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Nonadiabatic variational calculations on dipositronium using explicitly correlated
Gaussian basis functions
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Nonadiabatic variational calculations are described for dispositronium (e+,e+,e, e ) using explicit-

ly correlated Gaussian basis functions with angular momentum zero. An improved rigorous upper
bound for the 3, ground-state energy for dipositronium is achieved ( —0.515 976 7 a.u. ) leading to a cor-
responding bound for the binding energy, AEo) 0.435 eV, which is greater than previous estimates by
0.024 eV. This improved energy is obtained by exploiting the full permutational symmetry of the Hamil-

tonian including charge-reversal symmetry which was ignored in recent calculations. The first excited
3

&
state, and the lowest B, and A 2 states of dipositronium are found to be unbound while the B2 and E

states appear to be metastable. For comparison, by the same method, the S ground-state energy of the
lithium atom is found to be —7.476716 1 a.u. , which lies 0.001 343 a.u. above the accepted true energy.
Expectation values for individual terms of the Hamiltonian along with moments of interparticle dis-

tances ( r +'), (r —),—and (5(r; ) ) are also reported.

PACS number(s): 31.20.Di, 36.10.Dr

I. INTRODUCTION

Dipositronium [1], Ps&, the molecule formed by two
positronium atoms, has been the subject of several
theoretical investigations [2,3]. Direct experimental ob-
servation of this short-lived species has not yet been re-
ported. The present theoretical study of dipositronium
achieves an improved estimate of its binding energy.

To date, Ps& has not been directly observed. Diposi-
tronium might be produced when a high Aux beam of
slow positrons is focused on a metal surface where they
pick up conduction electrons to form positronium atoms,
which then dimerize and are desorbed from the surface:
2Ps~Psz. Mills [4] has estimated the yield ratio Ps2.Ps
in such an experiment. He finds Ps&..Ps=0.01 using the
dipositronium binding energy Dao=0. 20 eV. Under the
same assumptions, but using our improved binding ener-

gy Dao=0. 435 eV, we find the much more favorable yield
ratio Ps2.Ps=98. Ps& has also been proposed to explain
the anomalous positron peaks observed from superheavy
nuclear collisions [5].

Ps& differs from conventional molecular electronic sys-
tems in several ways which affect the computational ap-
proach. All four particles have the same mass, which
makes the Born-Oppenheimer and adiabatic approxima-
tions inappropriate. In addition to symmetry under ex-
change of indistinguishable particles, there is also sym-
metry under charge reversal in Ps2. All interparticle
correlations, whether between two electrons, two posi-
trons, or between an electron and a positron, are expected
to be equally important. Thus we use a fully nonadiabat-
ic method, the complete dipositronium symmetry group,
treat positrons and electrons on the same footing, and in-
clude all interparticle correlations.

Although the earliest Ps2 calculations take account of
its full symmetry [6,7], several recent calculations omit
the charge-reversal symmetry of dipositrium. As a result,

wave functions have mixed symmetry and estimated
binding energies are too small. In one variational calcu-
lation [2], the only dipositronium symmetry included was
electron exchange, while positron exchange and charge
reversal were ignored. A recent Green's-function Monte
Carlo (GFMC) calculation [3], treated bound complexes
of two electrons and two holes with continuously variable
mass ratio, tr =m, /mh. Although the GFMC method
will converge to the exact ground state by iterating from
the initial trial function %T, the convergence is accelerat-
ed if O'T already possesses the irreducible symmetry of
the ground state. In the case just cited [3], the correct
electron exchange and positron exchange symmetries
were included in O'T, but charge-reversal symmetry was

ignored.
This paper is organized as follows. A center-of-mass

transformation is applied to the Hamiltonian for four-
particles interacting by Coulomb potentials. Correlated
gaussian basis functions are described. The symmetry
group of dipositronium is specified as it acts on center-
of-mass coordinates. The method of computation is
briefly described including steps for symmetry adaptation
of basis functions, matrix element evaluation, secular
equation for linear variation, and optimization of non-
linear variational parameters. Results (energy and vari-
ous expectation values) for the ground state and several
low-lying excited states are presented and discussed. A
complete description of our method together with com-
puter listings and additional results can be found in D. B.
Kinghorn's M.S. thesis [8]

II. THE HAMILTONIAN

Our treatment of dispositronium follows a general
method applicable to any system of four particles with
masses IM„M2, Ms, M4] and charges [Q„Q2,Q3 Q4]
interacting by Coulomb potentials and with relativistic
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effects ignored. Let
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so that transformed coordinates r and momenta p obey
the canonical commutation rule [p;, rj. ]=—i5;~. » ma-
trix form r = TR and P =( T') 'P, where

Pz

denote the conjugate momenta. Then the nonrelativistic
Harniltonian for this system is
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with T and Vgiven by
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with the three-vector r,
pseudoparticle's coordinates,

representing the ith

where R;J = ~R, —
R~ ~

is the distance between particles i
and j. Atomic units are used throughout so that
A'=e =m, =ao =1 and energy is in hartree, EH =27.2107
eV.

For dipositronium [Ps2 or 2(e+, e )], the masses and
charges are given by

[MJM2M3M4][1, 1, 1, 1

[Ql Q2 Q3 Q4] =I+1 +1

and the three-vector p, representing
pseudoparticle's conjugate momenta,

px,.

pi. = py, .

pz, .

the ith

The related hole-electron system has the same charges
and masses [ 1/cr, 1/o', 1, 1].

Center of mass

Now, since each of R;, r;, P; and p, is a three-vector, the
transformation T: R —+r is given by

M1 M2 M3 M4

mo mo mo mo

The center-of-mass separation is effected by the follow-
ing transformation from real particle (upper case) to ficti-
tious pseudoparticle (lower case) coordinates:

1

0
0

0 0
13,

0 1

(12)

M1 M2 M3 M4
rp = R1+ R2+ R3+ R4,

mp mo mo mo

r1= —R1+R2

r2= —R1+R3,
r3 = —R1+R4,

2
Po

c.m. (13)

where 13 is the 3X3 identity matrix. T is essentially a
transformation on particle coordinate which treats the
three components x, y, and z equivalently, as expressed in
the tensor product, a form which appears repeatedly.

Using this transformation, the total Hamiltonian be-
comes H„,=H, +;„„where

and momenta
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2 2
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where the masses and charges of the pseudoparticles be-
come

or more simply as

f„(r)=exp[ —(r, A r)],

(18)

(19)

M1M3

M1+M3
M1M4

M1+M4

M1M2
m0 M1 +M2 +M3 +M4

M1+M2
(15)

where x is the vector

r2 (20)

and

qo=Qi qi =Qz qz=Q3 q3=Q4

The subscript on H;„, will be dropped for simplicity in
the following.

The center-of-mass Hamiltonian (13) represents
translational kinetic energy of a fictitious particle with
mass m0. Its continuum of energy eigenstates are ig-
nored in the following. Interest lies in the discrete eigen-
states of the internal Hamiltonian.

The internal Hamiltonian (14) represents the energy of
three interacting fictitious particles with Cartesian coor-
dinates tr„rz, r~], masses [m„mz, m3j, and charges
[q&,qz, q3]. It includes the kinetic energy, mass polariza-
tion, and the Coulomb potentials for these particles in-
teracting with one another and with a charge q0 fixed at
the origin.

For dipositronium, pseudoparticle masses and charges
are [ —,', —,', —,

'
] and t + 1, —1, —1 ] . Our objective is a varia-

tional calculation for eigenstates of dipositronium, for
which we use a set of basis functions which simplify the
computation of matrix elements over H;„,.

III. CORRELATED GAUSSIAN
BASIS FUNCTIONS

Correlated Gaussian basis functions consist of ex-
ponential quadratic forms in the Cartesian coordinates of
the system particles. In 1960, Boys [9] and Singer [10]
proposed these basis functions for variational calculations
on many-electron systems. Interest has continued in
these basis functions [11—22].

The variational wave functions used in this work are
constructed from correlated Gaussian functions centered
at the origin. Their functional form is

fk(rl rz r3) =exp[ —(ri ~ i i~i +2~i ~ iz~z
k k

+2r1 A 13r3+r2 A 22r2
k k

+2rz A z3r3+r3 A 33r3)],k k

which can be written in matrix form as

A k=a 13 . (21)

That is, x, y, and z components are treated equally. This
allows us to write A as

A =A (313,

where

(22)

k k ka 11 a 12 a 13

~k k k k
12 22 23

k k k
a13 a 23 a

(23)

By restricting the exponent matrices to block diagonal
form, the basis functions become rotationally invariant
and therefore they are angular momentum eigenfunctions
with J=O. Our basis is also unchanged by inversion of
all coordinates through the origin and therefore
represents gerade states only. It remains to adapt the
basis functions to permutational symmetry states.

IV. PERMUTATIONAL SYMMETRY

Permutational or exchange symmetry is present when
particle coordinates and momenta can be interchanged
without changing the Hamiltonian, that is, when two or
more particles are indistinguishable (have the same mass
and charge), or sometimes if pairs of particles carry the
same mass and opposite charges, as happens in diposi-
tronium. Elementary permutations of real particles in-
duce transformations on pseudoparticles, as we now de-
scribe. Induced transformations are also sometimes ele-
mentary permutations of the pseudoparticles as happens
for the lithium atom. In general, induced transforma-
tions are simple, although not elementary, permutations.
We exhibit the induced transformations for the diposi-
tronium example:

r3

A is a 9 X9 "exponent matrix" factored into three by
three blocks A, describing correlation between particles i
and j (or between coordinates x, y, and z of particle i if
i =j). The quadratic form (r, A "r) and thus Ak must be
positive definite in order for the norm (fi, ~ fk ) to exist.
The elements of Ak are assumed to be scalar 3X3 ma-
trices:
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R be the set of real particle position vectors,

r be the set of pseudoparticle positions

after center-of-mass transformation,

Let T be the transformation from R ~r Eq. (12),
P be an element of the permutation

group on real particles expressed

in 4X4 matrix form .

B. Permutations on pseudoparticles

To find the exchange symmetry coordinate transforma-
tions on pseudoparticles induced by the real particle ex-
change permutations, we use Eq. (26). The results are as
follows:

1 0 0 0

(27)

(24) 0 —1 0 1

Then, the permutation of real particles induces the fol-
lowing transformation on center-of-mass and internal
coordinates:

Therefore,

—1 0 0

TPT r —r (25)
T(12)= —1 1 0

—1 0 1

(28)

Further, since P interchanges particles with the same
mass and thus leaves ro unchanged, it follows that
TPT is a direct sum of the 1X 1 identity on ro and a
3X3 induced symmetry transformation on internal coor-
dinates:

In the same way,

1 0 0

Y(1)= 0 1 0
0 0 1

(29)

(26)

The entire e8'ect of P is expressed by 'T~ on z, recalling
that t is the vector with components r„r2, and r3. In
this way, P on real particles induces Tp on pseudoparti-
cles.

Since the transformations T& multiply isomorphically
with P, we refer to them as "permutations, " although in
matrix form they may not be permutation matrices and
they may not merely permute pseudoparticle coordinates.
In the special case of atoms and when real particle 1 is
the nucleus, then the transformations T& become elemen-
tary permutations on pseudoparticles. We next derive
the form of Y& for dipositronium.

A. Dipositronium symmetry

For dipositronium, we require the following real parti-
cle permutations: E, the identity; (12), interchange posi-
trons; (34), interchange electrons; (12)(34), interchange
positrons and interchange electrons; (13)(24) and (14)(23),
charge reversals of class one; (1324) and (1423), charge re-
versals of class two.

These eight permutations form a group GD, the permu-
tation symmetry group of dipositronium.

The identity and interchange operations form a sub-
group which commutes with the Hamiltonian of any sys-
tem with masses I mz, mh, 1, 1 I and charges
I + 1, + 1, —1, —1 I. This subgroup is the symmetry
group of all systems having m&%1, such as H2. The
charge-reversal symmetry operations, which enter only in
the case m& = 1, the dipositronium case, arise fundamen-
tally because the Hamiltonian commutes with these coor-
dinate transformations. From another viewpoint, charge
reversal may be considered as the remnant in the nonrela-
tivistic theory of the charge-conjugation symmetry
present in Dirac's relativistic electron theory.

1 0 0

Y(34) 0 0
0 1

0

(14)(23)

0

0

(»)(24)
1

0

+(1324)

1

0

(1423)

0

1

0

1 —1

0 —1

0 —1

—1 1

—1 0
—1 0

1 —1

0 —1

0 —1

—1 1

—1 0
—1 0

(30)

(31)

(33)

(34)

—1 0 0

T(12)(34)= —1 0 1

—1 1 0
(3&)

These pseudoparticle operators are isomorphic to real
particle permutations under the similarity transformation
(26). Thus, we may use the permutation cycle notation to
refer to both real and pseudoparticle "permutations. "

C. Projection operators

Energy eigenstates of H;„, transform irreducibility un-
der the induced pseudoparticle symmetry group. Hence,
we next develop the projectors for irreducible symmetry
states of dipositronium.

The exchange symmetry group of the Hamiltonian for
dipositronium GD, consisting of the eight particle permu-
tations defined above, is isomorphic to the point group
D2d, from which characters and irreducible representa-
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+(1423)+(13)(24)+(14)(23)],

e '= —'[E—(12)—(34)+(12)(34)+(1324)

+ (1423)—(13)(24)—(14)(23)],
e '=

—,'[E—(12)—(34)+(12)(34)—(1324)

—( 1423 ) + ( 13)(24) + ( 14)(23 )],
e ' =

—,
' [E+(12)+(34)+ (12)(34)—(1324)

—(1423)—(13)(24)—(14)(23)],

(36)

(37)

(38)

(39)

tions may be taken. In this way, we obtain the following
projection operators for irreducible symmetry under par-
ticle permutations:

e '=
—,'[E+(12)+(34)+(12)(34)+(1324)

,' [1—(34) ][1—(12)]= e '+ e ';
(triplet

I
singlet),

—,'[1—(34)][1+(12)]=—,'(e»+e, z+ez, +e22);

(singlet
I
triplet),

,'[1+(34)][1—(12)]= —,'(e» —e» —e»+e»);

(48)

(49)

(50)

[1,(12),(34),(12)(34)j, which is the symmetry group of
Hz and also of the variable-mass excitonic hole-electron
complex. It allows adaptation to both electron and posi-
tron symmetry states but ignores charge-reversal symme-
try. The projection operators for this subgroup corre-
spond to spin eigenstate projectors for the two electrons
and the two positrons. These are as follows in the nota-
tion (electron multiplicity

I
positron multiplicity):

(triplet
I
triplet),

ef&
=—'[E—(12)(34)+(13)(24)—(14)(23)],

e f2
=—' [(12)—( 34) —

( 1324)+ ( 1423 )],
e2E( =—'[(12)—(34)+(1324)—(1423)],
e22= —'[E —(12)(34)—(13)(24)+(14)(23)] .

(40)
and (singlet

I
singlet),

(41)
—,'[1+(34)][1+(12)]=e '+e ' . (51)

(42)

(43)
The latter projector (singlet

I
singlet) was used by Lee,

Vashista, and Kalia [3] for dipositronium.

A B—'[1+(34)]=e '+e '+ —'(e —e —e +e ) (44)

and triplet,

A2 B)
—,
' [ 1 —

( 34 ) ]= e '+ e
' + —,

'
( ef, + efz+ e2, + e2~z ) . (45)

(Ho [2] used the electron singlet projector for dipositroni-
um. ) Alternately, adaptation to the positron singlet and
triplet states is effected by

and

—,
' [1+(12)]= e ' + e '+ —,

' (ef, + efz+ ez, + e~z )

A2 Bl
—,
' [1—(12)]=e '+e '+ —'(e» —e —e +e22) .

(46)

(47)

These complete symmetry projectors have been used with
results reported below. Some previous calculations have
used partial symmetry projectors based on subgroups of
GD.

Subgroups of GD belong to systems with less symmetry
than dipositronium. Adaptation to irreducible symmetry
of a subgroup corresponds to an induced representation
of the full dipositronium symmetry group and leads to a
mixed-symmetry state. As a erst example, consider the
subgroup I 1,(34)], whose antisymmetric projector on
spin function aP generates the singlet coupled electron
spin state which must be combined with the symmetric
spin-free factor to satisfy the Pauli principle, and con-
versely for the triplet state. Projecting for spin-free states
of a single pair of indistinguishable particles generates a
state of mixed symmetry for dipositronium. Thus, the
singlet and triplet electron projectors consist of the fol-
lowing mixtures of dipositronium symmetry states: sing-
let,

D. Matrix elements between symmetry-adapted
basis functions

For the energy calculations, we require matrix ele-
ments in the form [23]

and

&e„,fkle„,f&& (overlap type)

&e„,fI, IHle„,fr & (Hamiltonian type),

(52)

(53)

and for other expectation values, certain additional ma-
trix elements

(54)

where e„ is a permutation symmetry projection operator,
fk and f& are primitive basis functions, H is the Hamil-
tonian, and 8 is an arbitrary operator.

For overlap and Hamiltonian matrix elements, we ex-
ploit the commutation between permutations with both
the identity and the Hamiltonian:

& e„,fk le„fg &
= &fk I«„) e„fI &

= &fI, I e„f(&, (55)

& e„,fk IH le tfg &
= &fk I& I«„,)'e;,fg &

= &ff, IH le;,ft & .

(56)

The benefit of this is that the double summation over per-
mutations in bra and ket becomes a single summation in
ket alone, effectively reducing the effort by a factor the
order of the group. For example, the overlap matrix ele-
ment between A

~
symmetry-adapted basis functions be-

comes

As a second example, consider the subgroup for ex-
change of electrons and exchange of positrons

8

& e 'fk
I
e 'f~ &

= g &fk l&ft & . (57)
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The result is that only the ket receives the permutation
projection operator, as expected from orthogonality be-
tween bras and kets with different symmetry. For opera-
tors 6 which do not commute with permutations, such as
r;", this simplification cannot be made.

The action of the permutation P on the basis function
fk is represented by 7r fk as follows:

(58)

where

(59)

That is, particle permutations effect a congruence trans-
formation of exponent matrices in basis functions. For
example, using Eqs. (23), (28), and (58), the exchange of
real particles 1 and 2 transforms A into

+(12) ~(124 +(12) 13
k k

a )) +2a )2+2a13+a22+2a23+&33k k k k k k

k13+ 23+ 33)

k
Q23

k
+33

( Q 12 + Q 22 +Q 23 ) ( Q 13 +Q 23 +Q 33 )
k k k k k k

k
app

k

(60)

V. COMPUTER METHODS

A"= U„D„Uk, (61)

where Uk is the 3X3 rotation matrix with Eulerian an-
gles Pk, Pk, and Ok [26] and Dk is a diagonal matrix with
exponentials of ak, Pk, and yk on the diagonal. This
treatment of the exponent matrices A also opens the op-
timization domain to all real numbers, thus eliminating
the need for direct optimization constraints. Initial
values of the parameters were chosen in the ranges given
below

(62)

Integral evaluation formulas [9,10,27] were coded ex-
plicitly for the four-particle case. Derivations and coding

The computer code for our calculations consists of ap-
proximately 2500 lines of c source code. Program devel-
opment was done on a NeXT workstation taking advan-
tage of the symbolic mathematics packages MAPLE v [24]
and MATHEMATIcA [25] for function prototyping, formu-
la validation and code generation. After debugging and
testing, the final code was run using double precision on
an IBM ES/3090-300J mainframe computer to obtain the
results reported.

Energy calculations were carried out by first insuring
that the exponent matrices A are positive definite. Then
the integral formulas and symmetry projectors were used
to construct the Harniltonian and overlap matrices. The
resulting secular equation was solved for eigenvalues and
eigenvectors. These steps were repeated at each point as
nonlinear variational parameters were varied. After op-
timization criteria were satisfied, various expectation
values were computed.

The exponent matrices A are expressed in terms of
their orthonormal eigenvectors and the logarithms of
their eigenvalues. The logarithmic parameterization of
the eigenvalues assures positive definiteness of the A .
Namely, A is given by

for these formulas can be found in [8]. The secular equa-
tion was solved by first performing a Cholesky decompo-
sition [28] on the Hamiltonian and overlap matrices fol-
lowed by tridiagonalization. The energy eigenvalues and
eigenvectors were then obtained using a QL algorithm
with implicit shifts [29,30] to assure accuracy in the
smallest eigenvalues.

Optimization of nonlinear parameters is always a
difficult task in variational calculations. Schemes such as
tempering have been proposed to reduce the effort in op-
timization [31—33]. A simple iterative procedure was
adopted here to build up partially optimized wave func-
tions. Initially a set of N=10 randomly selected basis
functions [fk, k = 1, . . . , X ] was fully optimized for all
60 nonlinear variational parameters. In each subsequent
iterative step a single randomly chosen new basis func-
tion f~+, was added and the 12 parameters of
[f~,fz+(] were optimized. The basis size was incre-
mented, X=N+1, and another iteration was performed.
Iterations were repeated until the desired basis size was
reached. The individual optimization steps were carried
out using Powell's method, as described in Ref. [34].

VI. RESULTS

The principal results of this work are presented in
Tables I—V. We report expectation values for the indivi-
dual terms of the Harniltonian together with the scale
factor g = —V/(2T ), scaled energy, the moments r, r 2,

and 1/r, and probability density of particle i at position
J.

Results are reported to at most eight significant figures
and seven decimal digits. Internal consistency was
checked by computing 2(r, r ) (not reported) and com-
paring with ( r, ) —( r; ) —("r ) values which are com-
puted from different integral formulas. These values were
equal in all 12 digits that were generated in the output.
Energy calculations run on the NeXT workstation (52-bit
precision [35]) and the IBM ES/3090-300J computer (56-
bit precision [36]) with identical input produce expecta-
tion values that agree to eight decimal digits. Therefore,
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TABLE I ~ Expectation values for the lithium atom S ground state. Comparison with results of
King using 602 Hylleraas-type functions. (8;)—= (+3,8;) and (8;, ) —= (g, „8;,). All values in

a.u. The notation 2.36. . .[ —5] means 2.36. . . X 10

Expectation
value 50

Number of terms
100 300 King [37]

&
—

—,'v',
&

( —v, .v, )

7.463 9280

2.367 8936[—5]

—17.134 819

7.475 6831

2.356 4312[—5]

—17.153 266

7.474 5560

2.359 9518[—5]

—17.148 610

7.478 059

2.3605[—5]

—17.154 33

2.1979117 2.202 1997 2.197 3148 2.198 211

(5(r, ))

Energy

4.950 7241

8.589 2444

17.720 905

35.576 966

12.395 708

1.000 6031

—7.472 9577

4.928 0162

8.545 8302

17.535 002

35.211 563

13.236 602

0.999 9768

—7.475 3599

4.981 4168

8.651 8393

18.181 145

36.501 956

13.255 136

1.000 1428

—7.476 7161

4.989 538

9.668 427

18.354 74

36.848 09

13.841 82

1.000 0007

—7.478 059

we report results to at most seven decimal digits and at
most eight significant figures.

TABLE II. Dipositronium 3 ] ground-state expectation
values (in a.u. ).

A. Lithium-atom results

We have applied our method to the ground state of the
lithium atom to compare with benchmark calculations.
In Table I expectation values are reported in the form
(0;&=(+, ,0;& and (6; )=(g, (.8;, & for direct
comparison with the results of King [37] as computed
from 602 Hylleraas-type basis functions. We take the
convergence of our results toward those of King as evi-
dence of the correctness of our procedure.

Using the Hartree-Fock energy of —7.432 7269EH [38]
and the semiempirical estimate for the nonrelativistic
ground-state energy —7.478 060 326(10)EH [39] or
—7.478 0601EH [40] we find that our 50-term wave func-
tion supplies 88.7% of the correlation energy, our 100-
term wave function gives 94%, and our 300-term wave
function gives 97%.

B. Dipositronium ground-state results

Our principal objective in this work is the ground-state
energy for dipositronium. Table II lists this energy value
along with the symmetry inequivalent expectation values
computed with a wave function consisting of 300 corre-
lated Gaussian functions adapted to the A, ground-state
symmetry. Figure 1 shows the energy convergence rate.

The energy value —0.515 9767EH is a new rigorous
upper bound for the ground-state energy of dipositroni-
um, giving a lower bound to the binding energy of
0.015 9767EH or 0.435 eV. The most often cited value
for this binding energy is 0.411 eV, given by Ho [2], simi-

Expectation value

&
—v, v, )=& —v, v, &

( —v, v, &

1 1 1 1

2 3 12

Energy

(r, ) =(r„)
(rz) =(r3)=(r,2)=(r]3)

&r', ) =(r', , )

(r') =&r') = &r' ) =(r' )

1 1

r 2
1

1 1

r2
3

2
rz3

2 2

(5(r, ) ) = (5(r„))

(5(r, ))=(5(r, ))=(5(r„))=(5(r„))

Using
300 terms

0.258 0026

—0.1307751

0.003 5477

0.220 9106

—0.368 4508

0.999 9724

—0.515 9767

6.025 2578

4.483 1482

46.171 736

29.010 841

0.073 5062

0.303 0608

0.000 6347

0.021 8511



3678 DONALD B. KINGHORN AND R. D. POSHUSTA 47

TABLE III. Dipositronium 2A& and B, excited-state expectation values (in a.u. ). (The 22 1 state
was run on the NeXT computer. )

Expection value
2A l symmetry

150 terms
Bl symmetry

150 terms

&
—v, v, )=& —v, .v, &

( —v, .v, &

0.249 4216

—0.125 0288

0.000 6360

0.014 8958

0.250 0140

—0.125 9492

—0.000 1156

0.023 7912

1 1 1

~2 3 12

Energy

—0.257 0402

1.000 6842

—0.499 5262

—0.261 7633

0.999 4144

—0.499 4428

84.155 931

43.581 289

8304.4934

4158.2685

50.077 940

26.539 738

2845.9485

1428.9827

2 2
0.000 3800 0.000 7351

p 2
2

r2
3

1 1

2I &2
2
13

0.249 1765 0.249 9425

(5(r, ) ) = (5(r„))

(5(r, ) ) = (5(r, ) ) = (5(r„)) = (5(r„))

0.0

0.019 1130

0.0

0.0193266

lar to the value (0.41 eV) given by Lee, Vashista, and
Kalia [3].

Lee, Vashista, and Kalia used a Green's-function
Monte Carlo method to compute ground-state energy
values for a system of two holes and two electrons at vari-
ous mass ratios, o. =m, /mI, . The limiting energy at

e '=
—,'[I+(12)+(34)+(12)(34)](1+CR), (63)

o.= 1 was reported for the dipositronium ground-state en-
ergy. Their trial function %T has the symmetry of H2, as
projected by the (singlet~singlet) projector of Eq. (51).
Now the dipositronium ground-state projector can be
written in the form

-0.5145—

-0.515

CD

0)

LL!

-0.5155—

-0.516
100 200

Number of Terms
300

FIG. 1. Energy convergence with number of basis functions
for the dipositronium A, ground state.

where CR denotes any charge-reversal permutation.
Therefore, a basis adapted to (singlet

~

singlet) symmetry
of H2 is biased against dipositronium unless the basis con-
tains both fk and CRfk. If the charge-reversed basis
function is absent, as in the trial function of Lee, Vashis-
ta, and Kalia then a mixed state with 2, +B2 symmetry
for dipositronium results, and the GFMC propagation la-
bors to remove excited states of both B, and A j sym-
metries. Lee, Vashista, and Kalia report the ground-state
energy of Ps& as —0.515+0.002EH (approximately), a
range which includes our bound —0.515 9767EH. Con-
vergence for this method would certainly be faster with a
trial function adapted to the correct A, symmetry of the
ground state.

Ho [2] used a 400-term Hylleraas-type wave function
to compute a dipositronium ground-state energy of
—0.515 105E~. However, this wave function is merely
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TABLE IV. Dipositronium A2 and 82 excited-state expectation values (in a.u. ).

Expection value

( lv2) —( 1v2) —( 1v2)

&
—v, .v, &

=
&
—v, .v, )

( —v, .v, &

A2 symmetry
100 terms

0.156 2762

—0.068 2579

—0.0197603

0.0106933

B2 symmetry
140 terms

0.157 6422

—0.070 9823

—0.015 6775

0.1157360

1 1

r2 r3

Energy

r13
—0.161 5048

0.999 2447

—0.3120805

—0.215 3062

0.998 7059

—0.3144689

r2
1

2
23

(r, ) =(r„&
(rz)=(r3)=(r&z) =(ri3)

&r', &
= &r'„)

1 1

106.133 83

56.309 106

12 462.771

6263.0014

0.000 1356

12.597 185

10.187 899

203.091 83

153.235 66

0.023 2360

1

r 2
2

r2
3

2 2
r13

0.129 8737 0.150 8694

(5{r,))=(5tr„j)
(5(r, )) =(5(r, ))=(5(r„))=(5(r„)) 0.009 5760

0.000 1168

0.010 7880

adapted to electron singlet symmetry with Eq. (44). This
results in a mixed state of 3 i+B2+E symmetry for di-
positronium. Again, symmetry adaptation to a subgroup
symmetry without including charge-reversed basis func-
tions introduces a bias against the true eigenstates of di-
positronium. Other expectation values also suer from
incomplete symmetry adaptation. For example, in Table
II, the values (R &z ) = ( r

&
) and ( R 34 ) = ( r23 ) are equal

by charge-reversal symmetry but were found to be un-
equal by Ho.

In lieu of adiabatic molecular geometry concepts, the
spatial distribution of Psz is described by the moments of
interparticle distances shown in Table II. The average
separation of the two positrons or of the two electrons is
(R,z ) = (R34 ) =6.03 bohrs. The average separation be-
tween an electron and a positron is smaller,
(R,3 ) = (R,~ ) = . =4.48 bohrs, as expected from
Coulomb attraction versus repulsion. However, the
widths of the distribution, as measured by rms uncertain-
ties, AR, 2

=3. 14 bohrs and AR, 3
=2.99 bohrs, are too

great to allow any interpretation of Ps2 as a "triangular
pyramid" [2j.

C. Dipositronium excited states

Bound states of dipositronium, Ps2, must lie below the
lowest-energy dissociation products, in this case 2Ps or

—
—,'EH. States above this limit lie in the continuum. Op-

timization of the lowest A2, B&, Bz and E states as well
as the erst exited A i state of Ps2 led to unbound states.

In Table III we report expectation values for the first
excited state of 2, symmetry, labeled 2A &, with an ener-

gy of —0.4995262EH, and for the B, symmetry state
with an energy of —0.4994428EH. It appears that these
energy values are both approaching the energy of two
separated positronium atoms, —,'EH, (Ps+ Ps).—The
large values of ( r, ) = (R,2 ) and ( rz3 ) = (R3~ ) confirm
this separated-atom picture.

In Table IV the energy value —0.312 1195EH and the
large values of ( r, ) and ( r23 ) for the A2 symmetry state
again suggest a separated-atom picture. In this case the
energy is approaching that of a positronium atom togeth-
er with a positronium atom in its first excited state,—0.3125EH, (Ps+Ps*), where Ps* is the 2s or 2p state of
positronium.

In Tables IV and V we report expectation values for
the B2 and E (projector ef, ) symmetry states, respective-
ly. Values of (r, ) and (r,~ ) for these two states are of
the same order of magnitude as those for the ground
state. We believe these states are low-lying metastable or
resonance states embedded in the continuum of Ps2.
They are bound relative to the separated 1s, 2p states of
2Ps with which they correlate. Our calculations gave an
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TABLE V. Dipositronium E excited-state expectation values
(in a.u. ) based on the single projector e».

Expectation value 140 terms

&
—v, v, &

&
—v, .v, &

&
—v, .v, &

1 1

r& 123

1 1

T2 713

1 1

0.165 2404

—0.066 3557

—0.101 8909

0.003 0063

0.138 7798

—0.246 6392

—0.222 4043

Energy

0.999 3434

—0.3300469

9.562 9397

8.379 1048

7.974 4810

112.553 22

101.362 61

87.530 474

2 2
~23

0.029 4832

2
P'2

1
2

0.183 6203

2
T)2

(6(r, ) ) = (6(r„))

(5(r, ))=(5(r„))
(5(r, j ) = (5(r„))

0.137 3456

0.000 1411

0.013 2287

0.009 1250

energy value of —0.3144520E~ for the 32 symmetry
state, and —0.330020EH for the doubly degenerate E
symmetry state. These results appear to improve the en-
ergy estimates and the symmetry classification of states
previously found by Ho [41] at —0.313EH and
—0.3294EH by a complex coordinate rotation method
and given a "just tentative" classification as resonant
singlet and triplet spin states.

the present value. By including charge-reversal symme-
try, the correlated Gaussian basis has surpassed an even
larger Hylleraas basis. An improved description of spa-
tial distribution in Ps& is achieved using (R;, & and (R,, )
and the correct charge-reversal symmetry.

We estimate that more than 90% of the correlation en-
ergy has been accounted for in the present method. If the
lithium atom example is used to calibrate our method,
the exact ground state of dipositronium lies near
—0.5173EH.

Dipositronium lifetimes can be estimated from com-
puted values of &5(r»)&, the probability density of an
electron at the position of a positron. We have done this
using the following formula [42] without radiative correc-
tions and assuming the two-photon process only:

~a c4P
&~

ao
(64)

where the factor 4 arises from the four possible electron-
positron pairs in Ps2, and P is the probability that the an-
nihilating pair will be singlet spin coupled (para). For the
bound A, ground state and the resonance state B2, the
spin-free wave function is symmetric under interchange
of the two electrons and also symmetric under inter-
change of the two positrons. It follows from the required
antisymmetry under simultaneous space and spin permu-
tations that the spin factor must be a spin singlet for the
pair of electrons and a spin singlet for the pair of posi-
trons. When the spins are recoupled to find spin states
for electron-positron pairs, say S,3 and S24, then one
finds a probability of P =

4 for S,3 =0. The resonant E-
state spin couplings are more-complicated mixtures of
singlet and triplet, but again one finds P = —,'. In this way
we find lifetimes of positronium states t( A &)=0.906 ns,
t (B2 ) = 1.83 ns, and t (E)= 1.5 ns.

The correlated Gaussian basis used here has computa-
tional advantages and disadvantages. Explicit inclusion
of interparticle distances r;. makes the basis more rapidly
convergent than a conventional orbital product with
configuration interaction. Hamiltonian integrals are very
simple in this basis. Coulomb cusps are poorly represent-
ed and tend to slow the rate of convergence. Each basis
function has six nonlinear variational parameters so that
complete optimization costs grow excessively with the
basis size.

Approaches to improve the basis can be suggested.
Premultipliers of the form r;" might improve the cusp
properties and convergence rate. Other nonspherical
premultipliers can give higher angular momentum states.
New optimization strategies should be explored, analytic
formulas for derivatives with respect to nonlinear param-
eters should be implemented, and tempering schemes
should be studied.
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