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Aharonov-Bohm scattering of wave packets by Maxwell coils
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Maxwell coils are solenoids of spheroidal shape which produce a constant magnetic field inside
the coil; at large distances the field of a Maxwell coil becomes that of a magnetic dipole. The
current in systems consisting of several confocal Maxwell coils can be adjusted in such a way that
the magnetic field inside the smallest coil is constant and the back flux is confined to the interior of
the largest coil. Quantum-mechanical scattering of charged particles by Maxwell coils, or systems
thereof, is first formulated as a three-dimensional problem and then treated within a two-dimensional
approximation. The evolution in time of wave packets, which are Gaussian wave packets in the
beginning, is calculated numerically. In all cases an Aharonov-Bohm effect is observed in the angular
distribution of the scattered wave packets. The back flux results only in an additional deflection of
the packets, which corresponds to the classical deflection caused by the Lorentz force.
PACS number(s): 03.65.Bz, 03.65.Nk

I. INTR.ODUCTIDN

In 1959 Aharonov and Bohm (AB) [1] pointed out that
electromagnetic potentials can inHuence the quantum-
mechanical motion of charged particles even in regions
where the fields derived from the potentials vanish. This
assertion gave rise to a long and often passionate discus-
sion on the existence and meaning of this efFect, including
the interpretation of experiments that were performed to
verify AB's proposition. A fair survey of this controversy
is given by Tonomura in [2]; for additional information
see the survey article by Olariu and Popescu [3]. Al-
though the majority of physicists now seems to believe in
the existence of the AB efFect, the theoretical description
of many (actual or thought) experiments still contains a
number of ad hoc assumptions and simplifications which
call for a more detailed analysis.

In order to illustrate their general ideas Aharonov and
Bohm [1] calculated the difFerential cross section for elec-
trons scattered by an inpenetrable solenoid (magnetic AB
efFect). The solenoid was assumed to have the form of an
ideal cylinder of infinite length so that the magnetic Geld
is completely trapped inside the coil. (In addition, the
radius of the coil was assumed to be vanishingly small,
but this assumption was only made to simplify the calcu-
lations and is irrelevant for the following). As an infinite
solenoid cannot be realized experimentally, a number of
authors [4] considered the question whether the magnetic
field, which exists outside of every Gnite coil, might be re-
sponsible for the magnetic AB efFect. A scattering prob-
lem with closed magnetic Hux was considered by Peshkin
et al. [5], who studied for a pair of two parallel infi-
nite solenoids, which carry opposite currents, the form
of the wave function in the plane joining the two cylin-
ders; afterwards Tassie [6] extended these arguments to a
toroidal coil. A more detailed analysis of these problem
was given later by Olariu and Popescu [3]. All these au-
thors conclude that the magnetic AB effect, i.e., the de-

pendence of the interference pattern behind the coil(s) on
the magnetic flux in the inaccessible region(s), exists also
for closed magnetic Huxes. Whereas the space accessible
to the electrons is free of fields in these models, the cur-
rent distribution considered by Liang [7] and Kobe and
Liang [8] yields a nonvanishing magnetic field not only
inside the shielded solenoid but also in an infinitely thin
cylindrical shell that encloses this coil and serves to close
the magnetic flux. As the AB cross section is approached
when the radius of the shell tends to infinity these au-
thors conclude that the AB effect may be attributed to
the Lorentz force of the return flux. Kobe [9] also dis-
cussed the combined efFect of magnetic Geld and shieded
Hux in the two-slit diffraction experiment and found both
AB interference and a shift of the difFraction pattern due
to the Iorentz force. We finally mention the work of
Babiker and Loudon [10] who considered a solenoid of
finite length and calculated the enclosed flux responsible
for the AB phase shift for closed paths consisting of semi-
circular or straight segments. Apart from the fact that
the magnetic Geld was only calculated within an approx-
imation, the main difFerence to the work of Kobe and
Liang is that the interactions, which cause the splitting
of the incoming beam in front of the coil and unite the
two parts behind it;, are not included in the analysis of
Babiker and Loudon (in the other models beam splitting
was efFected by the hard-core potential of the shield).

In this paper the scattering problem of AB and its
modification by Liang and Kobe are reconsidered. In-
stead of the infinite cylindrical solenoids used in [1, 7, 8]
we consider solenoids of prolate spheroidal shape which
produce a constant field inside and a nonvanishing field
outside the coil. The properties of such a solenoid, of-
ten called a Maxwell coil in the literature, are reviewed
in Sec. II, where we also consider systems consisting of
two and three confocal coils. Assuming the central coil to
be impenetrable we then formulate the three-dimensional
scattering problem in Sec. III and discuss its classical so-
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lutions. Prom the study of these classical orbits we con-
clude that the three-dimensional problem may be approx-
imated by a two-dimensional one if (i) the coil is suffi-
ciently long, (ii) the time interval in which the evolution
is followed is bounded, and (iii) during this period the
particle moves within a thin planar sheet normal to the
coil s axis. In Sec. IV the corresponding two-dimensional
scattering problem is considered. It differs from similar
discussions in the literature by the existence of spatially
extended magnetic field(s) outside the shielded Aux, and
by considering time-dependent wave functions instead of
stationary ones. The advantage of a time-dependent ap-
proach is that use of square-integrable wave functions
automatically eliminates apparent paradoxa, such as the
diverging cross sections which are obtained in a time-
independent treatment of AB scattering [11]. For van-
ishing magnetic fields AB scattering of wave packets has
been studied previously by analytical methods [12, 3].
In Sec. IV of this paper the time-dependent Schrodinger
equation is solved numerically, the initial data represent-
ing the free motion of a Gaussian wave packet. Snapshots
of wave packets at difFerent instants are presented for
one and more coils, both of finite and of infinite length.
Among the examples studied in detail is the string-plus-
shield model of Liang and Kobe [7, 8] whose conclusions
are critically analyzed. Finally, in Sec. V we summarize
the general features of AB scattering as they emerge from
the examples studied in Sec. IV.

II. MAXWELL COILS

Prolate spheroidal coordinates ((, il, p) are related to
Cartesian coordinates (z, y, z) by [13]

rg = Qx + y + (z + e) )

(= (r++r ) /2e,

q=(r+ —r )/2 , e

&p = arctan(2:/y),

the range of the variables being 1 & ( & oo, —1 & g &

1, 0 & p & 2vr. The surfaces ( = (i = const are prolate
spheroids (foci at +e, height 2L i = 2e(i, maximal diame-
ter 2Ri = 2eg(i2 —1). If a wire of constant cross section
is densely wound around such a spheroid such that the
loops are normal to its axis, one obtains a Maxwell coil.
For thin wires the current in such a coil may be consid-
ered as surface current.

(2)

The corresponding solution of the vector Laplace equa-
tion, which is transversal and satisfies natural boundary
conditions, is [13,14]

A((, 'g, (p) = Ai x Pi(( )Qi(() x Ql —q n~,Qi(6) Pi'(()

where the upper line holds for ( & (i and the lower one
for ( ) (i, the functions PP and QP are the associated

The magnetic field obtained from the vector potential (3)
is constant inside the coil (( & (i),

B((, il, p) = Bi n, ,

whereas in the exterior (( ) (i) it is given by

Bg((, n, s) = —Bi Qi(() n!v (' —n',

Bq(( n V) = —Bi Qi(() 01 —n'/V'(' —n',
B&(( n V) =0.

The relation between the constants Ji, Ai, Bi, and Bi

(7)

1s

Ai = 2~a Ji/c,
Bi = 4vreQi((i) Ji/c,

Bi ——4~a (i —1 Ji/c .

(8)

A Maxwell coil is therefore uniquely determined by two
geometrical parameters, say e and Bq, and the Aux pa-
rameter

n = BiR', /2

(the total Aux through the plane z = 0 is, of course, equal
to zero).

At large distances from the coil (r = A+2+ y2+ z2 &)
e) the field (7) becomes that of a magnetic dipole (( =
r/e, il = cos8, A~ = A„= 2Mcos8/r, A„- —Ag =
—M sin 8/r, M = —Bio /3). On the other hand, if the
coil is slim (e )) Ri) and the field is only considered in

the region R = +2:~ + yz && e, z = 0 (il = 0) the finite
coil looks like an infinite solenoid. In the plane z = 0

A((R, O, (p) = A(R) n~,

B((~,0, p) = B(R)n, ,

R
—1 = &Pi ((R) .

Inside the coil (R & Ri)

A(R) = aRi R, B(R) = 2nRi

while outside (R & Ri)

A(R) a R, B(R) 0 .

(12)

Relations (13) are asymptotic series for e ~ oo, the omit-
ted terms being of order e ln(e ). Figure 1 shows
A(R) and B(R) for o; = 1, Ri = 1, as a function of the
eccentricity. It is seen that the vector potential of a coil
with I i/Ri = e = 30 is, in the vicinity of its largest

Legendre functions of the first and second kind [14, 15],
respectively.

P (() ~ P (()
Q'(() &( Q'(() '
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1. 0
III. THE THREE-DIMENSIONAL PROBLEM

A. Glassical motion

0.

J. 0

—.Eo

0 I 2 3 4 5 6

FIG. 1. (a) Scaled vector potential A(R)/A(Ri) and (b)
scaled magnetic field B(R)/B(0) of a Maxwell coil (eccen-
tricity e, radius Ri) in the horizontal symmetry plane as a
function of the scaled distance R/Ri. A, e = 3; B, e = 30; C,
6= OG.

diameter, essentially that of an infinite solenoid. The
difFerence shows up only in the existence of a weak mag-
netic Geld outside the coil which exists in the whole plane
z = 0 and compensates the flux inside the coil.

The return flux may be restricted to a finite domain
if systems of two or more confocal coils are considered
(s=Ei =cg =, Ri (Rs ( . ). Inasystemoftwo
coils the currents (parameters Ji s) may be determined
as functions of the geometrical parameters e, Ri, R2 and
the field inside the inner coil (parameter cr = BRi/2).

Bq+ B2 ——0, Bg+ Bg ——B.
For this system the vector potential vanishes identically
in the exterior of the larger coil and all flux lines close
within this coil.

Likewise, in a three-coil system the vector potential
vanishes outside the largest coil if the currents J] 2 3 are
determined from

Bi+B2+Bs ——0, B2+ Bs = 0, Bi ——B. (15)

(B is the value of the field inside the central coil. ) In
the limit e ~ oo, Bq —+ 0, Rq ~ B3, B fixed, this coil
system approaches the string-plus-shell model considered
in Refs. [7, 8].

B. Quantum mechanics

P

In units where c = h, = 1 the Hamilton operator H is
obtained from the Hamiltonian H by the substitution

0 . 0 0
P&~ &

~ Pq~ & ) Pg~8(' " Oil' ~ OP' (17)

where the sequence of factors in (16) has to be main-
tained. Since the (angular) momentum operator io~ =

i 0/Op commutes with H—, the Hilbert space 'H may be
decomposed into subspaces 'H which are invariant under
the evolution. That is, if a wave function is decomposed
according to

To simplify formulas we consider a particle of unit mass
and unit charge and use units where c = 1. Outside the
(central) solenoid the classical motion of the particle is
governed by the Hamiltonian

H =
2 (p —A)

,
)

pg (t!' —1)pg + pn (1 —n') pn

- 2
1 Pp

y(4n) ( )

where, for a given coil system, the potential A~(g, rl) fol-
lows from (3). If more than one coil is present all but the
smallest one are assumed to be penetrable. At the sur-
face of this coil the particle is elastically reflected: when
((t) = (i, pt changes from p~(t) to pf(t + 0) = —p~(t)
while the momenta p„and p~ remain unchanged. Prom
this reHection law and Hamilton's equations it follows
that p~ is a constant of motion.

Elimination of the momenta gives Newton's equations
for the variables (, il, y where the force is the Lorentz
force due to the field (7) (and additional constant fields
if more than one coil is present). Outside the (cen-
tral) coil one therefore finds curved orbits which ap-
proach straight lines far away from the coil since the
field decays rapidly for r —+ oo, or even vanishes for
r ) r . %'e studied numerically these orbits for ini-
tial conditions xp = (xo, yo, zo) = (—Ro, hp cos P, bo sin P)
(Rp & 0, 0 ( P ( 2'ir), vp = (v p, viip, 'U p) = (Kp, 0, 0)
(Ko & 0), and calculated the defiection angles parallel to
the plane z = 0 (angle 0) and normal to it (angle w).
As the magnetic field of the back flux assumes its largest
values near the surface of the central coil, the largest de-
flection angles were found for grazing rays. It turned out
that ~ „/A „-e for a single coil; for systems of two
or three coils the ratio was even smaller since concentra-
tion of the back flux to a finite region results in larger z
components of the field outside the central coil and hence
larger angles O. In Sec. IV these results will be used to
justify the approximation of the three-dimensional prob-
lem by a two-dimensional one.
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4((, n, V I&) =).0 (&, el~)e*"', (18)

the functions Q~ evolve according to the reduced
Schrodinger equations

if (i) the coil is very long, (ii) the particle starts from
a position near the symmetry plane z = 0 and moves
parallel to it in the beginning, and (iii) the motion is
only considered for times where R(t) « e. As in the
region ~z] ( 50 (( e, R (& e, or

i —g = —,'[T+V ]g (19) (' —1«1, ~q~ & &0/~ (~ )) 1), (26)

1 8 2 8 8 2 8'=, (( —,) 8("' ') 8(' 8, " "') 8„
(2o)

—A~((, g)v-= (21)
~g((' —1)(1 —n')

Reflections at the hard spheroid ( = (q are taken into
account by the boundary condition

@ ((„@It)=o. (22)

The components @ of a square-integrable wave function
@ c Vf satisfy

1 oo

~(( n I ~) I'~'4' —n') d4dn & ~ (23)
—1

and (22), and each of these functions evolves according
to Eqs. (19)—(21).

Therefore one is faced with two problems: First, the
functions @~((,g ~

0) have to be chosen in such a way
that the total wave function g((, g, p ~

0) represents an
incoming wave packet. In principle, an infinite number
of expectation values would be needed to fix this wave
packet uniquely. However, only a few of them are relevant
for the scattering process; these are especially the mean
values and variances of position and velocity.

(p —A)c 0 = vo, (24)

((x —xo) )t o ——60) ((P —A —vo) )~=o = +0

(25)

The second problem that has to be mastered is the ex-
plicit solution of the initial-value problems for the com-
ponents g~. In Sec. IV we discuss an approximation in
which the two-dimensional initial-value problems are re-
placed by one-dimensional ones, and present solutions of
these simpler problems. At this point we only want to
emphasize that Eqs. (19)—(22) describe the motion of a
particle in a simply connected domain. For g ~ oo free
motion is approached because A~ decays as ( 2 (one coil)
or vanishes for ( & ( ~„(two- and three-coil systems).
It is therefore obvious that standard quantization rules
have to be applied and the eigenvalues m of the angular
momentum p& have to be integers.

the field of the back flux is essentially parallel to the z
axis and the reflecting surface of the coil nearly plane, the
classical motion along the coordinate z = e(g —eg may
be neglected as long as one is only interested in motions
confined to region (26). Formally this approximation is
obtained by dropping the term p„(l —g2)p„ in the Hamil-
tonian (16) and setting g = 0 in the remaining terms. A
classical distribution, initially centered around

xo = (—Ro, o, 0), vp = (Ko, 0, 0) (27)

@m= 2 T+Vm @my2 (28)

1 8 8
RBR BR' (29)

V = ——A(R)
- 2

(30)

The boundary condition reads

(Ro, ~o & 0) would then, to a good approximation,
evolve in time according to a Liouville equation derived
from this simplified Hamiltonian.

It is known that for ordinary potential scattering there
exist close analogies between classical distribution func-
tions and their quantum equivalents (Wigner or Husimi
functions). Especially for high momenta (short wave-
lengths) the latter are seen to differ from the former only
inside the region of the geometrical shadow and near its
boundaries. What is important here is that all the other
regions, into which the classical distribution does not en-
ter, are also never seen by the corresponding quantum
distribution (in this argument tiny tails of distribution
functions are neglected). We assume that this relation
between classical and quantum distribution functions is
also valid if magnetic interactions are included. If this is
true, a wave packet starting with mean velocity vo from
xo will remain in region (26) during the whole scattering
process. For this restricted set of initial data it makes
sense to simplify the three-dimensional quantum prob-
lem analogous to the classical one, i.e. , to drop the term
8/Bg(1 —rj ) 8/Bg and to set q = 0 in (19). As long
as the wave function is considered only in domain (26),
8/8( = (e2(/R)8/BR = (~z/R)8/BR so that the evolu-
tion equation for the function Q ((~, 0~ t) = 4 (R~ t)
becomes

IV. THE TVPO-DIMENSIONAL PROBLEM (R&) =0 (31)

A. The basic hypothesis
and the normalization condition becomes, in this approx-
imation,

As already mentioned in Sec. III A classical scattering
by Maxwell coils is essentially a two-dimensional problem

(Rit)i RdR = c ( oo. (32)
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B. Initial data

In the reduced initial-value problem the wave function
at t = 0 is assumed to be a two-dimensional Gaussian
wave packet.

@(x
l
()) ~ —p(3c—3cp) +iKp (x—xp) (33)

Equations (28)—(31) comprise all two-dimensional AB
scattering problems for which analytical stationary solu-
tions have been found in the past. What is new here is
that we are looking for square-integrable solutions (wave
packets), and that the potential A(R) is due to one or
several coils of Q.nite length. Moreover, we believe that
the solutions of Eqs. (28)—(31), multiplied with a Gaus-
sian in the variable 2), constitute an approximate solution
of the three-dimensional initial-value problem given by
(19)—(22). In Sec. V we extend the conclusions drawn
from the solutions of the two-dimensional problem to
the still idealized but more realistic three-dimensional
problem. As the following steps are straightforward and
can be checked by standard methods, the only way to
prove that our conclusions are irrelevant for the three-
dimensional problem would consist in solving explicitly
Eqs. (19)—(21) for appropriate initial data.

From the properties of the Bessel functions J [15] it
may be deduced that

= 0 for lm[ ) M = Ko/~p (4o)

in the beginning (t = 0). Because of (32) the magnitude
of these components cannot increase in time so that only
2M + 1 components have to be taken into account if the
wave packet is initially of the form (33).

C. Numerical integration

The evolution in time of the components 4 is calcu-
lated numerically. We employ a scheme which was ap-
parently first used by Goldberg and Schey [16] for one-
dirnensional problems and applied later by Gailbraith,
Ching, and Abraham 17] to two-dimensional scattering
problems (see also [18 ). In this approach, a variant of
the so-called "operator-splitting" method, the evolution
operator for a time interval of length 2v is factorized ac-
cording to

In (33) X = (x, y) = (Rcosy, Rsin&p) is the space vari-

able, JV = g2p/2r a normalization constant, and

Um(2~) = exp i7. T+ V—
~ W (~)Q(2~)W (~) . (41)

Ko = (—R0, 0), Ko = (Ko ko). (34)
In (41) the "potential propagator"

W (v-) = exp( —i~U /2)
The constant kp is chosen such that the kinetic angular
momentum vanishes at t = 0. (42)

(P~+ RA(R))i=o = 0 (35)

For the Gaussian (33) the first term of (35) is equal to
(Ko x Ko)„hence

ko = (RA(R))i=—o/Ro (36)

c(R, pit) =) @ (Rlt)e™ (37)

The mean position at t = 0 is then —Ro n and the x
component of the velocity is (P~ —A~) 2—p = Ko. If 2bo =

&& Bp the y component becomes vanishingly small.
The boundary condition (31) is satisfied numerically if
Rp —bp y) Bg.

At t = 0 the components in the decomposition

is a multiplicative operator, and the "kinetic propagator"
Q(2~) is approximated by its Cayley form,

1-2T 2T
Q(2~) = exp( —i~T) ~ .1+ i(w/2)T

(43)

The operators T and Vm are given by (29) and (30),
respectively. That the n-fold product of operators
of the form (41) with 2w = t/n tends to U(t) for
n ~ oo follows from Trotter's formula. If the equa-
tion U (2r) 4 (R l tz) = @m(R

l ted+i) is multiplied with

[ 1 + i(w/2) T ] W (—w) one obtains

are obtained by means of the formula

m
&i(u cps g+v sin $) ) l l

J (/&2 + g) imP
&v'u'+ v')

(38)

which is also valid for complex parameters u, v.

(R l
0) = JV '(" +" +'~'"') —-J (t,R),

6
a = kp —2&Bp + tKp, (39)

& = (K,'+ ao2 —4~'R02+ 42~K, R,) '".

[1 —i(~/2)T] W(~) @ (R l &, )

= [i+ i(7-/2)T] W( —7.) @ (R
l t, +i) . (44)

The algorithm based on (44) is stable for arbitrary time
steps 2~ [18].

Numerical treatment of (44) requires also discretiza-
tion of the space variable, Bg = Ep,

(45)

and the differential operator (29) has to be replaced by
a difference operator.
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T@(R lt) ~ —, —
l
1+

I
@(&+11j)+2@(&lj)—

I
1 —

I
@(&—1l j)1 ( p l ( p I

R=R&,t=t, p~ ( 2Rt ) 2Rt)
(46)

In order to obtain 4 (l'
l g + 1) from 4m(p l j) the

evolution equation (44) has to be supplemented with the
boundary conditions

@m(~min l 2) = @m(~max
l 2) = 0 ~ (47)

D. Results

The first of these conditions is nothing but (31), the
boundary condition at the surface of the (central) coil
(Ri = E;„p). The second condition follows from (32); it
replaces the natural boundary conditions for the square-
integrable components [@m(R

l
t) ~ 0 for R ~ oo]. In

every time step the calculation of the numbers 4 (E j)
can be drastically reduced since the tails of the wave
packet @ and all its components 4 can be neglected
outside an interval of the form E(j) & E & E(j) + L. In
our calculations the length L of this interval was chosen
such that the values of l@l at the corners were smaller
than the maximum value within the interval by a factor
10 s or more. The boundaries E(j) and E(j ) + L were ad-
justed after each time step in accordance with the motion
of the peak of liIIO . To check the accuracy of the scheme
the norm of the wave packet was calculated repeatedly
in each time run.

The algorithm outlined above was tested for two lim-
its where the solution of the initial-value problem can
be given in closed form (free motion, constant magnetic
field). For time steps of magnitude 2w = 10 agree-
ment between analytical and numerical wave functions
was found to be excellent for p = 0.0025 and satisfactory
for p = 0.01.

]

after the scattering it moves away in all directions. How-

ever, in the scale used here, the intensity of the scattered
packet is too small to be visible outside a certain neigh-
borhood of the forward direction. A finer scale would
also show a flat peak which originates from the reHection
at the inpenetrable coil and moves essentially backwards.
This scale was not used in the drawings since this effect
is well understood and would only obscure the essential
message of our figures.

Figure 2(a) shows the scattering of a wave packet by
an inpenetrable cylinder (n = 0, cf. [17]). The originally
bell-shaped probability distribution evolves to a butter-
flylike form when the wave packet "hits" the cylinder.
The superposition of incoming and outgoing parts of the
packet results in a wavy structure where the distance be-
tween adjacent crests is determined by the momentum
KQ. The highest crest is the one which encloses the ob-
stacle in U form; the vanishing intensity between its two
legs marks the region of geometrical shadow. As time
proceeds, the parts of the butterflylike figure move more
and more outwards in radial direction, but an azimuthal
motion persists also for some time. Especially the two
ends of the main crest get into contact at a finite dis-
tance behind the cylinder, and the two branches of the
wave packet start to interfere constructively. Finally, the
azimuthal motion comes practically to an end and the re-
sulting distribution, a central peak with two symmetric
side maxima, moves radially outwards with velocity KQ,
during this motion the radial profile of the distribution
spreads. At large distances from the cylinder, and outside

The evolution of wave packets was followed for more
than 3 x 103 time steps. Initially the wave packets were
centered on the negative 2: axis, the distance to the center
of the coil(s) being Ro = 3 (Figs. 2 and 3) or Ro
5 (Figs. 4 and 5). At t = 0 the width of the packet
was given by the parameter p = 1.535057, or 26Q

1/~p = 0.8 [cf. (25) and (33)]. As can be seen from Figs.
2—5 the radial width of the packet after the scattering
is of the same order of magnitude, i.e. , the asymptotic
evolution, where the packet spreads linearly in time in
radial direction, is not included in our calculations. In
most cases the initial velocity was chosen to be KQ = 30,
but lower (Ko = 10) and larger values (Ko = 120) were
also considered in order to verify the correct behavior for
long and short wavelengths. The number of components
considered for KQ ——30 was 95; when the components
with lml ) 47 are removed, the norm of 4, originally
equal to 1, is only reduced by an amount of order 10 4.

The radius of the inpenetrable coil was chosen to be
Bi ——0.2; the radii of other coils are B2 ——2.5 in the
two-coil system, and B2 ——2.0, A3 ——2.5 in the three-coil
system. The eccentricities varied between e = 7 (Figs. 3
and 4) and e = oo (infinite solenoid, Figs. 2 and 5).

Figures 2—5 show snapshots of l@l2 (contour lines) at
selected instants. Initially the packet moves upwards;

(b)

Oc)

4p

FIG. 2. Scattering of a wave packet by an inpenetrable
infinite solenoid (e = oo): Contour lines of lgl at subsequent
instants (from bottom to top: t = 0.00, 0.12, 0.24, 0.36).
Flux parameters: (a) n = 0.0, (b) a = 0.5.
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(b)

0
0

FIG. 3. Scattering of a wave packet by an inpenetrable
Maxwell coil (e = 7): Contour lines of ~@~ at subsequent
instants (from bottom to top: t = 0.00, 0.12, 0.24, 0.36).
Flux parameters: (a) a = 10.0, (b) o. = 10.5.

FIG. 4. Scattering of a wave packet by an inpenetrable
Maxwell coil enclosed by a penetrable one which contains the
magnetic back flux (ei = e2 = 7): Contour lines of ~Q~ at sub-
sequent instants (from bottom to top: t = 0.00, 0.18, 0.33).
Flux parameters: (a) n = 10.0, (b) n = 10.5.

a narrow sector containing the central peak, the angular
distribution of the outgoing wave packet becomes pro-
portional to the differential cross section obtained from
time-independent scattering theory [19, 11].

Except for minor modifications the first part of this
evolution is also seen in all other figures. In Fig. 2(b)
the infinite solenoid encloses a magnetic field with fiux
parameter n = 0.5. Scattering by the hard core of the
coil proceeds as for a = 0 and the region of geometri-
cal shadow is the same. However, when the two wings
of the butterfiy unite behind the coil these parts of the
wave packet interfere destructively: instead of the central
peak a minimum of vanishing intensity, sandwiched by
two maxima of equal height, appears behind the obsta-
cle. This agrees qualitatively with the conclusions AB de-
rived from time-independent scattering theory [1]. This
theory predicts vanishing of the total wave function at
large distances behind the solenoid (here the positive x
axis), but yields also arbitrarily large values of the scat-
tering amplitude in the vicinity of this direction. How-
ever, this divergence of the differential cross section in
forward direction and the resulting divergence of the to-
tal scattering cross section should not be taken literally;
they result only from applying the statistical interpreta-
tion of quantum mechanics to non-normalizable station-
ary solutions of the Schrodinger equation. In a proper
time-dependent treatment, where only square-integrable
wave functions are considered, these difficulties do not oc-
cur at all. Figure 2(b) shows that the divergences at both
sides of the forward direction are reduced to two peaks of
finite height. This smoothing of the divergent scattering
amplitude may be attributed to the fact that an infinite
number of stationary eigenfunctions with slightly diKer-
ing wave vectors has to be superposed in order to obtain

a wave packet of finite norm.
We note in passing that for the cylindrical solenoid

(e = oo) the relation between the asymptotic forms of
the incoming and the outgoing wave packet (theoretically
t —+ goo; here t ( 0.00 and t ) 0.36, respectively) can
also be obtained by analytic methods [ll]. These calcula-
tions show that the double peak found for a = 0.5 evolves

(b)

FIG. 5. Scattering of a wave packet by an inpenetrable
infinite solenoid enclosed by a cylindrical shell which con-
tains the magnetic back flux (ci = cg = Es = oo): Con-
tour lines of ~Q~ at subsequent instants (from bottom to top:
t = 0.00, 0.09, 0.23, 0.33). Flux parameters: (a) n = 1.0,
(b) o; = 0.5.
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gradually from the central peak and one of its neighbors
[cf. Fig. 2(a)] as n is increased from zero to 0.5 (the other
side maximum degenerates to a small hump). Although
this asymptotic analysis is very useful for discussing the
physical meaning of cross sections and the optical theo-
rem, it contains much less information on the scattering
process than the explicit solution of the time-dependent
Schrodinger equation presented in Fig. 2. Only this full
description of the evolution allows one to differentiate
between hard-core scattering (t —0.12), which is essen-
tially independent of the field inside the solenoid, and
the AB interference pattern that emerges subsequently
behind the geometrical shadow of the coil and depends
crucially on the enclosed magnetic flux.

The other figures illustrate the influence of the mag-
netic back flux. In Fig. 3 the magnetic field is that of
a Maxwell coil with e = 7. Because of the weak mag-
netic field outside the coil, the wave packet, which starts
moving in the x direction, is slightly deflected and the
"collision" with the coil is no longer central; this can be
seen from the asymmetry of the butterfly. The packet
feels the magnetic field also after the scattering by the
hard coil, but becomes a free packet in the end since the
field decays rapidly. Compared to the asymptotic angu-
lar distribution obtained for the infinite coil, the number
of the peaks is the same and they are of the same magni-
tude. But the whole pattern is now shifted as one would
expect from the action of the Lorentz force. The same
effect is seen for the two-coil system in Fig. 4 (e = 7)
where the back flux is restricted to the interior of the
larger coil.

Finally, in Fig. 5 the back flux of the central solenoid
(e = oo) is confined to a cylindrical shell; no magnetic
field exists in the region between the solenoid and the
shell and outside the shell. In Refs. [7, 8] this situation
was discussed in terms of time-independent scattering
theory, and it was concluded that the scattering ampli-
tude of this problem is due to the Lorentz force from
the magnetic field in the shell. Figure 5 disproves this
conjecture: transition through the shell, both before and
after the scattering by the central coil, results only in
small distortions of the wave packet. As in the other ex-
amples the characteristic AB interference pattern evolves
when the two wings of the butterfly, which are of nearly
the same magnitude but have in general different phases,
approach each other behind the inpenetrable coil. The
result of this interference, e.g. , the difference between
o. = 0 and n = 0.5, is already clearly visible before the
packet passes the shell for the second time. That is, six
different stages of the evolution are clearly perceivable
in this example: (1) free motion of the Gaussian wave
packet; (2) transition of this packet through the mag-
netic shell —a minor effect; (3) hard-core scattering by
the central solenoid essentially independent of the en-
closed flux (not shown in Fig. 5); (4) flux-dependent AB
interference behind the shadow region; (5) transition of
the wave packet carrying the characterisitic AB interfer-
ence pattern through the magnetic shell —again a minor
effect; and (6) free outgoing radial motion outside the
shell, including spreading in this direction. Since the field
inside the shell decreases with increasing diameter, if the

flux of the central coil is kept constant, it is obvious that
the influence of the shell becomes negligible as its radius
tends to infinity. It is therefore not surprising that also
in a time-independent approach the results of AB are re-
gained when the diameter of the shell tends to infinity
[7, 8]. However, this fact does not indicate that the mag-
netic AB effect is caused by the Lorentz force of the back
flux. On the contrary, this and the previous examples
(Figs. 3 and 4) show unequivocally that the formation
of the AB interference pattern and the deflection due to
magnetic fields outside the coil which splits the incoming
beam are independent effects. This is in agreement with
Kobe's results for the two-slit experiment [9]: When an
extended magnetic field is added to the shielded coil be-
hind the screen, the interference pattern due to the two
slits and the trapped flux persists, but is now shined in
accordance with the classical Lorentz force acting on the
electron.

V. CONCLUSION

In this paper the magnetic Aharonov-Bohm (AB) ef-
fect is reconsidered. In their pioneering work [1] AB
considered the scattering of electrons by a solenoid of
infinite length and vanishing diameter. This thought ex-
periment, as well as its modifications proposed by other
authors subsequently, were discussed in terms of time-
independent scattering theory (for exceptions see [12, 3])
and the geometry was restricted to two space dimensions.
It is obvious that an infinite solenoid may be viewed as
a limit of finite ones. In Sec. II we recall that there exist
coils of prolate sheroidal shape, which produce constant
fields in their interior and for which both vector poten-
tial and magnetic field can be given in closed analytical
form. For these coils, called Maxwell coils in the litera-
ture, we then formulate in Sec. III the three-dimensional
scattering problem as an initial-value problem for square-
integrable wave functions (wave packets). In this problem
the space accessible to the particle is simply connected
and the motion approaches a free motion at large dis-
tances from the coil. It is therefore clear that the usual
quantization conditions have to be employed; they result
in integer eigenvalues of the angular mornenturn compo-
nent along the coil's axis.

Prom the study of the classical orbits we conclude that
the three-dimensional problem may be approximated by
a two-dimensional one if (i) the coil is very long; (ii) the
particle starts from a position near the symmetry plane
normal to the axis and moves parallel to it in the begin-
ning; and (iii) the motion is followed only as long as the
distance between particle and coil is much smaller than
the length of the coil. It should be possible to verify or
to disprove this hypothesis by more extensive numerical
calculations. We are not only confident that such a calcu-
lation will corroborate the results of our two-dimensional
approximation, which is derived in Sec. IV by heuristic
arguments, but we also want to point out that the so-
lution of the three-dimensional problem would allow one
to pass continuously from an apparently two-dimensional
problem to a truly three-dimensional one. Scattering off
the top of a slim Maxwell coil should constitute a mathe-
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matical model of scattering by a tapered iron whisker for
which the AB effect has been observed experimentally [2].
If this expectation can be verified by numerical calcula-
tions it would be obvious that the only purpose of impen-
etrable obstacles, may they be of finite or infinite exten-
sion, is to split the wave packet, or part of it, and to keep
the parts separated by a shadow region which contains
a magnetic flux. To discuss the topological properties of
the space in which the particle could move in principle,
but does not under the given (initial) conditions, and to
consider related modifications of quantization conditions
would then turn out to be a mere mathematical exercise
which is irrelevant for physical experiments.

The numerical solutions of the two-dimensional prob-
lerns presented in Sec. IV lead to the following picture of
three-dimensional AB scattering: In the beginning, when
the wave packet is scattered by the hard core of the coil,
the evolution in time is independent of the enclosed mag-
netic flux. The hard coil determines the gross features of
the angular distribution of the outgoing packet, especially
outside the forward direction, and serves to slit the packet

in forward direction. At finite distance behind the coil
the two parts of the packet, which passed the coil on dif-
ferent sides, unite again and their relative phases become
important. These phases vary with the current in the coil
in the way predicted by AB so that the enclosed flux, or
the vector potential outside the coil, becomes visible in
the form of the interference pattern behind the hard coil.
Although the details of the angular distribution depend
on the instant of observation, its qualitative features, i.e. ,

the number of the peaks and their symmetry, are already
visible at this time. Magnetic fields outside the inpene-
trable coil, may they be due to the finite length of the coil
and/or additional penetrable coils enclosing the central
one, result only in an additional deflection of the packet
which corresponds to the deflection of classical particles
by the Lorentz force.
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