of operators. In particular,
it is worth noting that the statistical error on polariz-
abilities increases when multipole operators correspond-
ing to increasing t are considered. To explain this we
first notice that errors on polarizabilities and correlation
functions are expected to be roughly proportional due to
the linear relation between them. On the other hand, a
rough estimate of the error on correlation functions may
be obtained by evaluating this error at the initial time,
which is essentially given by the dispersion of the squared
multipole operator. We have

TABLE III. Dynamic quadrupole polarizabilities (in a.u. ) of He for both real and imaginary
frequencies (in a.u.). BL stands for Bishop and Lam [24]. Statistical errors on the last digit of
QMC results are indicated in parentheses.

Frequency w

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0,45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.10
1.20
1.30
1.40
1.50
2.00
3.00
4.00
5.00

C(~)qMc
0.800(16)
0.802(16)
0.807(16)
0.815(17)
0.827(17)
0.843(18)
0.864(20)
0.891(22)
0.926(26)
0.972 (31)
1.034(40)
1.125(57)
1.287(104)

C(~)TDGI
0.8022

0.8085

0.8280

0.8633

0.9192

1.0058

1.1449

1.3965

2.0946

C(cu)BI.
0.8146
0.8161
0.8208
0.8289
0.8404
0.8559
0.8757
0.9007
0.9318
0.9705
1.0189
1.0802
1.1596
1.2661
1.4172
1.6541

C(2~) qMC
0.800(16)
0.799(16)
0.794(15)
0.787(15)
0.776(15)
0.763(14)
0.749(13)
0.732(13)
0.714(12)
0.695(11)
0.675 (10)
0.655(10)
0.634(9)
0.613(9)
0.593(8)
0.572(8)
0.552(7)
0.533(7)
0.513(6)
0.495(6)
0.477(6)
0.442(5)
0.410(5)
0.381(4)
0.353(4)
0.329(4)
0.233(2)
0.129(1)
0.0803(3)
0.0545(2)

C(2Cd) TDGI
0.8022

0.7960

0.7781

0.7504

0.7153

0,6754

0.6331

0.5903

0.5485

0.5086

0.4712
0,4364
0.4043
0.3750
0.3482
0.3237
0.2301
0.1296
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puting the averages in (19) using the approximate trial
wave function instead of the exact one. Resorting to a
standard Metropolis algorithm to compute integrals we
obtain

bn2 bog
)

5~3 bo. y ~ 6.8.
A3 Ay

These ratios agree quite well with ratios of QMC errors
presented in Tables I—IV. For the case of the dipole re-
sults, our values are compatible with the narrow range of
possible values resulting from the very tight rigorous up-
per and lower bounds of Glover and Weinhold [1, 20] ob-
tained by using correlated Hylleraas-type wave functions
or, for the static case, with the experimental value of
1.383 79(7) obtained by Gugan and Michel [49] [after cor-
recting for the motion of the nucleus we get 1.38323(7),
in agreement with the best ab initio value (1.383192)
given by Bishop and Lam [24] ].

This is true for both real and imaginary frequencies.
Concerning quadrupole polarizabilities our results are
compatible with our TDGI results and the results ob-
tained by Bishop and Lam [24] (note that we have di-

vided our results by a factor 3 to match their conven-
tion). Table IV presents dynamic octopole polarizabili-
ties of He. They are compared with the ab initio results
of Luyckx, Coulon, and Lekkerkerker [38] obtained by
a simple variation method. The latter ones agree quite
well with our QMC results within statistical errors. An-
other feature which deserves to be commented on is the
increase of the statistical error with real frequency. This
behavior arises from the fact that high real frequencies
require an accurate evaluation of the correlation func-
tion for increasing times [the Laplace kernel exp(co~) in

(3) explodes for large frequencies], and the small statisti-
cal errors on the tail of the correlation function are then
exponentially magnified by the Laplace transform. Note
that this problem does not exist in the case of imaginary
frequencies.

In order to make some comparisons, a number of ab
initio calculations are also presented in Tables I—IV. Our
Ob initio calculations were performed using the TDGI
approach [12, 13] briefly presented in Sec. IIB. For He,
the basis set employed consists of 13s, 7p, and 6d primi-
tive Gaussian orbitals based on the van Duijneveldt (10s)
primitive set [50, 51] and an even tempered (7p, 6d) po-
larization set augmented by adding 3s disuse function.

TABLE IV. Dynamic octopole polarizabilities (in a.u. ) of He for both real and imaginary
frequencies (in a.u. ). Ab initio results are taken from Ref. [38]. Statistical errors on the last digit
of QMC results are indicated in parentheses.

Frequency w

0.00
0.05
0.10
0.15
0.20
0,25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.0

O3(~)QMC
10.36(69)
10.38(70)
10.45(71)
10.57(72)
10.75(75)
11.00(80)
11.33(86)
11.77(96)
12.35(113)
13.14(144)
14.26(212)

(C~t3) ab initio
10.48
10.49
10.54
10.63
10.74
10.90
11.10
11.34
11.64
12.01
12.45

Ci3 (Z(d) QMC
10.36(69)
10.33(69)
10.26(68)
10.15(66)
10.01(64)
9.83(62)
9.62(59)
9.40(57)
9.16(54)
8.91(51)
8.66(49)
8.41(46)
8.17(44)
7.92(41)
7.69(39)
7.46(36)
7.23(34)
7.02(32)
6.81(30)
6.61(28)
6.41(26)
3.51(9)
1.92(2)
1.198(9)
0.820(11)
0.591(8)
0.452(4)
0.350(3)
0.276(3)
0.225(2)

O'3(t~) ab initio
10.48
10.46
10.42
10.34
10.23
10.10
9.94
9.76
9.56
9.35
9.12
8.89
8.65
8.40
8.15
7.90
7.66
7.41
7.17
6.93
6.70
3,42
1.93
1.217
0.828
0.597
0.449
0.350
0.280
0.228

Reference [37]: n3(0)= 10.6144.
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Exponents of the 3s orbitals are, respectively, 0.049069,
0.022 304, and 0.010 138. SCF and CI calculations within
this basis set give an atomic energy of —2.861 67 a.u. and
—2.902 52 a.u. , respectively. Dynamic dipole polarizabil-
ities of He for real frequencies computed with TDGI are
listed in Table I together with some TDHF [25], MCLR
[25], SOPPA [27], and FCI [26] results and the very accu-
rate rigorous upper and lower bounds obtained by Glover
and Weinhold [19,20]. A first point to emphasize is that
our ab initio TDGI results for the static polarizability
(1.3827 a.u. ) is in excellent agreement with the one ob-
tained by Glover and Weinhold [1.3834(8)] and with the
very accurate value (1.383 192) given by Bishop and Lam
[24] using explicitly electron-correlated wave functions.

MCTDHF and FCI methods give quite accurate re-
sults; an error of approximately 1% is found with
SOPPA. The main differences between various calcula-
tions appear at frequencies close to the first excitation
energy of He. Table I shows that, for frequencies up to

0.7 a.u. , the TDGI results, close to the accurate results
of Glover and Weinhold [1], are the most accurate ones
among ab initio calculations. The main explanation is
that the excitation energy corresponding to the transi-
tion 1s —+ 2p is very well reproduced in our calculations,
namely, 21.193eV, to be compared with the experimental
value of 21.22 eV. As already explained above QMC re-
sults have a statistical error which increases very rapidly
with the frequency. Calculating polarizabilities for real
frequencies close to the excitation energy is not an easy
task for the QMC approach. For the case of imaginary
frequencies where this problem does not exist, we obtain
a very good agreement between QMC and TDGI results
(Table II). Concerning the dynamic quadrupole polariz-
abilities (Table III) our results are compared with those
obtained by Bishop and Lam [24] which have to be con-
sidered as reference values. Between 0.0 and 0.6 a.u. our
ab initio values have a similar behavior as Bishop and
Lam results. However, it seems that our results are too
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FIG. 1. (a) Dipole correlation functon of
He vs ~ as calculated in eight independent
runs. (b) Logarithm of C(r). Note the effect
of the noise in the large-time domain.
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small with an error of approximately 1.5%. QMC results
within the statistical errors are in good agreement with
both sets of results.

@T = exp
I

[C'A(1)c'rr(2) + C'g(2)C'rr(1)]
i, 1+brr,

B. Hg

Calculating response properties for a molecular system
such as H2 using QMC does not introduce any additional
difBculties with respect to an atomic system such as He.
As usual choosing a good approximate trial wave func-

tion is the crucial step. Since calculations at both in-

termediate and large internuclear separations, RH H, are
considered here it is important to choose a wave function
capable of describing both the equilibrium region (co-
valent regime) and the large RH H region (valence-bond
regime). This could be realized with one single wave

function with some parameters connecting both cases.
For simplicity we have chosen here to use two diferent
wave functions

For large distances

@T = exp]
~
C(1)C(2),(1+brr2)

where the molecular orbital is given by

C (i) = exp( —Ar, g) + exp( —Ar, ~).

(21)

Concerning our ab initio TDGI calculations, we have
chosen for each hydrogen atom a contracted basis
[Gs, 6p, 3d] issued from the basis [4s, 3p, 1d] proposed by
Siegbahn and Liu [52] in their study of the potential
energy surface of H3. The two additional s functions

with

C'M(i) = exp( —Arr, M) + cexp( —Aqr, M), M = A, B,

where r,M denotes the distance between electron i and
nucleus M (M = A, B).

For intermediate distances

TABLE V. Dynamic dipole polarizabilities (in a.u.) of H2 at R = 1.4 for real and imaginary
frequencies (in a.u.). QMC stands for quantum Monte Carlo and TDGI, Rych [28] and SOPPA [27]
stand for the corresponding ab initio methods. Statistical errors on the last digit of QMC results

are indicated in parentheses.

0,0000
0.0720
0.0834
0.1045
0.1363
0.1535
0.1979
0.2354
0.2500
0.3000
0.3500
0.3748
0.4000
0.4500

6.42(8)
6.55(9)
6.59(9)
6.69(9)
6.90(10)
7.04(10)
7.52(13)
8.09(15)
8.37(17)
9.68(34)

Prequencies nQ
II

TDGI
II

6.4310
6.5617
6.6077
6.7132
6.9278
7.0756
7.5865
8.2125
8.5226
10.0190
12.7855
15.2223
19.4440
61.6664

Rych
II

6.3873
6.5164
6.5618
6.6659
6.8776
7.0235
7.5256
8.1412
8.4481
9.9160
12.6126
14.9610
18.9847
54.3276

SOP PA
II

Real
6.4495
6.5812
6.6276
6.7338
6.9501
7.0990
7.6136
8.2437
8.5568
10.0649
12.8558
15.3084
19.5639
62.0977

QMC
Qg

4.53(7)
4.60(7)
4.62(7)
4.68(9)
4.79 (9)
4.87(10)
5.13(13)
5.43(18)
5.57(22)

TDGI
Ag

4.5944
4.6725
4.6999
4.7626
4.8892
4.9758
5.2713
5,6257
5.7982
6.6041
7.9877
9.1058
10.8521
20.9387

Rych
Qg

4,5786
4.6562
4,6834
4.7457
4.8715
4.9576
5.2503
5.6017
5.7738
6.5713
7.9320
9.0182
10.6930
19.4400

SOPPA
Ag

4.5676
4.6445
4.6715
4.7331
4.8576
4.9427
5.2328
5.5800
5.7493
6.5367
7.8834
8.9633
10.6421
20.0551

0.0000
0.1000
0.2000
0.3000
0.4000
0.5000
0.8000
1.0000
1.2000
1.5000
1.8000
2.0000

6.42(8)
6.19(7)
5.59(6)
4.82(4)
4.05(3)
3.36(2)
1.96(l)
1.423(7)
1.073(5)
0.743(4)
O. 542(3)
0.448(2)

6.4310
6.1939
5.5834
4.8082
4.0395
3.3624
1.9746
1.4396
1.0848
0.7484
0.5437
0.4496

Imaginary
4.53(7)'
4.40(7)
4.05(5)
3.58(4)
3.09(3)
2.63(2)
1.63(l)
1.220(8)
0.942(4)
O.670(3)
0.499(2)
0.417(2)

4.5944
4.4517
4.0777
3.5888
3.0870
2.6294
1.6367
1.2290
0.9481
0.6718
0.4978
0.4160

Reference [42]: o.~~(0) = 6.38(5); n~(0) = 4.60(3).
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and three p functions have an exponent of (0.0287739,
0.012 510 3) and (0.101818, 0.037 025, 0.013463 5), re-
spectively. The three exponents of the d functions are
1.20252, 0.463925, and 0.0812406. Even if this basis
set is far from being complete, the introduction of the
polynomial in the determination of polarizabilities im-
proves the convergence. Performing a full CI calculation
within this basis set leads to an energy of —1.173485
a.u. at R=1.401 a.u. A most important point when
determining the dynamical properties of H2 is to cor-
rectly describe the vertical transition X Z+ ~ B ~E+
and X Z+ C II„. Our results for the corresponding
excitation energies are 12.73 eV and 13.21 eV, respec-
tively, in excellent agreement with the exact values of
12.76 and 13.22 eV.

Table V presents dynamic dipole polarizabilities of H2
at the equilibrium geometry for both real and imagi-
nary frequencies as computed with QMC and TDGI. Re-
sults for real frequencies are compared with the reference
calculations by Rychlewski [28] based on a variation-
perturbation method using explicitly correlated wave
functions and some recent SOPPA results by Sauer,
Dierksen, and Oddershede [27].

QMC results for real frequencies are compatible with

Rychlewski's values within statistical error bars. Con-
cerning ab initio (TDGI) results, it is noted that the
static components n„(0) and a (0) overestimate Rych-
lewski results by a factor of 0.7% and 0.3%, respectively.
This overestimation is true for all frequencies. At fre-
quency 0.4 a.u. , close to the resonance, our values are
too large by a factor of 2.4% and 1.5%, respectively. It
should be emphasized that our TDGI results, obtained
using a much smaller basis set than Sauer, Dierksen, and
Oddershede [27] with SOPPA are of comparable quality.
Although the parallel component is better reproduced
with TDGI than with SOPPA, this is no longer true for
the perpendicular one much more sensitive to the angu-
lar correlation. In the case of imaginary frequencies, only
our QMC and TDGI results can be compared. Both sets
of results appear to be compatible.

Table VI presents dynamic quadrupole polarizabilities
of H& at the equilibrium geometry for both real and imag-
inary frequencies for the three independent components
denoted as C„„,C, „and C (z is the inter-
nuclear axis), as computed by QMC and TDGI. Our
static components and values at real frequency m=0. 0720
a.u. are compatible with those available in the literature
[33, 34]. TDGI results are in good agreement with QMC

TABLE VI. Dynamic quadrupole polarizabilities (in a.u. ) of H2 at R = 1.4 a.u. for real and
imaginary frequencies (in a.u.). QMC and TDGI stand for quantum Monte Carlo and ab initio,
respectively. Statistical errors on the last digit of QMC results are indicated in parentheses.

Frequencies

0.0000
0.0720
0.0834
0.1045
0.1363
0.1535
0.1979
0.2354
0.2500
0.3000
0.3500
0.3748
0.4000
0.4500

~QMC
ZZ) ZZ

6.10(35)
6.17(36)
6.19(38)
6.25(39)
6.36(44)
6.43(47)
6.66(62)
6.93(80)
7.06 (90)

gTDGI
ZZ) ZZ

5.9914
6.0645
6.0879
6, 1410
6,2466
6.3177
6.5530
6.8209
6.9461
7.4885
8.2798
8.8137
9.5016
11.6312

~QMC
XZ )XZ

Real
4.30(36)
4.35(37)
4.37(38)
4.40(40)
4.47(45)
4.52(49)
4.68(65)
4.87(83)
4.96(93)

gTDGI
XZ]XZ

4.1976
4.2440
4.2601
4.2968
4.3696
4.4186
4.5806
4.7650
4.8511
5.2236
5.7656
6.1304
6.5989
8.0344

gQMC
'X X $ XX

4.93(24)
4.99(25)
5.01(26)
5.05(27)
5.14(30)
5.20(32)
5.41(41)
5.64(54)
5.75(62)
6.23(115)

~TDGI

4.7929
4.8465
4.8651
4.9074
4.9914
5.0478
5.2340
5.4451
5 5433
5.9652
6.5684
6.9660
7.4656
8.9104

0.0000
0.1000
0.2000
0.3000
0.4000
0.5000
0.8000
1.0000
1.2000
1.5000
1.8000
2.0000

6.10(35)
5.98(31)
5.64(25)
5.16(18)
4.63(14)
4.10(12)
2.80(9)
2.18(6)
1.73(4)
1.25(2)
0.921(8)
0.775(6)

5.9914
5.8662
5.5243
5.0444
4.5098
3.9815
2.6840
2,0839
1.6455
1.1935
0.8975
0.7553

Imaginary
4.30(36)
4.21(30)
3.99(27)
3.66(19)
3.29(16)
2.92(13)
2.01(9)
1.59 (6)
1.28(5)
0.92(2)
0.680(9)
0.570(7)

4.1976
4.1113
3.8750
3.5428
3.1720
2.8047
1.8986
1.4774
1.1687
0.8495
0.6399
0.5389

4.93(24)
4.82(21)
4.53(15)
4.13(11)
3.69(9)
3.26(8)
2.23(5)
1.75(3)
1.39(3)
1.01(1)
0.768(6)
0.653(4)

4.7929
4.6929
4.4191
4.0336
3.6035
3.1789
2.1454
1.6734
1.3302
0.9760
0.7421
0.6286

Reference [34]: C„,„=5.983; C .. .= 4.180; C, = 4.927.
Reference [34]: C. .. = 6.050, C .. .= 4.226, C, = 4.981.
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TABLE VII. Dipole static polarizabilities (in a.u.) of H2 at selected internuclear distances A
(in a.u.). Rych stands for Rychlewski [29], BL stands for Bishop and Lam [31], QMC stands for
quantum Monte Carlo, and TDGI stands for ab initio. Statistical errors on the last digit of QMC
results are indicated in parentheses.

Distance R
1.4
2.4
3.0
3.4
3.8

6.0

QMC

4.53(7)
7.61(14)
8.76(20)
9.01(26)
9.13(18)
9.10(17)
8.98(13)

A TDGI
Ag
4.5944
7.6697
8.8494
9.2238
9.3003
9.2143
8.9371

Rych

4.57856
7.66049
8.85806
9.22883
9.30201

8.92719

BL

4.5785
7.6592
8.8555

QMC
II

6.42(8)
14.57(57)
17.60(79)
18.35(90)
17.41(53)
14.59(28)
10.17(17)

TDGI
II

6.4310
14.2932
17.8692
18.3724
17.3388
14.7043
10.2007

Rych
II

6.38732
14.26621
17,79965
18.28339
17.30680

10.19754

BLA
II

6.3875
14.2691
17.9990

Reference [42]: n~~(0) = 6.38(5); nz(0) = 4.60(3).

ones, except at large imaginary frequencies where TDGI
seems to give too small values.

The dependence of static dipole polarizabilities on the
internuclear distance H-H is presented in Table VII. For
all distances the TDGI results are in excellent agreement
with the reference values obtained by Rychlewski [29].
The same remark is valid for QMC results.

~ab gab(1 1)

gab gab(I 2) +. gab(2 1)

C;ob = C"(I, 3) + C"(2, 2) + C'(3, 1).

A. cq-cs and cqo far He

(23)

IV. van der WAALS COEFFICIENTS FOR He
AND Hg

The multipole dispersion force coefficients between two
systems a and b may be expressed in terms of the dynamic
polarizabilities as follows (see, e.g. , Ref. [53])

(2ta + 2tb)! +
( ) =

2 ( I )t( t )I
ckd cli (ted)Ai (i(d),

(22)

usual van der Waals constants being related to these co-
efficients in the following way:

As already pointed out a remarkable feature of QMC
is that no additional calculations are needed to compute
van der Waals constants once the polarizabilities have
been evaluated. Indeed, when computing polarizabilities
we built an analytical representation of the correlation
function of each multipole operator. Obtaining van der
Waals coefficients is then a simple matter of perform-
ing the analytic integrations involved in formula (22).
Our results for c6, cs, and ego are presented in Table
VIII together with some other results found in literature
[20,27,35—40]. QMC results appear to be quite good.

Our TDGI results are obtained from the values of
the polarizabilities at imaginary frequencies using the

TABLE VIII. van der Waals dispersion coefficients (in a.u. ) of He. Statistical errors on the last
digit are indicated in parentheses.

Method

Glover and Weinhold
Maeder and Kutzelnigg
Meyer'
Thakkar~
Luyckx, Coulon, and Lekkerkerker'
Buckingham and Hibbard
soppA~
MCTDHF"
Present work:
QMC
TDGI

C6

1.460(6)
1.457
1.456
1.4608
1.458
1.4638
1.4394
1.4608

1.454 (14)
1.4593

13.90
13.90
14.1118
14.06
14.094

13.88(22)
13.883

C10

177.24
175.4
183.6
182.2
183.47

177.9(69)

Reference [20].
Reference [35].

'Reference [36].
Reference [37].

'Reference [38].
Reference [39].

sReference [27].
"Reference [40].
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TABLE IX. c6 dispersion force constant (in a.u. ) for He-H2 as a function of the interhydrogen
distance R (in a.u. ) with quantum Monte Carlo (QMC) and ab initio (TDGI) methods. Comparison
with the semiempirical results of Matias and Varandas [41], see text.

Met
R 1.4 2.4 3.0

Parallel

3.4 3.8 4.4 6.0

QMC
TDGI
Max. Matias
Min. Matias

4.61(4)
4,6267
4.6
4, 2

7.81(15)
7,8405
7.5
6.8

8.75(22)
8.8621

8.88(29)
8.8602
8.6
7,6

8.30(12)
8.4148
8.4
7.3

7.46(11)
7.4756
7.8
6.7

5.99(5)
6.04
6.6
5.7

Perpendicular

QMC
TDGI
Max, Matias
Min. Matias

3.53(4)
3.5579
4
3.2

5.05(6)
5.0702
6.1
5.8

5.52(8)
5.5774

5.64(9)
5.7275
6.9
5.4

5.68(9)
5.7563
6.9
5.3

5.67(8)
5.7198
6.6
5.2

5.59 (8)
5.61
6.4
5.0

Casimir-Polder formalism. More precisely, we first solve
Eq. (13) in order to get cr(iw) for a number of imaginary
frequencies. Then, we perform a fit of the resulting curve
using the oscillator strengths and transition frequencies
as fitting parameters. Finally, the coefficient c6 is ob-
tained from the following expression:

in complete disagreement with their results. This illus-
trates how semiempirical evaluations can be significantly
pool .

V. DISCUSSION

fAfB
C6 =—

~ ~A~B(~A + ~B)V P V P

using the optimized parameters. Note that the values
of the oscillator strengths (f+, f+) and transition fre-

quencies (~+,w„) calculated at the CI level for the two
systems A and B are used as a starting point of our op-
tirnization.

The evaluation of the coefficient cqo which requires
some additional calculations has not been performed.
The values obtained for c6 and c8 are in excellent agree-
ment with those obtained by QMC and preceding calcu-
lations.

B. ce for He-Hq

Table IX presents calculations of the c6 dispersion force
constants (both parallel and perpendicular) for the sys-
tem He-H2 as a function of the interhydrogen distance
RH H with quantum Monte Carlo and ab initio (TDGI)
methods. To our knowledge this is the first from-first-
principles calculation of this quantity. We have compared
our results with the recent results of Matias and Varan-
das ([41]) obtained from a number of more or less crude
semiempirical approximations. It is very satisfactory to
note that our QMC and TDGI results are compatible
(within statistical error bars) for any distance. We have
given the upper and lower bounds obtained from calcula-
tions by Matias and Varandas (denoted as Min and Max).
We see that for a number of distances our evaluations are

The purpose of this work was to present some sys-
tematic calculations of dynamic multipole polarizabilities
and van der Waals dispersion coefficients of two-electron
systems (He and H2) with quantum Monte Carlo results.
A detailed presentation of the practical implementation
of this new approach has been given. We compared our
results with a number of previous theoretical results ob-
tained by using various ab initio methods. In all cases
QMC results are in good agreement with estimated "ex-
act" values within statistical error bars. The typical sta-
tistical error on QMC results is of the order of a few per-
cent. This should be considered as satisfactory, even if for
simple systems such as He and H2 more accurate results
have been obtained by using explicitly correlated wave
functions (particularly for static quantities). However, it
should be noted that the accuracy on QMC results could
be increased by making longer Monte Carlo runs (that
was not the purpose of this work).

We also reported some results obtained using an orig-
inal ab initio method based on a gauge-invariant formal-
isrn (TDGI method). It has been illustrated that TDGI
results are of comparable quality with the best ab initio
values, although the size of our basis sets was significantly
smaller. This is essentially due to the fact that, besides
giving a good description of the ground-state wave func-
tion, in TDGI we also give a very good description of
the first excited state, an essential step to correctly re-
produce the dynamical properties of the system. Having,
at our disposal, this accurate ab initio method appeared
to be essential in checking our QMC calculations in the
interesting cases where QMC results entered in conflict
with existing theoretical results. That was, in particular,
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the case when calculating the c6 dispersion coefficient for
He-H2, a quantity for which only semiempirical results
were known. In addition, presenting QMC results to-
gether with cb initio results helps us to emphasize the
very different features of both approaches.

QMC does not require any expansion on a basis set.
Most of the correlation energy is taken into account via
the high-quality trial wave function used. The remain-
ing part is recovered using an appropriate weight factor
(Feynman-Kac factor) when computing averages. Such
a property is remarkable. In some very rough sense, we
may view the various ab initio methods referred to in
the tables as different clever ways of trying to tackle the
problem of basis-set convergence. In particular, as em-
phasized above, our TDGI method is another original
way of getting accurate results from a relatively modest
basis set. In addition, it should be emphasized that no
error bars appear in tables for ab initio results. Indeed,
computing errors resulting from an incomplete basis set
with a given cb initio method is by no way an easy task.
In sharp contrast, QMC gives a natural and viable esti-
mate (nonbiased statistical estimator) of the error made
for a given amount of numerical effort.

Using our QMC framework based on two-time corre-
lation functions enables us to compute during a same
run all the response properties corresponding to different
multipole operators (real and imaginary polarizabilities
for 1=1,2, . . . , van der Waals dispersion coefficients). This
is particularly convenient. Within the framework of an ab
initio calculation, in theory, a calculation is required for
each separate quantity (although in practice it is possible
to reduce a non-negligble part of the cost). In particular,
that was the reason why we did not compute dynamic
octopole polarizabilities with TDGI (even if, of course,
this is possible).

The computational aspects of QMC are remarkably
favorable: the memory requirements are very small (no
calculation and storage of bielectonic integrals); the codes
are short, simple, and very well suited for vector and
parallel processing.

Finally, we would like to end with some of the limita-
tions of QMC. First, as pointed out above, the method is
not suitable for computing real dynamic polarizabilities
at a frequency close to a resonance. Big error bars in the
frequency region close to 0.7 a.u. in Tables I and III—VI
illustrate this point. However, this does not occur for
imaginary frequencies which are used for computing van
der Waals constants. However, the most important lim-
itation of QMC is that the formalism used in this work
is limited in practice to two-electron systems (see discus-
sion at the end of Sec IIA), systems for which accurate
ab initio calculations may be performed using explicitly
electron-correlated wave functions. Accordingly, it will
be possible to consider QMC as a viable alternative to
the use of full CI methods only when efficient methods
of computing multitime correlation functions for many-
electron systems will be available. This will require some
more methodological developments.
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