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A numerical method is developed to obtain convergence to the eigenfunctions of the Schrodinger
operators associated to singular potentials whose asymptotic behavior is of the Coulomb type. The
method consists in solving the Dirichlet problem in a box with radius n by the Ritz method, whose con-
vergence to the eigenfunctions in the norm of the Hilbert space L2(0, n) is provided. Using a physical ar-
gument, we show that the solutions of the Dirichlet problem converge to those of the unbounded system
in the norm of the Hilbert space L&(0, ~ ) as n ~~. This last property guarantees the accurate compu-
tation of the expected values for a symmetric operator. The method is applied to the hydrogen atom,
Yukawa potential, and Hulten potential; in each case we show the numerical convergence of the eigen-
functions, eigenvalues, and density moments.

PACS number(s): 03.65.Ge, 03.65.Ca, 03.65.Db

I. INTRODUCTION 1t„(0)=p„(n) =0 (1.3b)

In recent years some authors have applied Dirichlet
boundary conditions to solve the Schrodinger equation.
For example, Ley-Koo and Cruz [1] give the exact eigen-
functions of the ion H2+ and the hydrogen atom inside
prolate spheroidal boxes, using a functional series, and
show that some of the expected values approach those of
the unbounded system as the volume of the box is in-
creased. Gorecki and Byers [2] apply the iterative
boundary perturbation theory to H2+. Marin and Cruz
[3] assume a simple form of the eigenfunctions and solve
for the hydrogen atom in boxes with finite radius. This
last method is similar to the present method. In these
works it has been observed that some expected values
converge to those of the unbounded system as the boxes
are expanded.

The present method guarantees the accurate calcula-
tion of the eigenfunctions of the problem

by the Ritz method, whose convergence to the eigenfunc-
tions of gf„ in the norm of Lz(0, n) is guaranteed, and we
show the convergence in norm of the eigenfunctions of
each W to those of & as n ~ ~.

In Sec. II we introduce the norm convergence criterion
and we show that it guarantees the accurate computation
of expected values for a symmetric operator. The Cau-
chy criterion is especially important to check the conver-
gence of the calculated eigenfunctions when the exact
solution is unknown. In Sec. III we give a summary of
the compactness condition necessary to assure the norm
convergence of the Ritz method and we show that it is
satisfied by the operator W for the potential (1.2). Using
a physical argument we expose the result that guarantees
the convergence in norm of the eigenfunctions of W to
those of & as n —+ co.

In Sec. IV we apply the method to the potentials

p+ .1 d 1(t+1) + V(r) P=Eg, g(0) =0
dr 27.

V& ( r) = —1/r (Coulomb potential),

V2(r) = —e "/r (Yukawa potential),

V3(r) = —5e "/(1 —e ") (Hulten potential) .

(1.4a)

(1.4b)

(1.4c)

for the potentials

V(r)= X(r)
7"

where y(r) is a continuous and bounded function for
r E[0, 0o). The method consists in solving the Dirichlet
problem

g„+ + V(r) .g„=E„g„,1 d I II +1)
2 d7" 27

These potentials are representative of the potential
(1.2) because they have a simple pole in r =0 and are
bounded in infinity. On the other hand, they have been
studied by some authors in recent works. We use the hy-
drogen problem to give a method that optimizes the basis
and obtain a fast convergence to a particular state. In
this paper we shall use atomic units %=I=e = 1.

II. CONVERGENCE CRITERIA

A. Convergence in the norm of L2(0, ce)

with the boundary conditions

O~r~n, (1.3a)
The condition of normalization that the eigenfunctions

must satisfy,
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(2.1)

and the norm

T dr= 1

sets the problem (1.1) in the Hilbert space L2(0, ao) [4],
endowed with the inner product

(f,g)= J f(r)g(r)dr

TABLE I. Convergence of the sequence [1('„' (a= 1,r)} to
the exact solutions for the hydrogen atom with l =0, Eq. (4.7); n

defines the interval [o,n] and m is the number of base functions
(4.4) used to compute l('„' . Exponential notation is used so that
[1]means the number preceding is to be multiplied by 10'.

[n, m]
State 1s State 2s State 3s

(2.3)

The norm (2.3) gives a precise meaning to the idea of
closeness between two functions f,g EL2(0, ac): we said
that f,g CL2(0, ~) are close if their distance given by

[4,4]
[11,7]
[18,10]
[25,13]
[32,16]

0.165[0]
0.482[—3]
0.928[—6]
0.500[—7]
0.500[—8]

0.168[1]
0.265[0]
0.270[—1]
0.196[—2]
0.126[—3]

0.136[1]
0.116[1]
0.584[0]
0.208[0]
0.561 [—1]

«f g)=llf —
gll (2.4)

is small.
The formula of distance (2.4) introduces the following

concept of convergence: the sequence [ u„}„", in
Lz(0, ac) converges to u HL2(0, ac) in the norm (2.3) if it
satisfies

Since lim„ lip„—litll =0 we obtain

itm (l(„,Sq. &=&q,Sq. ) .

Now using the symmetry of 5,

hm llu„—ull=o.
n~oo

(2.5) &q, ski &=&sq, y &,

The function u is called the limit function of I u„}.
An equivalent concept of convergence is the Cauchy

criterion: the sequence Iu„} converges in the Cauchy
sense if it satisfies

lim llu„—u„+,ll=0 .
g —+ oo

(2.6)

It is well known that if Iu„} converges in the Cauchy
sense then there exists a unique function u HL2(0, Oc)

that is the limit of [u„} as is established by (2.5). This
criterion has the following advantage: it does not depend
on the limit function, hence we shall use it to verify the
convergence in norm of a sequence of functions when the
exact solutions of the problem (1.1) are unknown.

B. Convergence to the expected values

The convergence in norm is important because it
guarantees the accurate computation of the expected
values of a symmetric operator, as is established in the
following proposition.

Proposition (2.I). Suppose that lij and p„belong to
L2(0, ~), with arbitrary n, and S is a symmetric operator.
If the sequence [g„} converges to g in the norm of
L2(0, 00) then the numerical sequence [(f„,sg ) } con-
vergesto (f,sf):

and using Schwarz inequality as above we have

lim (Sl(,Q ) =(Sp, g) .

III. METHOD OF CALCULATION

A. Convergence of the Ritz method

For clarity we shall give a brief summary of the Ritz
method. It consists in approaching the exact eigenfunc-
tions of &, which we denote P,"„'„for the ith state, by the
functions

mf."(r)= X ck"4k(r»
k=1

(3.1)

where Igk }k, is an orthonormal basis of L~(0, ~). The

TABLE II. Convergence of the eigenvalues (in a.u. ), for the
hydrogen atom, [E„"(a= 1)},associated to the eigenfunctions
of Table I.

From this the assertion follows. QED
In this work we show that the present method provides

sequences I ttt„} that converge to the eigenfunctions of &
in the norm of Lz(0, ~). This guarantees the accurate
computation of expected values such as the energy levels
and the density moments.

lim lim (g„,sf ) =(g,sg) .
maroon~ co [n, m] E(1)

n, m

State 1s

E(2)
n, m

State 2s

E( )
n, m

State 3s
Proof. If we apply the Schwarz inequality [it is satisfied

by the elements of L2(0, ~)]

l &f,g & l
—llfllllgll

we have

l&q„,sq & &y, s@.&l =l&q„—q, sq. &l-
sq

[4,4] 0.483
[11,7] 0.499 999 845
[18,10] 0.499 999 999 99946
[25,13] o.soo ooo ooo ooo ooo
[32,16] same

exact' 0.500

'Exact eigenvalues.

—0.42
0.118
0.124 914
0.124 999 47
0.124 999 997 6

0.125

—1.98
—0.057

0.042
0.054
0.055 43

0.055 556
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TABLE III. Convergence of some density moments (in a.u. ) for the hydrogen atom, corresponding
to the sequence I it '„" ( a = I, r ) } of Table I, state Is, Eq. (4.10).

[n, m]

[4,4]
[11,7]
[18,10]
[25,13]
[32,16]

2.200 5
2.000 058
1.999 999 904
2.000 000 000 14
1.999 999 999 932

1.068
1.00000027
1.000 000 000 017
1.000 000 000 000

same

2.27
2.999 85
2.999 999 997 8

3.000 000 000 000
same

exact'

'Exact moments.

2.0 1.0 3.0

TABLE IV. Convergence of the sequence [lt'„' (a, r) I in the Cauchy sense for the hydrogen atom,
Eq. (4.8), n defines the interval [O,n] and m is the number of base functions (4.4) used to compute g'„'
hn is the increment of the interval [O,n], and a is the exponent of the basis (4.4). The notation [1]
signifies X 10'.

[n, m]

1.0 [4,4]
[11,7]

[18,10]
[25,13]

[11,7]
[18,10]
[25,13]
[32,16]

State 2p
0.941[0]
0.183[0]
0.173[—1]
0.122[—2]

State 3p
0.134[1]
0.886[0]
0.414[0]
0.147[0]

State 4p
0.139[1]
0.138[1]
0.951 [0]
0.610[0]

20 1.0 I:4 4]
[24,7]

[44,10]
[64,13]

[24,7]
[44, 10]
[64,13]
[84,16]

0.977[0]
0.375 [—1]
0.222[ —2]
0.126[—3]

0.133[1]
0.568[0]
0.220[0]
0.644[—1]

0.139[1]
0.112[1]
0.719[0]
0.456[0]

20 0.5 [4,4]
[24,7]

[44,10]
[64,13]

[24,7]
[44, 10]
[64,13]
[84,16]

0.978[0]
0.157[—2]
0.640[—6]
0.635[—7]

0.135[1]
0.188[0]
0.400[—2]
0.653[—4]

0.139[1]
0.921 [0]
0.206[0]
0.238[—1]

20 0.333 [4,3]
[24,6]
[44,9]

[64,12]

[24,6]
[44,9]

[64,12]
[84,15]

State 3d
0.134[1]
0.977 [

—1]
0.819[—3]
0.378[—5]

State 4d
0.137[1]
0.758[0]
0.804[—1]
0.293 [

—2]

State 5d
0.138[1]
0.137[1]
0.602[0]
0.118[0]

TABLE V. Some eigenvalues E„" (a) (in a.u. ), for the hydrogen atom, corresponding to the eigen-
functions g'„' (a, r) of Table IV.

1.0
1.0
0.5

[n, m]

[32,16]
[84,16]
[84,16]

E(&)

State 2p
0.124 999 999 1

0.124 999 999 990
0.125 000 000 000 00

E(2)
n, m

State 3p
0.055 473
0.055 543
0.055 555 555 07

E(3)

State 4p
0.025 7
0.028 7
0.031 249 8

exact' 0.125 0.055 555 555 556 0.31 25

0.333
exact'

[84,15]
State 3d

0.055 555 555 554 99
0.055 555 555 555 56

State 4d
0.031 249 999 86
0.031 25

State 5d
0.019998 5
0.020

'Exact eigenvalues.
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TABLE VI. Some moments (in a.u. ), for the hydrogen atom, corresponding to the eigenfunctions
1(j'„" (a, r) of Table IV, Eq. (4.10).

[n, m]

State 2p
1.0
1.0
0.5

[32,16]
[84,16]
[84,16]

0.083 333 350
0.083 333 335 3
0.083 333 333 334

0.250 000 023
0.250 000000 28
0.250 000 000 00

29.999 956
29.999999 18
30.000 000 000

exact' 0.083 333 333 333 0.250 000 000 00 30.000 000 000

0.333
exact'

[84,15]
State 3d

0.014 814 814 815
0.014 814 814 815

0.111 111 111 11
O. ill 111 111 11

126.000 000 000
126.0

'Exact moments.

coefficients cI,
' and the eigenvalue E" associated to f"

satisfy the equation

The theory of operators in Hilbert spaces gives
sufficient conditions for the operator A in order to
guarantee the convergence of the sequence If"] in the
norm of L2(0, 0c) to the exact eigenfunction f,'„'„as
m ~ ~; it is established by the following theorem. The
spectrum of the operator T is denoted by o ( T).

Theorem (3.1). Let T be a Schrodinger operator whose
resolvent (T z) ', for z—g o ( T), is a compact operator in
the Hilbert space H. Then the sequence [f"],calculated
by the Ritz method, converges to the eigenfunction ttj,'„'„
of T in the norm of H [5].

Instead of defining the concept of compact operator,
we give a necessary condition for the operator T in order
to have a compact resolvent [6].

Proposition (3.2). Let T be an operator whose resolvent
(T z) ', zga(T), —is a compact operator. Then the
spectrum o ( T) consists only of isolated eigenvalues with
finite multiplicity [7].

Proposition (3.2) gives the following rule for showing
that an operator has noncompact resolvent.

Corollary (3.3). Assume that the operator T has a
nonempty continuous spectrum. Then the resolvent
(T z) ' is not com—pact

It is well known that the Schrodinger operator &
defined by the problem (1.1) has the continuous spectrum

TABLE VII. Convergence of the sequence [ itj'„' (a = 1,r ) ] in
the Cauchy sense for the Yukawa potential with l=0 and
A, =O. 10, Eq. (4.8); n defines the interval [O,n], m is the number
of base functions (4.4) used to compute itj'„' (a= l, r) by the Ritz
method, and a is the exponent of the basis (4.4). The notation
[—6] signifies X 10

[n, m]

(3.4)

where Ig„k(r)]k t is an orthonormal basis of Lz(0, n)
that satisfies the boundary conditions of Dirichlet type,

TABLE VIII. Convergence of the eigenvalues E„'" (a= 1) (in
a.u. ) corresponding to the eigenfunctions of Table VII, for the
Yukawa potential with I =0 and A, =0.10.

[n, m] E(l)
n, rrt

State ls
E(2)

State 2s

[0, oo) for the potentials (1.2), hence the convergence of
the Ritz method is not secured.

The key of the present method consists in replacing the
problem (1.1) by the computation of the eigenfunctions of

[associated to the Dirichlet problem (1.3)] whose
resolvent %„(z)=(W—z) ' is compact in the Hilbert
space L2(O, n) for the potentials (1.2), as we show in Sec.
IIID. Therefore we can compute the eigenfunctions of
W with the desired accuracy.

Now using the physical intuition it is clear that the
bounded states of gt„are similar to those of & if the di-
mensions of the interval [0,n] are greater than the physi-
cal dimensions of the unbounded system. Therefore, if
the interval [O, n] is expanded as n ~ oo, we obtain se-
quences of approximate eigenfunctions that converge in
the norm of Lz(0, &n) to the eigenfunctions of &. This is
explained in the following subsections.

B. Numerical solution of the Dirichlet problem

The inner product and the norm of L2(O, n) [4] are
given by

(f,g )I„~=I f(r)g(r)dr and ~~f ~~~~„~=(f,f )I„~ . (3.3)

We denote by g'„' the exact eigenfunction of &„associ-
ated to the ith state. Using the Ritz method, the approxi-
mate eigenfunctions of W are given by

[4,4]
[24,7]
[44,10]

[24,7]
[44,10]
[64,13]

State ls

0.171[0]
0.721[—6]
0.289[—7]

State 2s

0.119[1]
0.108[0]
0.149[—1]

[4 4]
[24,7]
[44,10]
[64,13]

0.389
0.407 058 030 61307
0.407 058 030 613 401
0.407 058 030 613 403

—0.519 111
0.048 92
0.049 907
0.049 927 83
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TABLE IX. Convergence of some density moments (in a.u. ) corresponding to the sequence

[ 1((„" 1 a = 1,r ) j of Table VII (state ls), Eq. (4.10).

[n, m]

[4,4]
[24,7]
[44, 10]
[64,13]

2.189
1.977 627 26
1.977 627 027 39
1.977 627 027 42

1.065
0.993 305 635 871
0.993 30S 635 856
same

2.283
3.059 907 685
3.0S9 907 688 608
same

k(0) 0 k(n) (3.5)

and the coefficients ek' and the eigenvalue E„" associat-
ed to g(„') are solutions of the equation

[ & Pnk, WPn) }(„) E„'~5—
k&

]Ck'=0, 1 &j m
k=1

(3.6)

According to Theorem (3.1), the compactness of the
resolvent%„(z) in Lz(0, n) implies the convergence of the
sequence [g'„' ]", to the exact eigenfunctions g(„') in

the norm of L2(O, n):

lim II@'„' —@'„'ll(„)=0 . (3.7)

f(r) for 0~r n

0 otherwise
(3.8)

we can apply to the solutions of the Dirichlet problem
the rules of convergence in Lz(0, ec). When we speak of
g(„') and P(n' as elements of L2(0, ~) we understand the
functions defined by (3.8).

The first result that we have is the convergence of
] to ttj'„' in the norm of Lz(0, m).

Proposition (3.4). Suppose that the eigenfunctions g(„')

of W and the approximate functions )(t(„') (3.4) are
identified as elements of L2(0, ec) using (3.8). Then the
sequence [ P'„' ] converges to g„" in the norm of
L2(0, oo).

Proof The definition .(3.8) implies that the inner prod-
uct (, }(„)of L2(O, n) is the restriction of the inner prod-
uct &, ) of L2(0, Oc) to the interval [O,n], so we have

&y(') y(i) q( ) y(i)}—I Iy(') y(')IZd„

(i) (i) 2d&

& fn, m 4n & 4nm4n &(n, )

hence lim llttt'„' —@'„'ll =lim
QED

C. Convergence to the eigenfunctions
of the unbounded system

Now we study the convergence of the solutions of the
Dirichlet problem to those of the unbounded system. If
we identify each function fHLz(O, n) with the element in

L2(0, ~) given by
r

TABLE X. Accuracy of the eigenfunctions 1((„" (a, r) for the
Yukawa potential, Eq. (4.9); n defines the interval [O,n], m is the
number of base functions (4.4) (whose exponent is e) used to
solve the Dirichlet problem (4.14) by the Ritz method. The no-
tation [—7] signifies XO

[n, m]

1s

2s

0.02
0.04
0.06
0.08
0.10
0.20
0.50

0.02
0.04
0.06
0.08
0.10

1.0
0.96
0.94
0.92
1.0
1.0
1.0

0.46
0.42
0.39
0.35
0.316

[34,10]
[34,10]
[34,10]
[34,9]
[44,10]
[44,10]
[64,13]

[49,13]
[49,12]
[49,12]
[49,12]
[64,13]

[49.13]
[49,13]
[49,13]
[49,12]
[64,13]
[64,13]
[84,16]

[64,16]
[64,15]
[64,15]
[64,15]
[84,16]

0.483 [—7]
0.500[—7]
0.553[—7]
0.500[—7]
0.289[—7]
0.305 [ —7]
0.896[—7]

0.784[ —7]
0.210[—6]
0.187[—6]
0.170[—5 ]
0.918[—5]

2p 0.02
0.04
0.06
0.08
0.10

0.46
0.42
0.38
0.38
0.305

[44, 10]
[44,10]
[44,10]
[44,10]
[64,12]

[64,13]
[64,13]
[64,13]
[64,13]
[84,15]

0.573[—6]
0.854[—6]
0.163[—5]
0.489[—5]
0.207[—4]

The fundamental result of the present method, that the
physical intuition supports, is the following one.

Theorem (3.5). Assume that each eigenfunction g(„' of
the Dirichlet problem in the interval [O, n] is identified as
an element of L2(0, ao) using (3.8). If the interval [O,n] is
expanded as n -+ ao, then the sequence [1()'„']„ , con-
verges to the eigenfunction g('„)„ofthe unbounded system
in the norm of Lz(0, ao ).

The proof of Theorem (3.5) can be found in [8,9]. Us-
ing this theorem we shall prove the convergence in norm
of the sequence [g(„' ], computed by the Ritz method, to
the eigenfunction g,'„)„.

Theorem (3.6). Let the approximate solution g'„' (3.4)
to the Dirichlet problem be identified as an element of
L2(0, Oo) using (3.8). If the interval [O,n] is expanded as
n~ oo then the sequence [1((„' [ converges to the exact
eigenfunction g,'„)„of& in the norm of L2(0, 0() ).

Proof. If we use the triangle inequality

II 4".,
' —4."..II —II @",

' —0"II+ II
ti'".—4.".'..ll

and both results Proposition (3.4) and Theorem (3.5),
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TABLE XI. Some eigenvalues (in a.u. ), for the Yukawa potential, corresponding to the eigenfunc-

tions 1('„' (a, r) of Table X.
—E„" (a)

State

0.02
0.04
0.06
0.08
0.10
0.20
0.50

1.0
0.96
0.94
0.92
1.0
1.0
1.0

[n, m]

[49,13]
[49,13]
[49,13]
[49,12]
[64,13]
[64,13]
[84,16]

This work

0.480 296 105 983 78
0.461 169636 813 34
0.442 600 011 473 91
0.424 568 516 21045
0.407 058 030 61340
0.326 808 511 369 19
0.148 117021 889 93

Vrscay (Ref. [12])

0.407 058 030 613 403
0.326 808 511 369 193
0.148 117021 889 932

2$ 0.02
0.04
0.06
0.08
0.10

0.46
0.42
0.39
0.35
0.316

[64,16]
[64,15]
[64,15]
[64,15]
[84,16]

0.106 148 320 244 70
0.089 414 634 185 15
0.074 578 534 412 68
0.061 464 656 212 24
0.049 928 271 339

0.106 148 320 244 695
0.089 414 634 185 159
0.074 578 534 412 709
0.061 464 656 212 300
0.049 928 271 331 918

2p 0.02
0.04
0.06
0.08
0.10

0.46
0.42
0.38
0.38
0.305

[64,13]
[64,13]
[64,13]
[64,13]
[84,15]

0.105 963 398 179 94
0.088 729 373 582 88
0.073 149 619 385 86
0.059 112 804 787 02
0.046 534 390489

0.105 963 398 179939
0.088 729 373 582 879
0.073 149 619 385 860
0.059 112 804 787 031
0.046 534 390486 724

we have lim„„lim „II/'„' —g,'„'„II=0. QED

D. Compactness of the resolvent (M —z )

The theory of elliptic operators provides two condi-
tions on the operator W to have a compact resolvent in

L2 (0, n). These conditions are defined below [10]. The
operator W defines the sesquilinear form h (u, U) given by

h(u, w)=(, l„i+l(l+1)(r «, w)l„idr ' dr

+2( Vu, w)(„~ . (3.9)

Ilf II(')+ dr
( )

(3.10)

Definiiion 1. The sesquilinear form h (, ) is bounded in
the norm

2 ' 1/2

TABLE XII. Density first moments (in a.u. ), for the Yukawa potential, corresponding to eigenfunc-
tions 1('„' (a, r) of Table X, Eq. (4.10).

State

1$ 0.02
0.04
0.06
0.08
0.10
0.20
0.50

1.999024 308
1.996 187 010
1.991 608 142
1.985 391 362
1.977 627 027
1.918078 726
1.576 322 996

0.999 707 629
0.998 858 344
0.997 488 627
0.995 629 097
0.993 305 635
0.975 394 751
0.867 533 084

1.500 583 121
1.502 273 030
1.504 996 133
1.508 696 004
1.513 329 978
1.549 721 903
1.806 554 897

3.002 620 149
3.010205 192
3.022 426 518
3.039 048 054
3.059 907 688
3.225 939 441
4.533 129 691

2$ 0.02
0.04
0.06
0.08
0.10

0.247 979 610
0.242 495 931
0.234 195 36
0.223 535 92
0.210 862

0.248 897 280
0.245 889 013
0.241 286 827
0.235 283 436
0.227 996 339

6.024 283 048
6.091 502 572
6.197 625 895
6.342 688 029
6.529 952 28

42.357 585 333
43.354 356 529
44.953 16705
47.191695 36
50.175 252 1

0.02
0.04
0.06
0.08
0.10

0.082 773 742
0.081 220 804
0.078 806 16
0.075 609 41
0.071 672 71

0.249 068 096
0.246 471 505
0.242 391 076
0.236 896 235
0.229 967 849

5.022 341 63
5.085 323 95
5.187 175 10
5.330 675 61
5.523 282 98

30.290 385 15
31.115 305 12
32.473 488 0
34.441 348 8
37.186451



3626 MARCO A. NUNEZ

if there exists a constant k ) 0 such that

Ih(u, u )I ~ k IIuII'( (3.11)

is satisfied for each u C W, (0, n), where W, (0, n) is a
Sobolev space [also denoted by H, (0, n )].

Definition 2. The form h(, ) is coercive (or elliptic) if
there exist two constants a )0 and p H R such that [k,j] [n, m]

TABLE XIII. Convergence of the sequence
[(t'„' (a=0.47489, r) j in the Cauchy sense for the Hulten po-
tential with l=0 and 5=0.025, Eq. (4.8); n defines the interval

[O, n j, m is the number of base functions (4.4) (whose exponent
is a) used to compute (t(„' (a, r) by the Ritz method. The nota-
tion [—7] signifies X 10

State 2p State 3p
li (u, u ) aIIu II,

—pIIu II(„) (3.12)

I2( Vu, u )(„)I C, IIuII(„)+e
(n)

(3.13)

is satisfied for each u H W, (O, n). The basic result that
the theory provides follows.

Theorem (3.7). Let W be the operator defined by the
Dirichlet problem (1.3). If the form h(, ) satisfies both
(3.11) and (3.12) then the operator W has a compact
resolvent in Lz(O, n).

We shall show that h(, ) satisfies both (3.11) and (3.12)
for the potentials (1.2) and 1=0. In the Appendix we
demonstrate that for each c)0 there exists a constant
C, )0 such that

[4,4]
[19,7]
[34,10]
[49,13]

[19,7]
[34,10]
[49,13]
[64,16]

0.978 [0]
0.960[—2]
0.204[ —4]
0.435[—7]

0.134[1]
0.394[0]
0.203[—1]
0.550[—3]

g„k(r)=r(n —r)r '=(n —r)r, k=1, 2, 3, . . . ,

(4.1)

which satisfies the boundary conditions (3.5).
On the other hand, it is well known that the asymptot-

ic behavior of the eigenfunctions of (1.1) is given by

The condition (3.11) follows from (3.13):
2 where the exponent

(4.2)

I&(u, u )I ~ +12( vu, u &(„)I
(n)
2

+C.llu II('.)+&

(n) (n)

(4.3)

is a priori unknown. Therefore we multiply the basis (4.1)
by the factor e ", where o.)0 is an arbitrary parameter.
This gives the new basis of Lz(O, n ),

kIIu I, ,
p„i(ak, r)=e "(n —r)r", k =1,2, . . . , (4.4)

(1—e) —C, IIu II(„)~2( Vu, u )(„)+
(n)

2

dQ

dp
( )

therefore

+ Ilu II('. ) (1 —&)—(C.+1—&)Ilu II(.)

(n)

~h(u, u),

where k =max{C„1+eI~0. The condition (3.12) also
follows from (3.13); this implies

2

—e —C, IIuII2(„) ~2( Vu, u )(„) .
(n)

Now if we take 0 (e ( 1 then

which is successively orthonormalized by the Gram-
Schmidt method, with the inner product (3.3), to obtain
an orthonormal basis that we shall denote by {(()„k(a, r ) I.
As both the approximate eigenfunctions and eigenvalues
depend on the exponent a, by the basis (4.4), we denote
these by itj(„' (a, r) and E(' (a).

Remark. For each a)0 the set (4.4) is a basis of
Lz(O, n), hence the Ritz method always conuerges to the
eigenfunctions i'(„' of &„. This permits us to apply the
Ritz method for arbitrary a, for example a=1, and to
compute an approximate eigenvalue E„" (a) which is
used in a new basis (4.4) with a&= {2IE„"(a)I J

' to ob-
tain a fast convergence with the same number of base
functions. An example of this is found in the hydrogen
atom problem in the next subsection.

IIuII((l —e) —(C, +1—e)IIuII(„) h(u, u) . TABLE XIV. Convergence of the eigenvalues
E„" {o.=0.47489) (in a.u. ) corresponding to the eigenfunctions
of Table XIII for the Hulten potential with I = 1 and 6=0.025.

IV. NUMERICAL EXAMPLES

A. Selection of the basis. Formulas to measure convergence
and exactness of eigenfunctions

To solve the Dirichlet problem (1.3) by the Ritz
method we have the basis of Lz(O, n),

[n, m]

[4,4]
[19,7]
[34,10]
[49,13]
[64,16]

~(&)
n, m

State 2p

—0.156
0.112748
0.112760 465 50
0.112760465 559 344
0.112760465 559 345

g(2)

State 3p

—1.31
0.038 99
0.043 688
0.043 706 876
0.043 706 892
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TABLE XV. Convergence of some moments (in a.u. ) for the Hulten potential, corresponding to the
sequence [g(„" (a=0.47489, r) I of Table XIII, state 2p.

[n, m]

[4 41

[19,7]
[34,10]
[49,13]
[64,16]

0.319
0.083 25
0.083 176990
0.083 176 977 839
0.083 176 977 847

0.517
0.249 90
0.249 739 275
0.249 739 273 381
same

5.18
29.948
30.081 520 0
30.081 523 660 03
30.081 523 660 05

According to Theorem (3.6), the precise computation
of the eigenfunctions l(i'„' of the Dirichlet problem for
fixed n is not suScient to approach the eigenfunction
l((,'„)„ofthe unbounded system; we also must increase the
value n To. reduce the computation of lt'„' with a large
basis I p„), I k ) in each interval [0,n] we increase the
basis as n grows:

m(n)~0() as n~co .

Theorem (4.1). Suppose that the number of base func-
tions Iy„k]k ) is increased as the interval [O, n] is ex-
panded, as is established in (4.5). Then the sequence
I l('„' („)]„ofapproximate eigenfunctions (3.4) converges
to g,'„)„in the norm of L2(0, Oo):

lim II@(„') („)—t()(,'„)„ll=0 .

B. Hydrogen atom and optimization of the basis

In the solution of

1 d ~() l(l+I) 1
n

'
~~2 p

n n n

P"(0)=P"(n)=0 (4.11)

the calculation of the matrix elements

TABLE XVI. Accuracy of the eigenfunctions P(„' ia, r) for
the Hulten potential, Eq. (4.9); n defines the interval [O,n], m is
the number of base functions (4.4) (whose exponent is n) used to
solve the Dirichlet problem (4.15) by the Ritz method. The no-
tation [—7] signifies X 10

and for the convergence in the Cauchy sense we have

II@'k,', ((,)
—0".,

' (.)ll

I /2
min(k, n)

0k' (k)0' (.)«0

(4.8)

If the sequence Il('„' ] converges to g,"„'„ then (4.7)
gives the accuracy of each P'„', but when the exact solu-
tion is unknown we define the accuracy of l((„') as the
distance between it and the function from the previous
computation:

ll~@",
'

ll
=

II@'k",,'(k) —@.",' (.)ll . (4.9)

For the computation of the density moments we use

(r")= f I@"
I

r"dr= f Ig(„'
I

r "dr .
0

(4.10)

The idea of the proof of Theorem (4.1) is the same as
that of Theorem (3.6), except that now we use
Iim„„lip(„".(„)—@(„'ll=0.

In all the calculations, both the approximate eigenfunc-
tions P'„' („)and the exact g,'„'„(in the case of the hydro-
gen atom) are normalized:

f I@" I
dr= f ll("

I
dr= f ll("

I
dr=1 .

(4.6)

The convergence to the exact solutions is measured by
1/2

n

II Pn, m (n) @exaell ' 2 1 Pn, m (n)0exacd
0

State

1$

2$

2p

3p

4d

0.025
0.050
0.075
0.100
0.200
0.300

0.025
0.050
0.075
0.100
0.200
0.300

0.025
0.050
0.075
0.100
0.200
0.300

0.025
0.050
0.075
0.100

0.025
0.050
0.075
0.100

0.025
0.050
0.075

0.9875
0.975
0.9625
0.95
0.90
0.85

0.9875
0.975
0.9625
0.95
0.90
0.85

0.47489
0.4495
0.424
0.3979
0.289
0.25

0.30
0.257
0.21
0.18

0.20
0.255
0.21
0.17

0.20
0.15
0.21

[34,10]
[34,10]
[34,10]
[34,10]
[34,10]
[34,10]

[49,13]
[49,13]
[49,13]
[49,13]
[49,13]
[49,13]

[49,13]
[49,13]
[49,12]
[49,13]
[64,12]
[49,12]

[49,12]
[64,12]
[79,12]
[94,12]

[79,12]
[64,12]
[79,12]
[94,12]

[79,12]
[94,12]
[79,12]

[n, m]

[49,13]
[49,13]
[49,13]
[49,13]
[49,13]
[49,13)

[64,16]
[64,16]
[64,16]
[64,16]
[64,16]
[64,16]

[64,16]
[64,16]
[64,15]
[64,16]
[84,15]
[64,15]

[64,15]
[84,15]
[104,15]
[124,15]

[104,15]
[84,15]
[104,15]
[124,15]

[104,15]
[124,15]
[104,15]

0.500[—7]
0.500[—7]
0.473[—7]
0.235[—7]
0.408[—7]
0.737[ —7]

0.219[—3]
0.218[—3]
0.236[ —3]
0.284[ —3]
0.108[—2]
0.732 [ —2]

0.435 [ —7]
0.407[ —7]
0.134[—6]
0.500[ —5]
0.212[—4]
0.652[—3 ]

0.395[—3]
0.167[—4]
0.265 [—4]
0.399[—3]

0.877[ —5]
0.892[ —5]
0.102[—4]
0.237[—3]

0.218[—3]
0.161[—3]
0.121[—1]
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&q„k,q„j)(„)=f "e "(n r)—2rk+jdr,

n 1 dqnk dV nj
&q„„,Wq„, )(„)= —„„dr

(4.12)

+ l(l+1) " —2ar( )2 k+j —2d
2 Q

"e —2ar(n r )2&k+j )dr (4.13)

is analytic. We use the computer program HQR [11] to
compute the eigenvalues and the eigenvectors of the ma-
trix &(()„k,Wp„j )(„),where [p„k Ik, is the orthonormal
basis obtained from (4.4).

Table I shows the convergence in norm of
[f(„' (a = 1,r ) ] to the exact solutions of the hydrogen
atom when /=0. This implies the convergence of the ei-
genvalues E„" (a=1) and the calculated density mo-
ments to the exact values, as Proposition (2.1) asserts,
which is confirmed by Tables II and III.

It is evident the speed of convergence for the state 1s,
which is explained because the value +=1 gives the
asymptotic behavior of 1(t(,„'), to the basis (4.4), since

a,'„",,= 1. For states 2s and 3s also we observe the conver-
gence to exact solutions, but it is slower.

There are two parameters that we use to obtain a faster
convergence without increasing the number of base func-
tions: (a) The increment hn of the interval [O, n], and (b)
the exponent u of the basis. To study the effect of An and
o. on the convergence we compute the states I = 1.

(I) Increment An T.able IV gives the convergence of
(a= l, r ) I in the Cauchy sense, Eq. (4.8), for bn =7

and 20. In both cases we have convergence, hence there
exists a unique limit function in L2(0, Oe) for each se-

quence, that is precisely the exact solution as Theorem
(4.1) asserts. But there is a diff'erence in the convergence.
Since the accuracy of eigenfunctions g(s'~, 6( l, r) is greater
than for the eigenfunctions 1(13'2,s( l, r) it follows that the
convergence for An =20 is faster. This coincides with

TABLE XVII. Eigenvalues (in a.u. ) for the Hulten potential as obtained by various methods. The
energies E„" corresponding to the eigenfunctions g(„' (a, r) of Table XVI.

State

1s 0.025
0.050
0.075
0.100
0.200
0.300

0.9875
0.975
0.9625
0.95
0.90
0.85

[n, m]

[49,13]
[49,13]
[49,13]
[49,13]
[49,13]
[49,13]

This work

0.487 578 124 999 970
0.475 312499 999 962
0.463 203 124 999 961
0.451 249 999 999 962
0.404 999 999 999 966
0.361 249 999 999 950

Exact
(Ref. [15])

0.487 578 125
0.475 312 500
0.463 203 125
0.451 250
0.405 000
0.361 250

Matthys
Varshni and De Meyer

(Ref. [13]) (Ref. [14])

0.487 577 7
0.475 312 1

0.4S1 249 0
0.404 993 0
0.361 231 7

0.025
0.050
0.075
0.100
0.200
0.300

0.025
0.050
0.075
0.100
0.200
0.300

0.9875
0.975
0.9625
0.95
0.90
0.85

0.47489
0.4495
0.424
0.3979
0.289
0.25

[64,16]
[64,16]
[64,16]
[64,16]
[64,16]
[64,16]

[64,16]
[64,16]
[64,15]
[64,16]
[84,15]
[64,15]

0.122 812 499 960
0.101 249 999 978
0.090 312499 957
0.079 999 999 955
0.044 999 998 2
0.019999 864

0.122 760 465 559 345
0.101 042 452 072 360
0.089 847 752 885 904
0.079 179439 105 15
0.041 886 049 23
0.013790 034 34

0.112812 500
0.101 250
0.090 312 500
0.080
0.04S
0.020

0.122 760 5

0.101042 5

0.089 847 8
0.079 1794
0.041 886 0
0.013 787 8

0.122 811 5
0.101 248 5

0.079 996 9
0.045 001 4
0.020 001 4

0.1127604
0.101042 5

0.079 1794
0.041 886 0
0.0137900

3p 0.0250 0.30
0.050 0.257
0.075 0.21
0.100 0.18

[64,15]
[84,15]
[104,15]
[124,15]

0.043 706 891 58
0.033 164 501 18
0.023 939 747 26
0.016053 73

0.043 706 9
0.033 164 5
0.023 939 7
0.016053 7

0.043 707 1

0.033 165 0

0.016053 7

3d 0.025 0.20
0.050 0.255
0.075 0.21
0.100 0.17

[104,15]
[84,15]
[104,15]
[124,15]

0.043 603 050 099
0.032 753 184 225
0.023 030 704 076
0.014484 227 5

0.043 603 0
0.032 753 2
0.023 030 7
0.014484 2

0.043 603 0
0.032 753 2

0.014484 2

4d 0.025 0.20
0.050 0.15
0.075 0.21

[104,15]
[124,15]
[104,15]

0.019 846 254
0.010667 404
0.003 834 52

0.019 846 2
0.010667 4
0.003 834 5

0.019 846 2
0.010667 4
0.003 834 6
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physical intuition: if the interval [0,n] is greater than the
physical dimensions of the unbounded system then the
bounded states of W are close to those of gf, in the sense
of the norm of Lz(0, ~).

According to the accuracy of the eigenfunctions, the
expected values of the functions 1(s'4,6(l, r), as energies
and density moments, are more precise than those corre-
sponding to 1(i3z',6(1,r), as Tables V and VI show.

(2) The exponent a. As Tables IV and V show, the
convergence of [ f'„' (a = 1,r ) ] to the exact solutions
gives the approximate eigenvalues E„" (a = 1), which we
shall use to estimate a value az closer to the exact value

a,'„'„(4.3). Therefore we can give to the basis (4.4) the
asymptotic behavior of the state that we desire to know
with accuracy and obtain a fast convergence.

For example, we take Es4', &(a= 1) of Table V and we
compute the exponent a2= I2~Es4 i6(a= 1)~]' -0.5
used in the new basis Iip„k(a2, r )] and we repeat the cal-
culations. The increase of the accuracy is evident: in
Table IV we see that the accuracy of Ps4'i6(a=0. 5, r) is
0.635X 10 while 1(s4',6(a= l, r) has an accuracy of
0. 126X10 . The accuracy of states 3p and 4p also in-
creases because o,' =0.5 is more precise than a = 1.
Therefore the energies E„" (a=0.5) and density mo-
ments are more precise, as Tables V and VI show.

Using the previous procedure, we compute states 3d,
4d, and Sd and the results are shown in Tables IV, V, and
VI. The accuracy of state 3d is excellent, because
a =0.333 gives its asymptotic behavior to the basis (4.4).

Remark. As Proposition (2.1) establishes, a convergent
sequence [1''„' J gives a convergent sequence of expected
values that is precisely a Cauchy numerical sequence,

hence in each stage of the calculation we can know the
exact numbers of each expected value, as Tables II and
III show. By this fact, we can assert that the reported
numbers are exact except the last, which has been round-
ed.

C. Yukawa potential

In solving the Dirichlet problem

21 d q(i)+ 1(l +1) + y ( ) y(i) E(i)q(i)
r2 " 2r 2 n n n

q(i)(0) y(i)(n }
—()

(4.14)

the calculation of (ip„k, ip„J &i„i is given by (4.12) and for

(y„k,Wip„~ &i„i is similar to (4.13.)
Table VII gives an example of the convergence of

[1(t'„' (a= l, r )] in the Cauchy sense for the Yukawa po-
tential with A, =0.10 and I=0; this implies the conver-
gence in norm to the exact solutions. Therefore both ei-
genvalues and density moments converge to the exact
values, as Tables VIII and IX show.

In Table X we have the accuracy of approximate eigen-
functions 1''„' (a, r ), Eq. (4.9), for some values of I, and l.
Table XI gives the energies E„" (a) calculated by the
present method, corresponding to eigenfunctions of Table
X, and those calculated by Vrscay [12], who used a
method of potential series. The accuracy of the present
method is excellent.

We can observe that the expected values are more ac-
curate than the eigenfunctions; for example, the eigen-
function /&4' »(a= 1,r) of Table VII has an accuracy of

TABLE XVIII. Density first moments (in a.u. ), for the Hulten potential, corresponding to some
elgenfunctions 1('„' of Table XVI, Eq. (4.10).

State

1s 0.025
0.050
0.075
0.100
0.200
0.300

1.999 739 578
1.998 958 255
1.997 655 854
1.995 832 082
1.983 313271
1.962 398 038

0.999 921 871
0.999 687 435
0.999 296 545
0.998 748 957
0.994 983 249
0.988 664 663

1.500 156 274
1.500 625 391
1.501 408 230
1.502 506 266
1.510 101 010
1.523 017 903

3.000 703 28
3.002 815 04
3.006 341 00
3.011 290 76
3.045 658 61
3 ~ 104 640 21

2p 0.025
0.050
0.075
0.100
0.200
0.300

0.083 176978
0.082 706 634
0.081 918 387
0.080 805 409
0.072 829 17
0.057 465 82

0.249 739 273
0.248 953 340
0.247 630 674
0.245 751 141
0.231 840 008
0.202 361 1

5.006 265 870
5.025 256 309
5.057 568 353
5.104 262 636
5.481 322 23
6.539 44

30.081 523 66
30.329 427 50
30.754 090 24
31.374 164 43
36.665 309 8
54.267 1

3p 0.025
0.050
0.075
0.100

0.024 430 412
0.023 641 020
0.022 301 88
0.020 371

0.110457 337
0.108 462 078
0.105 013 997
0.099 888 3

12.571 030
12.793 181
13.197 506
13.852 631

182.073 8
188.648 7
200.966 1

221.9137

3d 0.025
0.050
0.075
0.100

0.014 678 892
0.014 264 741
0.013 550 636
0.012 488 743

0.110560 811
0.108 866 707
0.105 880 872
0.101 272 792

10.559 796 50
10.748 582 72
11.099 805 08
11.694 295 74

127.530 298 2
132.434 202 9
141.855 898 5
158.720 231



3630 MARCO A. NUNEZ

0.289 X 10 while their moments ( r ' ) and ( r ) have
an error lower than 10 ', see Table IX. According to
this, the density first moments of the states 1s of Table X
were calculated with 13 exact numbers. Finally, Table
XII gives the first moments of some eigenfunctions of
Table X.

We report the moments because these depend on the
accurate computation of the eigenfunctions, while the en-
ergies can be calculated by other methods that do not
give the eigenfunctions, such as the Vrscay method.

D. Hulten potential

[n, m]' [k,j]'
Oscillator strength

This work' Varshni

ls ~2p 0.025 [49,13]
0.050 [49,13]
0.075 [49,13]
0.100 [49,13]
0.200 [49,13]
0.300 [49,13]

[64,16]
[64,16]
[64,15]
[64,16]
[84,15]
[64,15]

0.415 494 939
0.413 378 829
0.409 815 496
0.404 748 143
0.367 219 5
0.289 493

0.415 5

0.413 4
0.409 8
0.404 7
0.367 1

0.288 6

TABLE XIX. Oscillator strengths (in a.u. ) for the Hulten po-
tential.

To solve the problem

1 Gj y(i)+ + y (r) y(i) ~(i)q(/)
n n n

1s ~3p 0.025 [49,13]
0.050 [49,13]
0.075 [49,13]
0.100 [49,13]

[64,15] 0.078 335 1

[84,15] 0.075 995 3

[104,15] 0.071 954 8

[124,15] 0.065 975

0.078 34
0.076 00
0.071 96
0.066 00

y(i) (p) y(i)(&) p
(4.15)

2 max(l, l') QO

(+n'I' +nl ) 11 nl r fn i.dr
0

(4.16)

As in Proposition (2.1), we can show that if I
f(„') ] and

I fz"~] converge in norm to f,"„'„and P,"„'„,respectively,
then

g ~ oo k ~ oo

hence the values f calculated by the present method con-
verge to exact values. The accuracy of these values re-
ported in Table XIX was determined following a similar
process to the computation of the energies and moments,
so all numbers are exact except the last, which has been
rounded. Using (3.8) we have

(g'n'm, rPk'z ) = f '
g'n'mr/'i, 'Jdr . (4.17)

by the Ritz method only the calculation of

(

—5» [2&+&~»
2 k+j

%nk ~ S„V'nj (n)
1 —e " o 1 —e

is numerical and it was made with the Simpson integra-
tion method.

The Hulten problem has been studied by some authors
[13,14], who have basically calculated the energy levels.
For l =0 Eq. (1.1) can be solved in closed form [15].

Tables XIII—XV show the convergence of the eigen-
functions, energies, and some moments for the Hulten
potential with 5=0.025, l=1, and a=0.47489; this last
number gives the asymptotic behavior of state 2p.

Tables XVI—XVIII give a summary of the accuracy of
eigenfunctions, their energies, and density moments for
some values of 6. In Table XVII we show the energies
calculated by other methods. The accuracy of the
present method is excellent. To our knowledge there has
been no previous calculation of the density moments.

Varshni [13]has calculated the oscillator strengths, for
the nl ~n'I' transition, given by

2p ~3d 0.025 [64,16] [104,15] 0.691 611 1

0.050 [64,16] [84,15] 0.678 557 5

0.075 [64,15] [104,15] 0.654 812 9
0.100 [64,16] [124,15] 0.616433

0.691 6
0.678 5
0.654 7
0.616 1

'These values were calculated using (1('„' (a„,r), rgb', (ak, r)),
Eqs. (4.16) and (4.17), the exponent a can be found in Table XVI
or XVII.

Ref. [13].

that the convergence in norm is a necessary condition to
assure the precise computation of both eigenfunctions
and expected values of symmetric operators. The cri-
terion of Cauchy is particularly useful to check the con-
vergence of methods found in expansions of Ritz type, be-
cause it does not depend on the limit function. These cri-
teria can be applied to problems with several dimensions,
such as atoms.

The conditions that guarantee the convergence of the
Ritz method are related to the idea of convergence in
norm. The compactness condition, in particular, has
been ignored and as we showed, it is not satisfied in im-

portant problems: those with a nonempty continuous

spectrum. This explains the difhculty in computing ex-
pected values di6'erent to the energy.

The developed method has the following advantages.
(1) It guarantees the accurate computation of eigen-

functions and expected values.
(2) It does not depend on unknown parameters. The

method permits us to compute the exponent e to obtain a
fast convergence.

(3) In each stage, we can know the accuracy of the
eigenfunctions and expected values. This permits us to
stop the computation when the desired accuracy has been
obtained.

It is evident that to compute more excited states it is
necessary to use a larger basis. Therefore the method is
only limited by the computational resources.
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APPENDIX

By hypothesis the potential (1.2) satisfies

12 V(r)1=2 ~ M—,y(r) 1
(A 1)

12( V(r)u, u )

=
I f "2V(r)Iu(r)1 dr

I
~M f "—

Iu I
dr

0 0 r

~M f ' —Iu I
dr+M f" —Iu I

dr
0 r e/4M r

where M is a constant that depends only on each poten-
tial. The inequality

f r Iu(r)1 dr ~ 4f "
dr =4

0 0 dr dr
(A2) 4M

Ilu II'+ &

is satisfied for each u E 8', (0, ~) [17]. Qn the other
hand, if e) 0 we have

Consequently, for each u H W, (0,n) we have

( E' . . 1 (0 (r ( implies —(
4Mr

Using (Al) —(A3), we have for each u H 8', (0, ac )

(A3) 12«u, u &&.&I
~ C, IIu II(„)+6

(n)

where C, =4M /e.

(A4)
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