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The accelerated clock principle in special relativity and possible alternatives are investigated.
Alternative clock rates are proposed and their implications on the proper time of an observer with
constant proper acceleration considered. The effect such alternatives have on the synchronization
of spatially separated accelerated clocks is discussed and a review of experimental work is used to
establish an upper bound on the magnitude of acceleration-dependent contributions to the rate.
PACS number(s): 03.30.+p

I. INTRODUCTION

The modern definition of special relativity (SR) is that
of a theory of fiat space-time [1]. As such it should pro-
vide a complete description of both inertial and acceler-
ated motions through space-time devoid of gravitational
fields. Such a description must include methods of trans-
forming from one frame of reference to another. The
Lorentz transformation (LT) provides such a relation be-
tween all inertial frames, and its derivation follows from
the relativity principle and the postulate that the speed
of propagation of information or energy in all inertial
frames has a finite upper bound equal to the speed of light
c [2]. To obtain a general transformation between accel-
erated and inertial observers it is necessary to make an
additional postulate which relates an accelerated frame
to the inertial frame with which it is instantaneously co-
moving. Whether or not this postulate is regarded as
in some approaches as general relativistic [3] or, as in
this work, special relativistic, its logical independence de-
mands a separate experimental appraisal.

The standard approach regards the motion of an accel-
erating observer to be equivalent to an infinite sequence
of instantaneously comoving inertial observers. This
is formulated in the accelerated-clock principle (ACP),
which states that the rate of an accelerated clock is
identical to that of an instantaneously comoving inertial
clock [4]. On the view imposed above, this is a further
postulate required to complete the spectral theory of rel-
ativity. Prom this assertion it follows that the rate de-
pends only on the instantaneous velocity and not on the
acceleration per Se. Since the IT relates each local iner-
tial frame to an arbitrary inertial observer, the general
transformation is obtained by integrating over all such
local frames. In particular, the temporal transformation
is given by the integrated proper time of the accelerated
observer,

7Q dt (1 —x /c)

Although most authors follow this standard approach
and use the integrated proper time (and so implicitly as-
sume the ACP) alternatives have been proposed. Other
theories have been offered by Romain [5], Khan [6, 7], and

Kowalski [8]. In these it is suggested that the accelera-
tion does in fact contribute to the rate of an accelerated
clock. Mashhoon [9] refers to this presumed equivalence
between the rates of the accelerated and instantaneously
comoving inertial clocks as the "hypothesis of locality"
and questions the validity of its application to physical
phenomena which are not pointlike but instead have in-
trinsic time (T) and length (I ) scales. He states that "the
local immateriality of acceleration means, in terms of re-
alistic measurements, that the influence of inertial eKects
can be neglected over the length and time scales charac-
teristic of elementary local observers. " He then further
suggests that if the acceleration scales of the observer are
of similar order to the intrinsic scale of the phenomena
under observation, we may find locality violated. If this
alternative point of view is taken, then the integrated
proper time does not suKce to describe the temporal re-
lation between accelerated and inertial frames and a new
acceleration-dependent expression is necessary. Experi-
mental tests of SR involving acceleration will provide an
upper bound on the magnitude of any deviation from the
ACP.

We denote a small increment in the time measured by
an accelerated clock to be d~ and that of the instanta-
neously cornoving inertial observer to be dw, . The ACP
asserts that these are equal. In this paper we investigate
test theories in which this rate ratio dra/dr, is not unity.
Suppose that any acceleration-dependent modification to
the ACP can be expressed as a power series in the proper
acceleration a. The rate ratio would then be

(2)

where the coeKcients g„define the theory and have di-
mensions [g„] = I "T ".

Initially we consider a modification containing only
first-order acceleration terms. The first model studied
(alternative 1) is an adaptation of a theory proposed by
Khan [7] in which gi = x/2c, where x denotes the posi-
tion of the accelerated observer in some preferred inertial
frame relative to some preferred point. This choice of gi
is by no means unique and dimensional analysis suggests
that gi ——GM/c and gi ——(hG/c7) ~ are also possible
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candidates but would not yield preferred frame theories.
The former does require the stipulation of an arbitrary
mass and so does not preclude an acceleration term de-
pendent on particle mass; the latter contains only uni-
versal constants and so would introduce an acceleration
term common to all observers. These possibilities will be
discussed in Sec. II C.

The second modification considered (alternative 2) is
again an adaptation of Khan's work but also serves to
correct what we believe to be an inconsistency in Khan's
analysis. This modification is then able to satisfy Khan's
"principle of reciprocity" and with suitable choice of pa-
rameter A reproduce the ACP result and a host of inter-
mediate models. The "principle of reciprocity" summa-
rizes a philosophy held by Khan that requires that two
observers in relative motion make identical assessments
of one another's motion through the use of their own
measuring devices (rods and clocks. ) The significance of
this proposal becomes apparent when uniformly acceler-
ated motion is analyzed in the context of the reciprocity
principle. On doing this Khan deduced that there would
be no "twin paradox, " a conclusion that is at variance
with the Hafele and Keating [10,11] experiment in which
caesium beam clocks were flown around the world and
then compared with control clocks at the U.S. Naval Ob-
servatory. Khan derived a rate ratio of the form

d7Q i=1 ——Aa-x
d7C

where 2; is the distance from a preferred position in a pre-
ferred frame, and in Khan's case A = 1. We find that this
rate ratio for uniformly accelerating observers did not in
fact integrate to give the coordinate transformation nec-
essary to satisfy the reciprocity hypothesis. The general
expression for the rate ratio which would satisfy the reci-
procity hypothesis is more complex than that suggested
by Khan and may be expressed as a function of time in
the case of uniformly accelerated motion:

dr~ ((8 —ad)[(1+8 ) ~ —8] —I'l
[6 —(1+~2)'~' —1]'

= 1+2~
l

where 6I = ot+ b. For a clock which is instantaneously at
rest in the preferred frame (which occurs for this exam-
ple at t = b/a) and —with A = 1 this rate ratio reduces
to Eq. (3). Both these proposals have inherent problems
associated with the possibility that the rate may become
negative. This predicts some bizarre results which place
a limit on A from physical grounds alone and reflects limi-
tations in Khan's theory. These effects could be overcome
by including higher-order terms or otherwise restricting
the rate to be positive.

The third alternative is due to Kowalski [8] and stems
from an important consequence of SR associated with
the concept that two clocks synchronized in one frame
will not be synchronized in a frame moving relative to
the first. In Sec. III we review the prediction of SR that
clocks which are slowly separated then undergo a period
of acceleration before being slowly reunited will not be
synchronized in their new rest frame [12]. We then apply
the two alternative clock hypotheses to this problem and

demonstrate that the degree of asynchronization will de-
pend upon the theory and choice of parameter A. Kowal-
ski [8] hypothesizes that the clocks are synchronized in
the new frame, and in so doing effectively demands an
appropriately sized value of A in his theory.

In Sec. IV we review experimental tests of SR that are
applicable to the ACP and compare with the predictions
of the modified theories to obtain upper bounds for the
relevant parameter models.

II. UNIFORMLY ACCELERATED MOTION

A. Constant proper acceleration equations

We wish to establish the equation of motion of an ob-
server A' moving with constant proper acceleration, that
is, constant acceleration a with respect to the instanta-
neously comoving inertial frames. Following Desloge [12],

z = —[1 + (at + b)']'~' + d,
1

a (5)

where 6 and d are constants of integration related to the
velocity and position of A in S, respectively.

B. Natural time assuming the ACP

Under the ACP for each instantaneous rest frame of
A' the natural time and proper time are equivalent, that
is, dr = dr, . From Eq. (5),

at+ 6

[1+(at+ b)2]1~2

From the time dilation formula for difFerentials,

(1 ~2) 1l2dt

Integrating (7),

1 .r, = —[sinh (at + 6) —sinh b]
G

(6)

Equation (8) gives the relationship which the accelerated
observer A' would find between the reading ~ on its clock
and the reading t on the clock of the observer in frame S
with which it is at that moment coincident.

We shall now use the results of the LT (using natural
units) to discuss accelerated motions in Hat space-time.
An accelerated observer A' will at any instant be at rest
in some inertial frame S'(x', t'), the instantaneously co-
moving rest frame. Any length and time measurements
made with the coordinates of S' are related by the LT
to our arbitrarily chosen inertial frame S. Let the proper
time denoted by 7; retain its standard meaning and refer
to the time recorded by the clocks in the instantaneously
comoving inertial rest frames. Following the nomencla-
ture of Romain [5] the time registered by the accelerating
clock will be called the natural time (r ). The ratio of
the differentials of the natural time and the proper time
(dr /dr, ) will be referred to as the rate ratio.
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C. Natural time assuming alternative 1 to the ACP

As a first alternative theory, consider the proposal of
Khan [6] motivated by the "principle of reciprocity. " This
principle requires that if A and A' are two observers in
relative motion they will make identical assessments of
each other's motion using their own respective clocks and
rods. In contrast with the ACP the rate now has the
proper acceleration and displacernent as variables:

d7 0 = j. —-Aa2:.
d7' 2 (9)

We include the parameter A to provide a family of the-
ories which will include both the ACP (for A = 0) and
Khan (for A = 1) models. The rate given in Eq. (9)
clearly involves for the definition of x a preferred frame
S and a preferred point in S. This notion of a preferred
point has some important and unusual consequences.

An immediate consequence of the above rate is that
the clocks of two spatially separated observers which ini-
tiate their acceleration simultaneously in S will be ob-
served to be running at different rates by an observer
in S at later times. This implies that the natural times
of the two clocks as determined by S at any instant t
will be different. In Sec. III it will be shown that this
may be used to predict the degree to which two spatially
separated, identically accelerating clocks will move out
of synchronization when viewed from the original frame
S. In contrast the ACP predicts that spatially separated
identically accelerating clocks will remain synchronized
in their initial rest frame.

I et us consider the behavior of the rate for a constant
proper acceleration a. If x varies according to the equa-
tion for hyperbolic motion, the rate will increase (or de-
crease depending on the signs of A and a) as x increases.
If Aax ) 2, then the rate will be negative. This indi-
cates that the instantaneously comoving inertial observer
would measure the accelerated observers clock to be run-
ning backwards. This unusual prediction raises the ques-
tion as to whether Eq. (9) violates causality. First we
establish the natural time equation corresponding to this
rate.

To calculate the natural time, first substitute Eq. (5)
into Eq. (9) to obtain the rate as a function of t:

d7 2
= 1 ——([1+(«+ 6)']'i'+ ad). (10)

Aad At
~~ = —

~

1 — [sinh '(«+ b) —sinh 6] ——.
G ( 2 ) 2'

(12)

With the possibility of acausal effects it is not surprising

The instantaneously comoving observer at time t has the
value of dw, /dt given by Eq. (7). Hence,

dw 1 —(A/2)([1 + (at + b) ]
~ + ad)

dt [1+(«+ 5)'1'~'

Integrating Eq. (11) with the boundary condition r; = 0
at t = 0 we obtain the natural time of A'.

that from Eq. (12) we find that 7 is multivalued for
A P 0 and that for A ) 0, ~ is a decreasing function in
the limit as t —+ Boo.

The twin problem has been analyzed from the view-
point of the accelerated observer by many authors
[3, 12—15] through the construction of an accelerated ref-
erence frame by methods which invariably incorporate
the ACP. Consider a version of the twin "paradox" in
which two identical observers, one inertial and one accel-
erating, are initially spatially coincident. They move to
some maximum separation and then return so that they
are again spatially coincident. Uniformly accelerated mo-
tion satisfies this form of the twin problem as the world
line is a hyperbola, and so an accelerated observer may
coincide twice with an inertial observer. If the times reg-
istered between meetings are t and 7. for the inertial and
accelerated observers, respectively, then from Eq. (8) we
see that on the ACP the noninertial observer will record
the shorter time. This is a general feature of discussions
of the twin paradox even when the motion is largely in-
ertial [16, 17].

Next consider the possibilities offered by applying the
twin-paradox scenario to the natural time equation re-
sulting from our modified rate. We assume without loss
of generality that at t = 0, 2: = L. This implies that
d = L —(1+ bz)i~2/a. Substituting d into Eq. (5) and
solving for t when x = L yields t = 2b/a as—the other
time at which A' passes x = L. The natural time of A'

at t = 2b/a is —then by Eq. (12),

&a = 1 ——[aL —(1+6 )i~
] sinh b+ —.

G ( 2 ) G

(13)

Next we establish when this natural time is zero. This
occurs trivially if 6 = 0, so we seek solutions for b g 0.
Suppose the initial velocity is restricted to be much less
than the speed of light: x « 1. From Eq. (6) with t = 0
it is apparent that 6 = +x/(1 —x2) i~z = kx+ O(xs), so
that ~b~ && 1. Hence Eq. (13) reduces to r —b (—2/a[1+
(A/2)(1+ bz/2+ ) —ALa]) + Ab/a implying A —2/aL
when ~ = 0.

Note that on comparison with Eq. (9) this is the same
value for A which marks the transition at which the rate
becomes negative. This result provides an estimate of
the range of accelerations and distances which may be
used for a given A, and also demonstrates that there is a
limit at which the theory becomes acausal. If we reintro-
duce the speed of light c we see that A = 2cz/aL is the
maximum value A can have before the natural time for a
return trip becomes negative. The above thought exper-
iment illustrates that beyond this limit there exists the
possibility of traveling away and subsequently returning
younger than on setting out. This result is sufBciently
bizarre to discredit a theory where the rate depends lin-
early on the acceleration and separation. One method
of overcoming this is to postulate a modification, which
makes the rate non-negative, such as
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f %ax)
(14)

For suKciently small A this reduces to the original lin-
ear theory which we will continue to use in subsequent
sections.

We next brieHy discuss implications of the other
position-independent rate ratios mentioned in the Intro-
duction. The two possible candidates gq ——GM/c and
g& = (hG/c7) ~ may be substituted into the rate-ratio
equation to first order in the acceleration which is

df ~ = 1 —Agua.

Both these proposals suggest that the rate ratio is de-
pendent upon the sign and magnitude of the acceleration.
For large enough positive accelerations the above rate ra-
tio may be negative and so leads to some bizarre efFects.
This occurs when a ) 10 /A ms (approximately. )
Unlike the Khan-type theories there is no cumulative po-
sition dependence on these eKects so the latter would not
become apparent just by accelerating for a suKciently
long time.

Putting these two proposals through the same machin-
ery as was used in the above case yields

r = —(1 —
Aggro) [sinh (at + 6) —sinh ~

gj,a
where the signi6. cant change occurs in the first set of
parentheses. Physically this implies that an arbitrary
inertial observer would deduce the accelerated clock to
be running faster, slower, or indeed not running at all
depending upon the sign and magnitude of a and the
magnitude of A. For an accessible example consider the
same twin arrangement as given previously.

Suppose we have two observers, one at rest at the ori-
gin of an inertial frame S and the other accelerating with
proper acceleration a. Assume that at t = O, x = 0 the
observers are at the same position. Their next coinci-
dence is at t = 2b/a, 2: = 0—; all coordinates are in S. At
t = —26/o, the natural time registered by the accelerated
clock is

~ Agua & 1: The accelerated observer measures a
time loss between meetings. The inertial observer
concludes that time is running backward for the
accelerated observer.

~ Agua & 1: Here a range of possibilities exists de-
pending upon the magnitude of a. It includes the
standard ACP result for A = 0 and also contains a
theory in which the accelerated clock is deduced to
have measured the longer time interval.

This type of theory does not provide for Kowalski's va-

riety of synchronization demand as discussed in Sec. III.
This is due to the exclusion of any position-dependent
terms, without which spatially separated, identically ac-
celerated clocks age at the same rate.

D. Natural time assuming alternative 2 to the ACP

The procedure by which Khan obtains the transforma-
tion Eq. (21) is outlined below and circumvents the in-

tegration over inertial frames required by the ACP. Hav-

ing obtained the transformation we derive the rate ratio
d&~/d7; implied by the model, then generalize to a family
of alternatives to the ACP which may then be compared
with experimental tests of SR.

Suppose that A' moves in hyperbolic motion in frame
S and that A is an observer at rest in S at x = 0 (see
Fig. 1). Let Pq be the event when A sends a light signal
to A' at time tq and P' the event A' receives the signal
at time t A' imm. ediately returns the signal to A. Let
Pq be the event when A receives the reflected signal at
time t2. All coordinates refer to the frame S. Observer
A deduces that event P' occurs at a time t =

2 (tq + t2)

A

P2

2 ~ —1= ——(1 —Agua) sinh b,a (17)

while at t = 0, ~~ = 0. Thus we are able to compare the
time interval logged up on the accelerated observer's and
inertial observer's respective clocks between meetings for
various values of A and a. The inertial clock always reg-
isters t2 —tq ——2b/a irrespective of the theory. On the
other hand the time registered by the accelerated clock
(as judged by the inertial observer) is

=2 ~ —1~2 —~q = —(1 —Agua) smh b.
a

This provides for a number of scenarios.

~ Agua = 1: The acelerated observer measures no
change in time between the two meetings. The in-
ertial observer concludes that time has stopped for
the accelerated observer.

pt

t

P

r

t

r

FIG. l. World lines for discussing the coordinate trans-
formation derived by Khan between the accelerated observer
and an inertial frame which is constructed from light signals
and time measurements carried out by one of the observers in
accordance with the reciprocity hypothesis.
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where p, q, and r are constants expressed in terms of
a, b, and d as p = +1/a+ d —b/a, q = d —1+ b /a2,
r = +1/a+ d + b/a

Next we express &P in terms of the original constants by
substituting for p, q, and r and choose the lower value of
p and r so that P remains finite at t = b/a:—

(—a + ad —ab) (t —x) + a2d2 —1 —b~
O(x, t) =

a[a(t —x) —1+ad+ b]
(21)

This result gives an explicit transformation between the
coordinate time of S and the natural time of observer A'
in terms of the initial conditions.

We differentiate P(x, t) with respect to t and use the LT
to find the rate of A' with respect to its instantaneously
comoving inertial frame:

dP
d'7i

(» r —q)(1 —x)
(t —x + r) (1 —x~) i~~ ' (22)

and evaluate this rate when A' is stationary in the pre-
ferred frame S. This requires x = 0 which in turn implies
that t = b/a by Eq. (—6) and hence [from Eq. (5)] we ar-
rive at the expression derived by Khan [his (3.15)]:

i 1
d7-

—
2

= i(l —ad) = 1 —-ax.
2

Now introduce a dimensionless parameter A into the
rate given by Eq. (22). This enables us to obtain both
the ACP [Eq. (8)] (for A = 0) and the Khan [Eq. (27)]
transformation (for A = 1) between the coordinate time
of S and the natural time of A'. Rearranging Eq. (22)
and introducing A we have

and at a distance x = 2(t2 —ti). Suppose t' is the time
recorded on the clock carried by A' at the instant when
the light signal originating from P arrives; we wish to
obtain a transformation,

(19)

such that t' = P(ti). The reciprocity hypothesis would
then require that tq = P(t') so that tq = P(P(ti)). Khan
establishes the transformation by finding an iterate of
order z for the function t2(ti), the results of which are

(1 —ad) [(1 + 8 )
'~ —1] —b8

(27)

Although it is not immediately obvious, Eq. (21) with
Eqs. (5) and (27) are equivalent.

The rate ratio given by Eq. (25) is consistent with
the transformation derived by Khan whereas that given
by Eq. (23) does not integrate to give the function P.
We believe that this point may have been overlooked
by Khan and feel that the above result provides a more
complete description of the relation between the acceler-
ated observer and inertial observer within the framework
of the reciprocity hypothesis. The problems associated
with negative rates are still apparent in Eq. (25) which
again indicates that it is necessary to include higher-order
terms to ensure a physically sensible solution in the limit
of large accelerations and separations.

III. CLOCK SYNCHRONIZATION

Suppose we have two identical clocks A and B which
are spatially coincident, synchronized, and at rest in an
inertial frame S(x, t) at some past time T. Clock —B
is then slowly transported so that at t = to the clocks
are separated by a distance L. At to both clocks initi-
ate identical constant proper acceleration which ceases
at coordinate time t = ti. Clock A maintains a constant
velocity with respect to S while B is slowly transported
back to A so that at t = ti + T the clocks are again
spatially coincident and stationary but now in the rest
frame S' of A. We compare the natural times of the two
clocks before and after their separation, acceleration, and
rejoining for each of the models discussed in Sec. II. Fig-
ure 2 displays the world lines in frame S of these events;
a detailed calculation using the ACP model is given in
the Appendix.

At event 6 the natural times of A and B, respectively,
are

the same boundary conditions as before and with further
simplification we obtain

= (1/a) (1 —A) (sinh 8 —sinh b)

+(A/a8)((1 —ad) [(1 + 8 ) —1] —be). (26)

To obtain P, the transformation which denies the asym-
metric aging of twins, we set A = 1 in Eq. (26),

dr ( (pr —q) (1 —x)
dr, q(t —x+ r) 2(1 —x2) i~'=1+A

~ (24) r+~ = (1/a) sinh (ati) + T/p&,
(28)

dr ((8 —ad) [(1+8~)i~2 —8] —1&
d7q ( [8 —(1 + 82) i/2 —1]2

= 1+2A
i (25)

Using the methods outlined above and the IT we rear-
range this into a first-order differential equation in ~
and t. The resulting equation is separable. Specifying

To solve Eq. (24) for r first substitute for x so that the
expression is in terms of t only, then substitute in the
expressions for p, q, and r. To simplify the algebra we
make the substitution 8 = at + 6 and with some calcula-
tion obtain

r+/ = r+/ + pUUL + O(1/T)

Comparing A and B subsequent to their being reunited
we find that r+~ —r+ri = pv UL + O(1/T), —so that for
the ACP model at least, they are no longer synchronized.
The terms O(l/T) are negligible provided slow transport
is over a suKciently long time.

We next consider how alternative models will affect
the synchronization. The first alternative leads, through
essentially similar calculations to that used in the ACP
case, to natural times at event 6 which are
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t t]+T e S ~ tC a O S

event 2, event 3

d+L

CVCttt 6

slow clock trar~mrt

A and B accelerating
with constant proper
acceleration

slow clock transport

Hence the appropriate A value for the Kowalski-type syn-
chronization is strictly a function of the time t i for which
the clocks are accelerated although reducing to A = 2 as
tq —+ 0. Also worthy of note is the fact that A is indepen-
dent of I so that the one choice of parameter is sufFicient
to synchronize all clocks in S accelerated identically to
a new frame. For Gtq &( 1 A is approximately 2. Thus
Kowalski's demand for the preservation of synchroniza-
tion may be satisfied in such cases with the appropriate
choice of parameter in a preferred point theory.

Applying the above argument to the second alternative
theory we find that again the natural times of accelerated
clocks have terms dependent on the initial position. The
A value necessary to ensure synchronization in the new
frame is obtained as before except that we use Eq. (25)
for the natural time. Hence,

AL[(1 + («,)']'~' —1
&+A —&+B = —pv VL

Gty

(32)

and so,

FIG. 2. World lines in frame S of two clocks A and B as
they are separated by slow transport, identically accelerated,
and then reunited.

1 (' Ati T
T'+~ = —

~

1 ——a(d —1/a) I
sinh («i) — +

a ( 2 ) 2

L
T+~ = 7+g + sinh («i) + pv'VL.

2

(29)

The difference between the natural times of A and B
after they have been reunited now depends upon how
long they were accelerated for, and is

7+g —7g~ = (AL/2) sinh (ati) —pv'VL. (30)

The parameter A determines to what extent the clocks
are asynchronized in S'. In fact it is possible to contrive
the parameter so that clocks will be synchronized in the
new rest frame. This idea is supported by Sachs [18
and a similar proposition has been made by Kowalski [8
in his hypothesis of "phase invariance. " This hypothesis
efFectively denies the existence of a Boughn-type [19] twin
"paradox" just as Khan denies the usual twin paradox in
which one twin is not accelerated. In each ease these
authors will require Eq. (9) to hold at first order and so
require a preferred frame theory.

If clocks initially synchronized in 8 are to be synchro-
nized in the new rest frame S' after a period of uniform
acceleration, then Eq. (30) must be equal to zero. Since
pvV = Gty,

2Gt]

sinh '(ati)

For Gtq (& 1 we find that A is approximately 2. We
therefore propose a simplified rate-ratio hypothesis of the
form of Eq. (9) as an approximate model of the ACP
(A = 0), Khan's (A = 1), and Kowalski's (A = 2) test
theory to be tested against experiment.

IV. EXPERIMENTAL TESTS OF THE ACP

There has been a number of experimental tests of SR
incorporating the Mossbauer effect in a rotating system,
notably those of Hay et al. [20] and Turner and Hill [21].
We wish to establish whether or not these experiments
constitute a test of the theory under consideration and
so bound the value of A.

The apparatus essentially consists of a 57Fe source on
the axis of a rotating disk and an iron absorber on the
perimeter. A detector is situated beyond the perimeter
but is not attached to the disk and remains at rest in
the laboratory frame. The absorption is monitored as a
function of the angular velocity of the disk. The absorber
and source are maintained at a constant temperature to
eliminate thermal efFects (see Pound and Rebka [22]).
We regard the disk to be rotating in an inertial frame
with the proviso that Earth's rotation be included for a
complete solution. If the angular velocity of the disk is
8 and the radial vector to a point on the perimeter is r,
then the acceleration at that point is a = —@82.

To apply the rate given by Eq. (9) to this motion we
must establish the preferred point and the distance from
this point to the accelerated observer (see Fig. 3). Sup-
pose that the center of the rotating frame is located at
(x = h, y = k) in the preferred frame S and let R denote
a vector from the preferred point chosen as the origin
of S to a point on the rim of the rotating disk. Substi-
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in addition to any terms obtained from a more detailed
derivation of the Doppler equation and we retain this
simple model as a first approximation. Modifying the
method of Rindler [4] used to derive Eq. (36) we get
D~~t ——dr, /dr D. Since the correlation between theory
and experiment is of the order of 2% we have

D —D it
& 0.02. (37)

FIG. 3. The rotor experiment diagrammatically, a source
is placed at x = h, y = k and an absorber rotates with a uni-

form angular velocity at a radial distance r. The modified rate
proposed is dependent on the distance to the preferred point
(selected as the origin) and the acceleration of the observer.
The distance d depends sinusoidally on 0.

tuting the appropriate parameters into the modified rate
equation gives

d7. A a-R=1-
d7' 2

= 21+ A8 rRcos(8 —P),

where

R = g(h+ r cos8) + (k+ r sin 8),

(k+ rsin8)
tan (h + r cos 8)

We consider the two limiting cases.

(34)

A8srR/c2 ( 0.06.
1 —(A82rR/2c2)

(35)

In the analysis of this experiment Hay uses the standard
relativistic Doppler equations for a source with uniform
velocity u and radial component u„,

(36)

There has been some criticism of the application of this
result to accelerated observers and some discussion as
to the effect on redshift calculations [23, 24]. The con-
tribution to D from modifications to the ACP will be

l. As A—+ 0 the modified rate reduces to dr /dr, =
1+Ar28 /2. Thus we would expect to observe a
count rate which was difFerent from that predicted
by the ACP by a factor proportional to the square
of the tangential velocity.

2. If R))r the modified rate is dr /dr, = 1 +
(A8sr/2) gh2 + k2 cos(8 —P) where the phase factor
P is nearly constant. The count rate would now be
dependent on the angular position of the detector.

Turner and Hill [21] established that any angular de-
pendence of the rate ratio is less than 6% of the mean
rate ratio which implies that

In order to establish an upper bound for A we need an
estimate of B. Suppose we take the preferred frame to be
the frame in which the background microwave radiation
is isotropic and the preferred point the position of Earth
at A.D. 1. Then take the relative velocity of Earth to the
microwave background [29] as 600 km/s, and the distance
from our present position to the preferred point as 10is
m. Given that r 0.13 m and 8 1000ir rad/s we have
A&10 7.

Pound and Rebka [22] using the 14.l-keV nuclear p-ray
transition of 57Fe observed that a difFerence in temper-
ature AT between the source and absorber produced a
shift Lv in the absorption line. The standard explana-
tion is that the frequency shift is a result of second-order
Doppler shift caused by the random thermal vibrations
of the nucleus in the crystal lattice. Sherwin [25] inter-
prets this as confirmation of the ACP. However Mash-
hoon [26] points out that since the lifetime of the excited
state is very long compared to the period of the motion,
efFects which are linear in acceleration and velocity can-
cel. Consequently any acceleration-dependent contribu-
tions to the rate would also be of second order. This ex-
periment does not differentiate clearly between the ACP
and the first alternative theory which has linear depen-
dence. As suggested in Sec. IIC a preferred frame rate
must contain higher-order terms to avoid nonphysical so-
lutions and so we expect the appearance of second-order
effects. The maximum shift Av/v = v /c implied by
the standard theory agrees with experiment (to within
about 10%). This implies that any specific acceleration-
dependent efFects will be at least one order of magnitude
less.

Bommel [27] conducted an experiment in which a spa-
tially separated source and absorber were accelerated
along the line joining them by oscillating piezoelectric
transducers. The source and absorber were given iden-
tical accelerations so that in the laboratory frame their
separation was constant. Using oscillations with frequen-
cies between 1 and 5 MHz the change in the counting rate
An/n was found to be linearly dependent on the sepa-
ration. These results were interpreted as a redshift and
compared with the prediction Av/v = ai/c .

More recently Baryshevsky [28] explained the effect
as a property of the ultrasonic excitation of Mossbauer
sources and absorbers. An analysis of Bommel's exper-
iment reveals that first-order Doppler efFects will be ob-
served. Assume the source and absorber are undergo-
ing simple harmonic motion with frequency a and are in
phase. Let the position of the source and absorber be
x, = Asin(ut) and x = 2:,+I, respectively. Let us also
assume that the separation L is much greater than the
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LR
R

& 0.15. (39)

However, everyday experience is enough to constrain

amplitude A so that the propagation time of a p ray be-
tween absorber and source is —L/c. If the source emits
a p ray at time t, then the velocity of the source with
respect to the laboratory frame is v, = Aucos(cut) and
the velocity of the absorber upon reception of the p ray
is consequently v = Aw cos(wt + wL/c). Hence

A~2L ~Ll
'U —V sin ~t +

C 2c) '

which is not in general zero. Thus there are time-
dependent first-order Doppler effects and since the emis-
sion time is random this will broaden the linewidth rather
than give a definite shift in the absorption line, This ef-
fect will obscure any relativistic contributions which we
might hope to observe. This leaves some doubt as to the
extent which the above experiment constitutes a test of
the ACP. Unfortunately it does not appear that similar
experiments have been carried out with collinear motion
as they would provide the most suitable framework in
which to test the rate under consideration.

We consider the Hafele-Keating experiment [10, 11].
The objective of this experiment was to provide a macro-
scopic test of the kinematic time-dilation effect of SR.
Four caesium-beam atomic clocks were transported in
commercial aircraft twice around the world, once in each
direction. The calculation of the expected time again is
fairly straightforward and includes both kinematic and
gravitational terms. The agreement between the ob-
served time gain and that predicted is of the order of
10%%uo. Let us consider the repercussions of an alterna-
tive model of the type parametrized by Eq. (9) for the
Hafele-Keating observation.

The most stringent tests of a preferred frame theory
and of Eq. (3) are those in which the absolute distance
x to the preferred point appears. This in turn demands
comparison of clocks with relative acceleration or veloc-
ity. The Hafele-Keating experiment data, as registered,
did not do this, and only a less stringent test is possible.
Caesium-beam clocks are known to undergo short fluc-
tuations in rate due to shot noise and also spontaneous
quasipermanent changes in rate over a longer period (typ-
ically two to three days. ) These changes are normally in-
dependent for a collection of clocks. Hafele and Keating
used a method of correlated rate change during the trip.
Here the rates of each of the four clocks are compared and
consequently any change in the rate of an individual clock
may be ascertained. They did not compare the rate of
the accelerated clocks with a ground-based clock at the
U.S. Naval Observatory during the flight time. Hafele
and Keating say explicitly that the clock rates aboard
the aircraft were within three standard deviations (15%%uo)

of the correlated mean. This places an upper bound on
any acceleration-dependent and position-dependent rate
ratio term. If R~ and R2 are the rate ratios of two clocks
separated in the aircraft, R the mean rate ratio, and LR
the deviation of the rate ratio from the mean, then

A far more stringently. Take a preferred frame theory
of the form of Eq. (3) with either Khan's or Kowalski's
value of A (1 and 2, respectively) and again take the
preferred frame to be the frame in which the background
microwave radiation is isotropic and the preferred point
the position of earth at A.D. 1 (now 10is m distant).
Then the rate ratio deviates from unity in the alternative
theory by Aa[~/9 (a~~ = component a [[ x, 9 arises from
ez in the denominator) and the cumulative effect of a
linear acceleration to speed v is a synchrony change in
the clock of order

9
(40)

Hence an airplane during takeoff (b,v —250 m/s) would
experience in such a theory a change in absolute synchro-
nization of its clock of order 28A s. Since in practice a
change in synchronization is not detected to within frac-
tions of a second, A must be very much less than 1 in
such a theory. On the Khan and Kowalski values of A all
passengers would note dramatic changes in their watches
during takeoff for such a value of 2:.

V. CONCLUSION

Motivated by the work of Khan [6, 7] and Kowalski [8]
we investigated alternatives to the ACP of SR which in-
cluded acceleration and position-dependent terms. It was
shown that these proposals are preferred frame, preferred
position theories. Further we introduced a dimensionless
parameter A into various rate-ratio equations, the varia-
tion of which provided a family of theories including both
the alternatives and the ACP.

Through considering uniformly accelerated motion it
was found that there exist some problems associated with
these alternative proposals. In particular, if the rate ratio
becomes negative we find acausal results in "twin para-
dox" type thought experiments.

For the problem of spatially separated, identically ac-
celerated clocks we find that the amount by which the
clocks are out of synchronization on completion of ac-
celeration depends upon the model selected. It is shown
that a Kowalski-type theory, whereby clocks initially syn-
chronized will remain so after acceleration, can be ob-
tained by a suitable choice of A (which with suitable con-
ditions is approximately 2).

Finally a review of experimental work may be used to
place an upper bound on A. As the alternate theories are
preferred frame, preferred point theories it is necessary
to choose some inertial reference frame. If this is taken
to be the frame in which the microwave background ra-
diation is isotropic, both the rotating Mossbauer and ev-
eryday experience lead us to conclude that A (& 1. This
would then rule out both the Khan (A = 1) and Kowalski
(A = 2) alternatives on phenomenological grounds.
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APPENDIX: CLOCK SYNCHRONIZATION

We calculate the natural times of two clocks A and
B after they have been slowly separated, identically ac-
celerated, and then slowly reunited using the ACP pre-
scription. The coordinates are of the initial rest frame 8
and all velocities are relative to this. Terms O(1/T) are
considered negligible.

Event 1: At t = T t—he clocks A and B are at rest
and coincident at x = d. Separation of the clocks by slow
transport begins and the natural times of A and B are
7—+=7—g=T.

Event 2: At t = tp = 0, A begins constant proper
acceleration a from rest in S. A has position xp~ = d
and registers a natural time ~o~ = 0.

Event 3: At t = tp = 0, B begins constant proper ac-
celeration a from rest in S having been slow transported
to position xo~ ——d + L. B registers a natural time
rpIs = 0+ O(1/T).

Event 4: At t = tq, A ceases acceleration and continues
with constant velocity V = at&/[I + (atq)~]~I . A has
position xq~ = (1/a) [1+(atq) ] I +d —1/a and registers
a natural time dependent on the model selected; for the
ACP this is rq~ = (1/a) sinh (atq).

Event 5: At t = tq, B ceases acceleration and be-
gins slow transport (relative to frame S') back to A.
B has position xq~ ——xq~ + I and again the natu-
ral time depends upon the model; for the ACP rq~ =
(1/a) sinh (atq) + O(1/T). In order that A and B are
spatially coincident at t = t&+T the velocity of B relative
to S is V~ = V —L/T.

Event 6: At t = tq + T, A and B are spatially co-
incident and at rest in S'. If p~ = 1/(1 —v2)~I2 then
the natural time registered by A for the ACP model
is 'r+~ = (1/a) sinh (at&) + T/'7&. Since I/'7&s
1/[1 —(V —L/T) s] ~I2 we expand this as a series in 1/T.
We then find the natural time of B for the ACP model
is r+~ = (1/a) sinh (at&) + T/'7z + 7&VL + O(l/T).
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