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Ermakov-Lewis invariant from the Wigner function of a squeezed coherent state
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Using the phase-space picture (Weyl-Wigner-Moyal formalism) of quantum mechanics for time-
dependent Hamiltonians, we show that the Ermakov-Lewis invariant of a generalized harmonic oscil-
lator can be derived from the Wigner function of a squeezed coherent state. The geometric meaning
of this invariant is clarified and realized via the Wigner ellipse in phase space.
PACS number(s): 03.65.—w, 02.90.+p, 42.50.Dv

I. INTRODUCTION

ddr8=-t' (2)

In the past three decades, there has been increasing
interest in the Ermakov-Lewis (quantum) invariant [1—3]
and its applications as well as generalizations 4—9]. For
a harmonic oscillator of unit mass and time-dependent
frequency with the Hamiltonian

H(q, p;t) = 2(p + [~(t)] q j,
where q and p are the position and momentum operators,
the Ermakov-Lewis invariant I=I(t) is defined as

Liouville equation. Hence time evolution of the Wigner
function can be obtained directly from the solution of
the equation of motion of the corresponding classical sys-
tem. Although the phase-space picture is usually used
for time-independent Hamiltonians [10—13], we will show
in Sec. II that it is also valid when the Hamiltonian is
time-dependent.

The purpose of this paper is to use the phase-space ap-
proach to (i) study the relations between the Ermakov-
Lewis invariant for the Hamiltonian (5) and the Wigner
function of a squeezed coherent state, (ii) derive the
Ermakov-Lewis invariant from the relations found in (i),
and (iii) give geometric meaning to this invariant in the
phase-space picture via the Wigner ellipse.

where 8=8(t) is any (real or complex) solution of the
nonlinear differential equation

II. PHASE-SPACE PICTURE
FOR TIME-DEPENDENT HAMILTONIANS

8+ [~(t)]'8 = —,

with A being a constant. I is a quantum invariant in the
sense that

For a quantum system described by the Hamiltonian
H=H(q, p;t), the density operator p satisfies the von
Neumann —Landau equation

dI OI
+i[H, I] =0

dt Bt (h = 1). (4)

The above definition of the Ermakov-Lewis invariant
can be generalized for a time-dependent "generalized har-
monic oscillator" with the Hamiltonian

H(q, p; t) = zi a(t)q + b(t)(qp+ pq) + c(t)p
+f(t)q+ 9(t)P, (5)

where

a(t), c(t) & 0 and a(t)c(t) —[b(t)] ) 0 for all t. (6)

Since (5) is inhomogeneously quadratic in q and p, in
principle we can study the quantum problems associated
with this Hamiltonian in the phase-space picture (Weyl-
Wigner-Moyal formalism) via the Wigner functions. So
long as the Hamiltonian of a quantum system is (inho-
mogeneously) quadratic, the equation of motion of the
Wigner function is of the same form as the classical

This equation is valid for both time-dependent and tjme-
independent H. Since the equation of motion of the
Wigner function can be derived from (7) [ll, 12], it is
of the same form for both time-dependent and time-
independent Hamiltonians.

The above discussion is true for any Hamiltonian. Now
we restrict the Hamiltonian to be (5) which is inhomoge-
neously quadratic. As in the time-independent case, we
still have the classical Liouville equation as the equation
of motion for the Wigner function:

—W(x, k;t)+ W(x, k;t) — W(x, k;t) =0,0 BH 8 OH 0

where H=H(x, k; t) is the classical correspondent of (5)
by the Weyl correspondence rule (the symmetrization
rule):
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BH
Bk '

(8) can be rewritten as

BH
Ox

(10)

—+x +k „ i W(x, k;t) = „W(x—, k;t) =0.~

~

d

Introducing the notation z=(&), Hamilton's equations
(10) with H defined in (9) become

H(x, k;t) =
2 a(t)x +2b(t)xk+ c(t)k2
+f(t)x+ g(t)k,

with 2: and k being the canonical coordinate and momen-
tum.

Using Hamilton's canonical equations in classical me-
chanics

M=
~

~, o. , P&0, 0&A=detM&l,

~

aq
&~m ~m ) (19)

(18)

and T denotes the transpose of a matrix. Formula (17)
represents a zero-temperature (pure) squeezed coherent
state when A=1; otherwise, it corresponds to a ther-
mal squeezed coherent state. The ground state, thermal
state, coherent state, and squeezed state are all special
cases of (17). There is no physical state corresponding to
E ) 1 due to the constraint of the uncertainty relation.

The physical meaning of the vector zo is zo ——

where the expectation values are with respect to the state
represented by (17). The matrix M is related to the
covariance matrix Z in the following way:

(12) where

and the solution can be denoted by

z(t) = R(t)z(0) + g(t), R(0) = I and ('(0) = 0,
(13)

where R(t)z(0) is the solution of the corresponding ho-
mogeneous equation

+qq = (q ) (4)

= (p') —(i)',

a's +so'
2

(2o)

(21)

(22)

(14)

and ('(t) is a special solution of (12). The geometric
meaning of g(t) is the trajectory traced by the point
which is initially at the origin in phase space. The solu-
tion (13) is essentially a time-dependent inhomogeneous
linear transformation and hereafter we will call it "phase
How. "

From (13), the general solution of (ll) can be obtained
as

W(x, k; t) = W(z; t) = W(R-'(t) [z —g(t)]; t = 0),
(»)

or equivalently,

W(z(t); t) = W(z(0); 0).

Therefore, we can express the matrix M in terms of the
elements in Z as

2det(Z)
~qi

~qq )
(23)

Since (17) is a Gaussian distribution in the canoni-
cal variables z, we can use a contour for W(z; 0)=const
in phase space as the geometric representation of this

Hence time evolution of the Wigner function follows the
phase flow (13) exactly. ko

/2app

III. SQUEEZED COHERENT STATES
IN PHASE SPACE

In the phase-space picture, quantum states are repre-
sented by the Wigner functions [10—13]. For the most
general one-mode squeezed coherent state [14—16], the
Wigner function at a Axed time, say i=0, is xo- f)

$2aq„
r X

xo xo+(j

W(z;0) = exp —(z —zo) M(z —zo)j,
vr

where
FIG. 1. Wigner ellipse of a squeezed coherent state in

phase space.
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Wigner function. Conventionally, we choose the constant
to be ~A/(ere) such that the corresponding contour is

Corresponding to (27), time evolution of the covariance
matrix is

(z —zp) M(z —zp) = 1. (24) Z(t) = R(t)Z[R(t)]~,

We will call this contour the "Wigner ellipse. " It is in
general an ellipse centered at zo with its shape deter-
mined by the matrix M. Equations (24) and (17) are
equivalent since a Gaussian distribution is completely de-
termined by its first and second moments.

The projection of the Wigner ellipse onto the x
axis represents q uncertainty with respect to the state
represented by the ellipse. The length of this pro-
jection is 2+P/4=2+2crqq, while the projection onto
the k axis represents p uncertainty and is of length
2/n/D=2+2crp„(Fig. 1).

with

det Z(t) = det Z = 1
(32)

c(t)o (t) =-'& (t) —b(t)& (t)

c(t)o.„„(t)= a(t)o (t) + o „(t),
where the Heisenberg equation

(33)

(34)

The following two relations among oqq(t), oz&(t), and
oq„(t) .are easy to prove using the Heisenberg picture:

IV. TIME EVOLUTION OF SC}UEEZED
COHERENT STATES

Q
i i i

g i( g
E-» (35)

For the Hamiltonian (5), according to (15) time evolu-
tion of the Wigner function (17) is

zp(t) = B(t)zp + g(t), (26)

W (z; t) = exp( —[z —zp (t) ] M (t) [z —zp (t)]),T

(25)

where

has been used. Actually, since we already know that
time evolution of M(t), hence Z(t), is independent of the
linear terms in the Hamiltonian (5), we may only use the
homogeneous part of (5) to derive the above relations.

According to (33) and (34), both oz&(t) and 'oq&(t) can
be expressed in terms of oqq(t) an'd its derivatives; there-
fore, Z(t) is determined solely by crqq(t) [17]. Prom the
constraint (32), oqq(t) must 'satisfy the nonlinear difFer-
ential equation

&(*o(t) ko(t))
0 (zp, kp)

(28)

and

M(t) = [a(t)]- M[a(t)]-', [~(t)]-' —= ([a(t)]-')'.
(27)

Equation (26), which is the time evolution of the canon-
ical conjugate variables xo and ko, is essentially a canon-
ical transformation, hence

2

2o'qqoqq o' + 2¹rqqoqq+ 4K'o'

where

CN= ——
C

d (bbK =ac —b —b —bN =ac —b —c—
~

— ~.
dt icj

Since crqq(t) ) 0, we may make a change of variable

(36)

and

det M(t) = det M = A.

„(t)= —,'[8(t)]', 8(t) & 0,

(29) then (36) will be transformed into a simpler form

(38)

From (25), time evolution of the corresponding Wigner
ellipse is

C2
6t+ N6t+ K8 = (39)

[z —zp(t)] M(t) [z —zp(t)] = 1. (30)

Equation (29) guarantees that (30) remains an ellipse
with constant area vr/~A at all times. According to (26)
and (27), both the center and each point on the bound-
ary of the ellipse (30) follow the phase flow. Notice that
M(t) is independent of the center, hence the evolution
of the center and the shape can be studied separately.
Moreover, since M(t) only depends on R(t), which con-
stitutes the solution of the homogeneous equation (14),
time evolution of the shape is determined entirely by (14)
and is independent of the linear terms in the Hamiltonian
(5)

I9

Z(t) = Z(8(t)) =-
8I (8)

where

8L(8)

+ [L(8)]'-
(40)

L(8) =

Correspondingly, the matrix M(t) becomes

(41)

The geometric meaning of 8(t) is that [xp(t) + 8(t)] are
the coordinates of two end points of the x projection of
the Wigner ellipse (Fig. 1).

In terms of 8(t), Z(t) can be rewritten as
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',. + [L(8)]'
M(t) = M(8(t)) = 4

8L—(8)

8—L(8)

(42)

Comparing the (1, 1) elements in (40) and (31), we see
that the solution 8(t) of the nonlinear differential equa-
tion (39) can be obtained from R(t), which constitutes
the solutions of (12) and (14). This is an example of
the well-known nonlinear superposition law. There are
two independent solutions of (39) corresponding to three
parameters in Z with one constraint det 2=4&.

(
0 . 0 . 0& d+ x + A: „ I I~(x, A:;t) = I—iv(x, A;;t) = 0,

(43)

and vice versa. The equation of motion for the Wigner
function (ll) is a special case of the above equation.

For the Wigner function (25) that corresponds to a
general squeezed coherent state, the equation of motion
(11) is mathematically equivalent to

—([z —z (t)] M(t) [z —zo(t)]) = 0.
d T

Comparing the above equation with (43), we find that
V. ERMAKOV-LEWIS INVARIANT FROM

A SQUEEZED COHERENT STATE [z —zp(t)] M(t) [z —zp(t)] (45)

Comparing the von Neumann —Landau equation (7)
with the definition of a quantum invariant (4), it is ob-
vious that the density operator p is a special kind of
quantum invariant. Since the Wigner function is equiv-
alent to the density operator [18], it can be taken as a
"c-number quantum invariant. "

Because the Hamiltonian (5) is inhomogeneously
quadratic, for a quantum invariant I which satisfies (4),
by analogy to (ll) the c-number quantum invariant Iiv
corresponding to this I must satisfy

@ —zp (t) M(t) —zp (t)
('q

p
(46)

Dividing this operator by 2L, we get the Ermakov-Lewis
invariant with restricted parameters for the generalized
harmonic oscillator (5):

is also a c-number quantum invariant, where zp(t) and
M(t) are defined by (26) and (42), respectively. Accord-
ing to the Weyl correspondence rule, the operator corre-
sponding to (45) is

I
-

I

—zo(t) M(t) I
-

I
-zo(t)1 (gl &ql

2A p) (p)

+ (8(I —ko(t)) —L(8) (&
—xo(t)1)'

1 ~ [~ — (t)1'

(47)

(48)

Since the classical correspondent (the Weyl symbol) of
the Ermakov-Lewis invariant (48) is proportional to the
exponent of the Wigner function of a squeezed coherent
state, the geometric realization of this invariant in phase
space is nothing but the Wigner ellipse (30).

Now we can release the constraints (18) on the ma-
trix M and extend n, P, and p as well as zp to arbitrary
complex numbers. After this extension, I in (48) is an in-

variant if and only if zp(t) and 8(t) are arbitrary solutions
of (12) and (39), respectively. Hence (48) becomes the
Ermakov-Lewis invariant for the generalized harmonic
oscillator (5). From now onall of th, e related formulas
mill be with respect to this extension. Of course, there is
no correspondence of this extension in phase space.

For a fixed 6, (48) has two degrees of freedom which
correspond to the two independent solutions of (39).
Therefore there are exactly two independent Ermakov-
Lewis invariants of the form (48).

Although the Ermakov-Lewis invariant is often ex-
pressed in the form of (48), the physical interpretation
for it being an invariant is easier to understand via (47).
Using the Heisenberg picture, the Ermakov-Lewis invari-

ant I at a fixed time t can be denoted as

( I
=R(t) '- I+&(t)j(t) ) j(0) ) (50)

Substitute the above expression and the definitions of
zp(t) in (26) and M(t) in (27) into (49), and we find that
I(t) is identical to

I(0) = (0) &
M j(0)

2~ p(0) I

—" p(0)

It is now clear that I is an invariant because the time
evolution of the operators and that of the c-numbers in I

I(t) =
I I

—zp(t) M(t) I

„—zp(t)
~gt) l fgt)

2A qpt ) qpt
(49)

Since the Heisenberg equation (35) is linear and isomor-
phic to (12), the time evolution of j(t) and p(t) is analo-
gous to (13):
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always cancel each other. Hence I is an invariant in the
sense that its expectation value with respect to a given
state is a constant and equal to that of I(0) at all times.

For homogeneous Hamiltonians, i.e. , (5) with
f(t)=g(t)=0, since the initial conditions of the Wigner
ellipse are arbitrary, we can set zo=0 so that zo(t)=0
for all t. This will guarantee that the Ermakov-Lewis
invariant is a homogeneous quadratic form [5]:

and

G= Fexp~ 2l
(i (58)

From the theory of ordinary differential equations, we

know that the general solutions of the inhomogeneous
equation (56) can be constructed directly from the solu-

tions of the corresponding homogeneous equation

1 Pz, + eI I(e—)i (52) 0+Qv = o. (59)

Therefore we can always have a homogeneous quadratic
Ermakov-I ewis invariant so long as the Hamiltonian is
homogeneous. The original Ermakov-Lewis invariant (2)
can be obtained from (52) by taking a(t)=[a(t)], b(t)=0,
c(t)=1, and setting 4 equal to A

The above discussion is not true when the Hamiltonian
is inhomogeneous, where the Ermakov-Lewis invariant
(48) must be a linear combination of the quadratic, the
linear, and the zero-degree terms.

VI. CALCULATION OF THE ERMAKOV-LEWIS
INVARIANT

x+¹x+Kx= F, (53)

(54)

where F = bg —cf+g+ gN, and N and K are defined as
in (37). This decoupling reduces the system of equations
(12) into a single equation (53). Notice that (53) and (39)
differ only by the term on the right-hand side. This is not
a coincidence but has a geometric meaning that manifests
itself when 8(t)))1 for a highly squeezed Wigner ellipse.

Equation (53) can be put into a simpler form by using
the transformation

y = 2:exp 1 N(~)«),

The Ermakov-Lewis invariant derived in the last sec-
tion is determined by the solutions of both Hamilton's
equation (12) and the nonlinear difFerential equation
(39). However, according to the nonlinear superposition
law discussed in Sec. IV, the general solutions of (39)
can be obtained from R(t), which constitutes the solu-
tion of (12). Therefore the Ermakov-Lewis invariant is
determined solely by (12).

In order to solve (12), we first decouple this system of
equations into

VII. DEGENERATE CASE:
LINEAR INVARIANTS

In Sec. V we derived the Ermakov-Lewis invariant (48)
for a generalized harmonic oscillator (5), which is in gen-

eral inhomogeneously quadratic in j and p. We shall
show in this section that (48) will also give all possible
linear invariants in the limit 4 —h oo.

According to (42), the matrix M/K is a well-defined fi-

nite matrix when 4 ~ oo. In this limit, (48) degenerates
into

I = ,'(4 (p t.(—t))—L—(4) [g —*o(t)])'

where ze(t) = ( s'i, ii) is stiil an arbitrary solution of (12),
while P is an arbitrary solution of the following equation:

P+NP+ KP = 0, (61)

which is the corresponding homogeneous equation of (39)
and (53). Therefore we can apply the technique of solving

(53) discussed in the last section to solve (61).
Taking the "square root" of the degenerate Ermakov-

Lewis invariant (60), we get the linear quantum invariant

(4(p —I.(t)) —1(4) [g - ~.(t)l) .1

~2

Since there are two independent solutions for (61), J in

(62) has two degrees of freedom and hence corresponds
to two independent linear invariants [9, 19].

Analogously to the nonlinear superposition law dis-

cussed in Sec. IV, the two independent solutions of (39)
can be obtained from those of (61). This means that
in principle the quadratic Ermakov-Lewis invariant I in

(48) can be constructed from the linear invariant J in

(62).

Therefore in order to calculate the Ermakov-Lewis invari-

ant for the Hamiltonian (5), the only equation we really
have to solve is the homogeneous differential equation
(59). Although the exact solutions are rare, the numer-

ical solution of this equation is easy to obtain for any

Q=Q(t)

the new differential equation taking the form

0+Qu=&,
with

Q = K —
—,'N ——,'N', (57)

VIII. DISCUSSION

In this paper, we introduce a method for deriving the
Ermakov-Lewis invariant for a time-dependent general-
ized harmonic oscillator via the Wigner function of a
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squeezed coherent state. The derivation and calculation
are simpli6ed and the geometric meaning appears auto-
matically.

In [7], the authors discussed several methods to de-
rive the Ermakov-Lewis invariant for an inhomoge-
neous Hamiltonian which is our (5) with c(t)=1 and
b(t) =g(t) =0. Their conclusion is that there must be one
more auxiliary equation in order to include the linear
term in the Hamiltonian. It is obvious from our deriva-
tion that the "extra" auxiliary equation is nothing but
the classical equation of motion (53) and there is no es-
sential difFerence between the homogeneous case and in-
homogeneous case.

The geometric as well as physical meanings of the
Ermakov-Lewis invariant have been discussed in the lit-
erature by invoking an auxiliary plane [2] or a complex
plane [8], etc. In the phase-space picture, we associate
the Ermakov-Lewis invariant with the Wigner ellipse de-
Bned in phase space without introducing another kind of
plane.

Since j and p are on the same footing in the phase-
space picture, we ean also use

„„(t)= —,'[q(t)]', q(t) & 0, (63)

to rederive all the above results.
Because the (inhomogeneous) quadratic invariants in

terms of creation and annihilation operators [19—23] are
essentially equivalent to the Ermakov-Lewis invariant,
these invariants also can be constructed and studied by
the approach introduced in this paper.
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