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Quantum projection noise: Population fluctuations in two l-evel systems
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Measurements of internal energy states of atomic ions confined in traps can be used to illustrate
fundamental properties of quantum systems, because long relaxation times and observation times
are available. In the experiments described here, a single ion or a few identical ions were prepared in
well-defined superpositions of two internal energy eigenstates. The populations of the energy levels
were then measured. For an individual ion, the outcome of the measurement is uncertain, unless the
amplitude for one of the two eigenstates is zero, and is completely uncertain when the magnitudes
of the two amplitudes are equal. In one experiment, a single Hg+ ion, confined in a linear rf
trap, was prepared in various superpositions of two hyperfine states. In another experiment, groups
of Be+ ions, ranging in size from about 5 to about 400 ions, were confined in a Penning trap and
prepared in various superposition states. The measured population fluctuations were greater when
the state amplitudes were equal than when one of the amplitudes was nearly zero, in agreement
with the predictions of quantum mechanics. These fluctuations, which we call quantum projection
noise, are the fundamental source of noise for population measurements with a fixed number of
atoms. These fluctuations are of practical importance, since they contribute to the errors of atomic
frequency standards.

PACS number(s): 03.65.Bz, 32.80.Pj, 32.30.Bv

I. INTRODUCTION

Quantum mechanics is not a deterministic theory, even
though the time development of the quantum-state vec-
tor is governed by the Schrodinger equation, which is de-
terministic. That is, quantum mechanics does not, in
general, predict the result of an experiment. Rather,
it provides a prescription for predicting the probability
of observing a given result. The relationship of the
quantum-state vector to the physical system that it de-
scribes is central to the interpretation of quantum me-
chanics. There are at least two distinct interpretations
of the quantum state [1].

According to the Copenhagen interpretation, the state
vector provides a complete description of an individual
system (a single atom, for example). This is not the only
definition of the Copenhagen interpretation, but it is the
one that we adopt here. According to this interpretation,
the state vector of a system develops in time according
to the Schrodinger equation until a measurement causes
it to be projected into an eigenstate of the dynamical
variable that is being measured. The assumption that
the state vector "collapses" in this manner is considered
unattractive by some, because of its ad hoc nature.

According to another interpretation, sometimes called
the statistical-ensemble interpretation, the state vector is
merely a mathematical construct which describes an en-
semble of similarly prepared systems [2—4]. One common
misconception is that this interpretation is not capable of
describing an experiment on a single atom. In this case,
the state vector describes a conceptual ensemble (a Gibbs
ensemble) of similarly prepared atoms. The single atom
in the experiment is a member of that ensemble. Experi-
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mentally, an ensemble is generated by repeatedly prepar-
ing the state of the atom and then making a measure-
ment. The state vector, in this interpretation, is analo-
gous to a statistical distribution function of the kind that
appears in classical statistical mechanics. The difference
is that, in quantum mechanics, there is no underlying
microscopic theory which can predict the behavior of a
single system, even in principle. The statistical-ensemble
interpretation has the virtue of avoiding the necessity of
"reducing" or "collapsing" the state vector.

In spite of occasional claims to the contrary [5], it ap-
pears that the Copenhagen and statistical-ensemble in-
terpretations do not differ in their predictions of exper-
iments when properly applied [6]. In practice, either in-
terpretation may motivate a particular calculation. For
example, some problems in quantum optics have been
solved by simulating the behavior of the wave function
of a single atom, explicitly including the reduction of
the wave function at random times [7—10]. Such meth-
ods follow naturally from the Copenhagen interpretation
(which is not to say that the practitioners of these meth-
ods would necessarily advocate the Copenhagen inter-
pretation as opposed to the statistical-ensemble interpre-
tation). On the other hand, the conventional method
of solving the density-matrix equations follows naturally
from the statistical-ensemble interpretation. The re-
sults of averaging many wave-function simulations are
the same as those of solving the density-matrix equa-
tions. The experiments described here can be interpreted
within either framework.

Perhaps the simplest example of the indeterminism of
quantum mechanics is the behavior of a two-level sys-
tem prepared in a superposition ~g) = c~~A) + c~~B) of
the two states ~A) and ~B) and subjected to a measure-
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ment. The measurement yields one indication or "pointer
reading" for a system in IA) and another for a system
in IB). Except when either c~ or c~ is zero, the out-
come of the measurement cannot be predicted with cer-
tainty. Provided that the state vector is properly nor-
malized (IcAI' + Ical' = I) le~I' =—pA, and Ical' = pii
are the probabilities of finding the system in IA) or IB).
The indeterminacy is present no matter how accurately
the state has been prepared. It is an inherent feature of
quantum mechanics. We will call this source of measure-
ment fluctuations "quantum projection noise, " since it
can be interpreted as arising from the random projection
of the state vector into one of the states compatible with
the measurement process.

In some experiments we have a sample of X identical
systems that are effectively independent. If we carry out
the same kind of state preparation and measurement as
that just described for a single system, then we should
get the same result as by repeating the experiment N
times. That is, the sum over all N atoms of the measured
quantity should have the same mean and fluctuations as
the sum of N independent measurements on one system.

The internal states of a set of N ions in an ion trap con-
stitute a system of this type. The ions are well separated
from each other by their mutual Coulomb repulsion, so,
to a very good approximation, the state of one ion has
no effect on that of another ion. If all of the ions are
subjected to the same optical and radiofrequency fields,
they can all be described by the same state vector for
their internal degrees of freedom. In an ion trap, unlike
an atomic beam, for example, we can repeatedly prepare
and observe the same set of N atoms.

To illustrate the main ideas, we will erst describe a
simplified version of the experiment. The actual experi-
ments, carried out with single Hg+ ions in a linear rf
trap and with numbers of Be+ ions ranging from about
5 to 400 in a Penning trap, will be explained in detail in
later sections.

Consider a single atom, or several identical atoms, with
three energy levels IA), IB), and IC) (see Fig. 1). The

I A&

I IG. 1. A simplified energy-level diagram of an atom of
the type used in the experiments. The atom or atoms are
prepared in a superposition of IA) and IB) by a combination
of laser optical pumping and rf excitation. The state is mea-
sured by applying laser radiation resonant with the

I
B) ~ IC)

transition. If the atom is in IA), it does not absorb any pho-
tons from the laser beam and remains in IA). If the atom
is in IB), the laser radiation drives it to IC). The atom then
decays back to IB) and emits a photon. It can then be excited
to IC) again.

lower two levels IA) and IB) are stable. They are sepa-
rated by a radiofrequency photon energy. Level IC) de-
cays, by emission of an optical photon, to IB) only. The
state vector is prepared in a superposition of IA) and
IB) by first preparing it in IA) and then applying an rf
pulse near the IA) —+ IB) transition frequency. Any de-
sired superposition of IA) and IB) can be obtained by
controlling the frequency, amplitude, and duration of the
rf pulse. The number of atoms in IB) is then measured.
The measurement is made by applying a laser beam that
is resonant with the transition from IB) to IC) and de-
tecting the photons emitted in the decay from IC) to IB) .
If an atom is found in IB) when the laser pulse is applied,
it is excited to IC). It quickly decays to IB) and emits a
photon. It can then be excited back to IC) by the laser
and emits another photon. Thus, an atom in IB) emits a
series of many photons, while an atom in IA) emits none.
The rate at which photons are emitted by the entire sam-
ple of atoms is proportional to the number of atoms in
IB) when the laser beam is applied. If there is only one
atom in the sample volume, the detection is particularly
simple: If some photons are emitted, the atom was in
IB); otherwise it was in IA). Quantum-amplification de-
tection of this type, sometimes called electron shelving,
was first proposed by Dehmelt [11] and, to the best of
our knowledge, was first used by Wineland et al. [12I.

In the preceding discussion, we assumed that each
atom either emits a burst of photons or does not. Accord-
ing to the Copenhagen interpretation, the wave function
of each atom is a superposition of IA) and IB) before
the measurement and collapses to one state or the other
when the detection laser beam is applied. According to
the statistical-ensemble interpretation, the atom is found
to be in IA) or IB) when the measurement is made, with
probabilities p~ and p~, respectively. There is no point
in asking which state the atom was in just before the
measurement, since this is not a question that can be
answered by the experiment.

Quantum projection noise in the measured populations
of states prepared in superpositions may be of some prac-
tical interest. This point was discussed previously, in the
context of atomic frequency standards, by Wineland et
at. in Appendix A of Ref. [13). In some atomic frequency
standards, such as cesium atomic beams, a signal which
is proportional to the population of a particular quantum
state is measured as a function of the frequency of an ap-
plied rf field. The signal is a maximum (or a minimum,
depending on the detection method used) when the fre-
quency matches the transition frequency uo between two
atomic states and decreases when the frequency increases
or decreases from this value (see Fig. 2). The frequency
w of an oscillator is matched to the resonance frequency
ao by measuring the signal at two frequencies w —Aw
and u + Lu and making a correction to u by an amount
proportional to the difference between the two signals.
In the example shown in Fig. 2, the signal at u + Lw is
less than the signal at w —Lu, which indicates that u
must be decreased in order to match uo. If the noise is
independent of the position on the resonance line shape,
measurements at the points of maximum slope would give
the greatest sensitivity for determining ao. However, the
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FIG. 2. A graph of the mean detected signal as a function
of the frequency of the applied field for a resonance like that
used in an atomic clock. The signal is proportional to the
population of a particular energy level after the field has been
applied. The maximum signal occurs at frequency ao. If the
line shape is symmetric, ~0 can be determined by measuring
the signal at two different frequencies cu —A~ and u+ D~ and
varying cu until the signal intensities are equal. The frequency
~ determined in this way is an estimate of uo.

noise will in general vary with the signal level, due to
quantum projection noise and also to other causes. As-
sume we have the extreme case where the only noise is
quantum projection noise, where the maximum and the
minima of the line shape correspond to pure energy eigen-
states lA) and lB), and where the half-intensity points

correspond to equal superpositions of lA) and lB). In
that case, it is not so obvious what the optimum value
of L~ should be. The noise goes to zero at the maxima
and minima of the line shape, where the sensitivity to
frequency deviations also goes to zero. The noise is the
greatest at the half-intensity points, which, for a typi-
cal line shape, is where the frequency sensitivity is ap-
proximately the greatest. It will be shown later that the
precision with which the line center can be determined
is independent of Ace, if the line shape has a cosinu-
soidal form, often a good approximation when Ramsey's
separated-oscillatory-field resonance method [14] is used.

Il. THEORY

A. Single atom

(AlVlA) = (BlVlB) = 0,

(AlVlB) = (B]VlA)* = hbe'"'

The state at a later time t ) 0 is [14]

(2.1)
(2.2)

Suppose a single system, such as a single atom, is pre-
pared in a well-deGned superposition of two stable or
metastable states lA) and lB), which have energies ~~
and he~. This could be done by preparing the atom in

lA), by optical pumping, for example, and then applying
a nearly resonant rf Geld of well-controlled frequency, am-
plitude, and duration. Suppose that the system is in lA)
at time t = 0. We then apply an oscillatory perturbation
U which has matrix elements:

IV(t)) = c~(t) IA) + c~(t)IB)
. (~p —~) . (nt Ot

n sin
l

—+ cos — exp —(a —w~ —w~)t lA)

2b . (0th. i
i —sin

l

—
l
exp ———(w —w~ —(u~) t

l
B),0 I, 2) 2

(2.3)

(2.4)

where

(dp = (d~ —4)~,

0 —= Q(cup —~)s + (2b) 2.
(2 5)

(2.6)

(2.7)

In deriving Eq. (2.4), we assumed that U does not in-
duce transitions to states other than lA) and lB) and that
spontaneous decay can be neglected. Also, all other per-
turbations, such as those due to collisions, are assumed
to be negligible. For the levels studied experimentally
in this work, which are hyper6ne Zeeman sublevels of
ground electronic states of atoms, spontaneous decay can
be neglected. Such states decay primarily by magnetic
dipole radiation. The rate for magnetic dipole decay from
a higher sublevel le) to a lower level lg) is

p~ = sin
l

—
l

= sin (bt). (2.8)

Any value of p~ from 0 to 1 can be obtained by adjusting
the value of the product bt. Alternatively, it may be more
convenient to vary a, keeping 6 and t Gxed at values so

where Ku, ~ is the energy difference between le) and lg)
and p is the magnetic dipole operator. For typical val-
ues of the parameters for transitions between hyperGne-
Zeeman sublevels, the mean lifetime for spontaneous de-
cay is many years. For example, if w, z

——2' x 30 0Hz and
l(el@, lg) l

= p~, where p~ is the Bohr magneton, then the
decay rate given by Eq. (2.7) is 2.7 x 10 i~ s i; that is,
the lifetime is 1200 years.

In order to prepare a state with a given value of p~ =
lc~(t) l~, we can adjust b, u, and the time t during which
V is applied. For example, if w = ap, then
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that bt = ir. (This is what is done in order to observe
the resonance line shape, for example. ) This induces a
complete inversion (pB = 1) at exact resonance (w
wp). Any value of pB down to 0 can be obtained by
varying w between wp and ap —2T~3/t or between wp

and u)p + 2v v 3/t
Ramsey's method of separated oscillatory fields [14]

is another way of creating a given value of p~. In
this method, the perturbation is applied in two phase-
coherent pulses of duration w with a delay T between
them. If the strength of the perturbation b is adjusted
so that br = ~/2, then pB = ICB(T+ 2r)l can be made
to take any value between 0 and 1 by varying w. If, in
addition, r (( T and I~ —cuplr (( 1, the probability pB
to be in IB) at time T + 2r is

(APB):—((PB —&PB)) )
= (PB —2(PB&PB+ (PB& )
= (PB& —(PB)' = (PB& —(PB&'
= (PB&(1 —(PB)) = p»(1 I B).

(2.13)

(2.14)
(2.15)

In Eq. (2.14), we have used the fact that

eigenstates of r3 with eigenvalues m = —
2 and m = +&

correspond to IA& and IB), respectively.
The variance of the measurement of the state (IA) or

IB&) of a single atom is particularly simple to calculate.
We define a projection operator PB = IB&&BI. The ex-
pectation value of PB is ICBI—:pB, the probability of a
measurement finding the atom in IB). The variance of
the measurement is

pB = ~i (1 + cos[(cu —~p) T]j. (2.9)
PB = (IB&&BI)(IB&(BI)= IB&&BI = PB (2.16)

An expression valid for arbitrary values of the parameters
has been given by Ramsey [14].

It is useful to de6ne a vector operator r on the subspace
spanned by IA) and IB). The components of r are defined
as

ri —= —,'(IA)(BI+ IB&(AI),

rz =——,'(IA&(BI —IB& &Al)

—= -'(IB&(BI —IA& &AI)

(2.10)

The operator r is equivalent to a spin- ~ angular mo-
mentum operator, since it operates on a two-dimensional
complex vector space and since the commutators satisfy
the same algebra:

[r, , r, ] = i,e,,kryo„ (2.11)

(rl) =
2 (c~cB + cBc~) =

2 sli18 cos Q,

(r2) =
& (c~cB —cBcz) =

2 sin 8 sing,

&rs) = 2(lcBI' —le~I') = —,
' cos 8,

(2.12)

where we have used the notation (ri) = &glrilg&, etc.
The expectation values can be represented geometrically
by a three-dimensional vector (r ) of length z. The spher-
ical polar angles (8, P) define the orientation of (r). As
pointed out by Feynman, Vernon, and Hellwarth [15],
this representation is sometimes useful because of the
way in which the evolution of the quantum state can be
visualized as a rotation of a vector. The quantities (2&ri &,

2(r2), 2(r3)) are equivalent to the quantities (ri, r2, r3)
defined by Feynman, Vernon, and Hellwarth. The reason
for using the definition of r given by Eq. (2.10), rather
than one diKering by a factor of 2, is that r then corre-
sponds precisely to a spin-& angular momentum opera-
tor. The vector representation can be generalized to deal
with mixed states (statistical ensembles of pure states),
but that will not be necessary here. The third component
of r is proportional to the internal energy operator. The

where e,~g is the Levi-Civita symbol. For a general pure
state of the form of Eq. (2.3), the expectation values of
these operators are

Equation (2.15) shows that the uncertainty is zero when
p~ is 0 or 1 and has its maximum value when p~ = 2.

B. X atoms

(2.17)

where pB = lcBI is the probability for a single atom to
be in IB& and (1 —pB) = p~ = Ic~l is the probability
to be in IA&. The variance of the binomial distribution is

[»]
= NPB(1 —PB). (2.18)

The variance is zero when p~ = 0 or p~ ——1 and has
its maximum value of N/4 when pB = 2. For N = 1,
Eq. (2.18& agrees with Eq. (2.15). Figure 3 shows plots of
probability distributions calculated from Eq. (2.17), for
N = 20 and p~ = 0, 0.1, . . . , 1.

In general, it would be better to use a formalism that
treats the N atoms as a combined quantum system. This
should give a correct description both when cooperative

If cooperative eKects can be neglected over the time
of the experiments, we may consider the atoms to be
independent. For the systems used in the experiments,
the decay rate of an individual atom is extremely small.
It is possible for a suitably prepared collection of N atoms
to exhibit a maximum spontaneous-decay rate per atom
of about N times the usual rate given by Eq. (2.7), due
to cooperative eKects [16]. Even if the rate is enhanced
by a factor of N, though, it can still be ignored for the
small values of N that were used in these experiments.

One natural way to calculate the fluctuations of the
measured populations is to consider the N atoms to be
independent and to combine the probabilities according
to the binomial distribution [17]. I et N~ and NB be the
numbers of atoms found to be in IA) and IB&, respectively
(N~ + NB = N) Then, acc. ording to this model, the
probability of measuring a given value of N~ is

¹i
P(NB~ w PB& =

(/ i( (PB) (1 PB&
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set of labels. The eigenvalue M is related to the variables
previously defined by

M = 2(Ng —Ng),
Ng = 2N+ M.

(2.21)

(2.22)

Thus, fluctuations in M correspond directly to fluctua-
tions in N~, although M and N~ differ by a constant.

The state in which all of the atoms are in IA) has
R = 2N and M = ~N —and is nondegenerate. This
state is denoted by

I
R = ,'N, M—=--,'N) —= Im, = --,') —=

J

effects are important and when they are negligible. Each
two-level atom can be described by a spin-2 operator r, ,

defined as in Eq. (2.10), where i = 1, . . . , N labels the
atom. The eigenstates of r, , with eigenvalues m, = —

2
or + z correspond, respectively, to the IA) and IB) states
of the ith atom, which we denote by IA, ) and IB,). One
basis for the 2N-dimensional Hilbert space of N atoms is
provided by the direct-product states of the form

m~) =— Im'). (2.19)

A collective-angular-momentum operator for the
atoms can be defined by

FIG. 3. A plot of the probability distributions of N&, the
number of atoms in

I B), for ps = 0, 0.1, . . . , 1. The total num-
ber of atoms N is 20. As p~ increases from 0, the distribution
broadens and reaches its maximum variance at p~ = 0,5, As

pz increases beyond 0,5 the distribution narrows, eventually
becoming a spike at N~ = 20 for p~ = 1.

~ ~ 4 I

1=1
(c~ IA') + c~ IB.)) (2.24)

We can visualize this as a rotation of the collective state
vector from the negative Rs axis (8 = x) to new values of
8 and P given in terms of c& and c& by Eq. (2.12). Equiv-
alently, it can be described as a rotation of the coordinate
system by vr —6I about the original R2 axis, followed by a
rotation of —P about the new Rs axis. The properties of
states of this kind were discussed by Arecchi et al. [18],
who called them atomic coherent states. They also called
them Bloch states, because they resemble the spin states
studied in nuclear magnetic resonance. The new state
given by Eq. (2.24) is a linear combination of the states
IR = 2N, M), for M = —2N, —2N + 1, . . . , 2N, since it
is generated from Eq. (2.23) by a rotation. This state is

(2.23)

UVe assume the atoms are far enough apart that they
do not overlap spatially, so that symmetrization or an-
tisymmetrization of the total wave function is unneces-
sary. Suppose that we apply the same perturbation to
all of the atoms, so that the state of the ith atom goes
to c~IA, ) + c~IB,) for each i That .is, the new state is

N

R, =) r, . (2.20)

M=N/2

IR= ~N, 8, $) = ) D~ / l/ (O, vr —8, —P)
M =—N/2

It is implicitly assumed that each term in the summation
is multiplied by the identity operators for all of the other
atoms. Another basis for N atoms is given by states of
the form Ig, R, M), which are linear combinations of the
product states defined by Eq. (2.19) [16]. Here, R(R+1)
is the eigenvalue of B. , M is the eigenvalue of R3, and g
is an index that may be required to provide a complete

I

xIR = ,'N, M), —(2.25)

where DM N/2 is a matrix element of the rotation oper-(N/2)

ator as defined in Eq. (4.1.10) of Ref. [19]. If the system
is prepared in the state given by Eq. (2.25), the prob-
ability of measuring a given value of M is the absolute
square of the coeKcient of IR = 2N, M), which is

PB)„t,(M, N, 8):IDM ~/2(0~ ~ 8~ Q) I

dM —~/2(~ 8)(N/2)

M N/2( )
(N/2)

N! 8y N+2M 8y N 2M-
(-,'N + M)!(-,'N —M)! 2)

(2.26)

(2.27)

(2.28)

(2.29)
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NB!(N-
N!

NB!(N-
N!

NB!(N—

( 8i Ng ( 8 (N Ng—)

,
Icos —

I !sin2)
[-(1 + cos 8)] [

—(1 —cos 8)]!

( )Nii (1 )(N Ng)—

(2.3o)

(2.31)

(2.32)

(ARs) = (Rs) —(Rs) . (2.33)

For a state with the form of Eq. (2.24), in which the CA, 's
and cB, 's are the same for all i, (Rs) and (Rs) can be
easily be evaluated:

N
(Rs) = —(pB —pA), (2.34)

and

( N

) r,, (

1=1
N N=).).(r..r.)

i=1 j=1
N

=) (r,'.)+).(r..r,.)

(2.35)

(2.36)

(2.37)

N(N —1)=
4

+
4

(PB-PA)'. (2.38)

The final result is the same as Eq. (2.17), which was
obtained by another method. Arecchi et at. obtained
an equivalent result from the algebraic properties of the
angular momentum operators, without explicitly making
use of the rotation-operator matrix elements [18]. The
quantity dM N&2

in Eq. (2.27) is defined in Eq. (4.1.12)
of Ref. [19]. Equation (2.28) follows from Eq. (2.27)
by making use of Eqs. (4.2.4)—(4.2.6) of Ref. [19]. The
explicit form for dM N&2(8) given in Eq. (2.29) is from(N/2)

Eq. (4.1.27) of Ref. [19]. Equation (2.30) results from
using Eq. (2.22) to express M in terms of NB and N,
and Eq. (2.31) follows by making use of trigonometric
identities. The final expression [Eq. (2.32)] results from
using Eq. (2.12) to express cos 8 in terms of pB = IcBI .

The variance of the measured value of M can be cal-
culated by the standard formula

(,(A I+,(B I)( *,(A I+,( I)

x (cA& IAl) + cB& IBl))(cA& IA2) + cB& IB2))

N(N —1) 2
N2

(+Rs) = + (pB pA) (pB pA)

N
[1 (pB pA) ]

= —(I-[p -(1-p )] )
N 2

= NpB(1 —pB). (2.41)

This result agrees with Eq. (2.18), which was based on the
properties of the binomial distribution. Equation (2.41)
was derived for the special case of an uncorrelated N-
atom system in which all of the atoms have the same
state vector. For more general states, in which the state
vectors of different atoms are correlated with each other,
it may be possible for the variance to be either larger or
smaller than this value [20—23].

The error of an atomic frequency standard depends on
the ratio of the noise in the signal to the frequency deriva-
tive of the signal. Aside from an additive constant, the
signal of an idealized frequency standard with N atoms
is proportional to (Rs). The quantum projection noise
is proportional to g(ARs)2. If the Ramsey method is
used, so that pB is given by Eq. (2.9), the ratio of the
quantum projection noise to the frequency derivative is
independent of the frequency u at which the measure-
ment is made:

) 4 2 2 )
= 4(PB —PA)' (2.4o)

Substituting the values of (Rs) and (Rs) from Eqs.
(2.34) and (2.38) into Eq. (2.33), we obtain

In obtaining Eq. (2.38), we used the fact that the first
sum in Eq. (2.37) contains N terms, all equal to

(cA, (Al
I
+ cB, (Bl I)r,, (CA, IAl) + CB, (Bl))

(4 4 4'

Q(&Rs) = -'v N sin[(~ —~p)T],
B(Rs)

f94)
= 2NT sin[(w —~p)T],

g(ARs)2 1

&(R.) T~~
84)

(2.42)

(2.43)

(2.44)

and the second sum contains N(N —1) terms, all equal
to

The error is proportional to 1/v N, which is sometimes
called the shot-noise limit. If noise from other sources
is significant, the ratio is not constant, and it is best to
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measure the signal near the points of maximum slope. If
the Ramsey method is not used, the exact trade-off of
Eq. (2.44) does not hold, but the situation is not greatly
different.

A simple graphical representation of a Bloch state
can be used to provide an estimate of (ARs) which
agrees qualitatively with the result of Eq. (2.41). We
can represent the Bloch state ~R = 2N, M = —2N)—:
~R = &N, 8 = m) by the set of all vectors of length

gR(R+ 1) having their third (Rs) component equal to
—R. This set forms a cone whose base has a radius
equal to vR, as shown in Fig. 4(a). The fact that
(ARs)2 = 0 for this state is represented by the fact that
all of the points on the circle surrounding the base of the
cone have the same third component. The Bloch state
~R = 2N, 8 = 2vr, g = 0) is represented by Fig. 4(b).
The points on the base of the cone have third compo-
nents which vary over a range of +v R, while the rms
deviation is approximately QRj2. Thus, we obtain the
estimate (ARs) = R/2. For a Bloch state with an ar-
bitrary value of 0, we can use the same method to make
the estimate

(AR3) = —sin 8 = Np~(l —p~).
2

(2.45)

This agrees with the actual value, which is given by
Eq. (2.41). The Bloch state ~R = 2N, 8 = 0) is rep-
resented by Fig. 4(c). For this state, (ARs) = 0.

III. SINGLE-ATOM EXPERIMENT

Quantum-state preparation and detection experiments
were carried out with Hg+ ions confined in a linear rf
trap. Detailed observations were made of single ions,
although some experiments were also carried out with
several simultaneously trapped ions.

A. Hg+ energy levels

Figure 5 shows the energy levels of Hg+ which were
important for the experiments. The ground electronic
state has the configuration 5d 6s Sip~. The first electric
dipole transition, at 194 nm, is to the 5di 6p Piy2 state.
The metastable 5ds6s 2Ds~q and 5ds6s2 Ds~2 states (not
shown in Fig. 5) lie below the P~gz state. The Hg nu-

cleus has spin 2, so both the Si~2 and the Pi~2 states are
split by hyperfine interactions into states with total angu-
lar momentum F = 0 and F = 1. For both the Si~~ and

Pi~2 states, the F = 1 hyperfine state is higher in energy
than the F = 0 hyperfine state. The Sig2 hyperfine split-

6p P,

las

FIG. 4. Graphical representations of Bloch states (a)
~R = N, M = —'N)-—: ~R =— N, 8 = vr), (b)—
~R = 2N 8 = 2, P = 0), and (c) ~R = 2N 8 = 0). The
uncertainty in the number of atoms in ~B) (or ~A)) is rep-
resented by the spread in the third (Rs) component for the
points on the circle surrounding the base of the cone. The
uncertainty goes to zero for (a) and (c) and has its largest
value for (b).

F=O

FIG. 5. Energy levels of Hg+. The transition between
the Sq~2 and Pqy2 states is at 194 nm. The hyperfine split-
tings in the Sqg2 and Pqy2 states are 40.5 and 6.9 GHz, re-
spectively. The Sqy2 (F = 1) state is detected by exciting
the Szyq (F = 1) ~ Pqy2 (F = 0) transition with laser 1.
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ting has been measured by microwave resonance methods
to be 40.507 347 996 9(3) GHz [24]. The Piyz hyperfine
splitting has been measured by Fabry-Perot interferom-
etry to be 6.955(90) GHz [25). The natural linewidth of
the Piyz state is about 70 MHz [26,27].

B. Apparatus

The Hg+ ions were confined in a linear rf trap that
consisted of four parallel cylindrical electrodes of radius
0.794 mm arranged symmetrically around a central axis
[28]. The distance from the central axis to the inner sur-
face of each electrode was 0.769 mm. The rf potentials
on any two adjacent electrodes were 180' out of phase.
The amplitude of the rf potential difference between two
adjacent electrodes was about 500 V, and its frequency
was 12.7 MHz. The electric fields produced by these elec-
trodes created a force which pushed the ions to the cen-
tral axis. The electrodes were divided into sections, to
which static electric potentials of 1 V or less were applied
to keep the ions from escaping along the axis.

Ions were produced by electron-impact ionization of
neutral atoms inside the trap volume. A sample of Hg
of isotopic purity 91' was used. Typically, the pressure
was about 10 7 Pa (1 Pa = 7.5 m Torr), except when the
ions were being created, when it was raised to a higher
level. The ions were confined to a region of a few hun-
dred micrometers extent around the center of the trap.
After being laser cooled, an individual ion was localized
in position to about 1 pm or less.

Narrow-band cw radiation at 194 nm was required for
laser cooling and optical detection of the 99Hg+ ions.
This was generated by a combination of second-harmonic
generation and sum-frequency mixing, starting with cw
lasers [29]. About 5 pW of 194-nm radiation were avail-
able. In order to laser cool and continuously observe the
ions, 194-nm radiation near both the Siyz(F = 1) ~
Pi~2(F = 0) and the Siy2(F = 0) ~ Pi)2(F = 1)

transition wavelengths was required [28]. We call these
two sources laser 1 and laser 2. Otherwise, with only
laser 1 or laser 2 on, the ions were optically pumped to
a hyperfine state which could not absorb the 194-nm ra-
diation. Also, in order to prevent trapping of the ions in
Zeeman sublevels of the Si~z(F = 1) state, we had to
apply a magnetic field of approximately 5 x 10 4 T at an
angle of approximately 45' with respect to the electric
field vector of the radiation from laser 1 (see Appendix).
The magnitude and orientation of the magnetic field were
controlled by several pairs of Helmholtz coils. The 194-
nm beams were directed through the trap at an angle of
9' with respect to the trap axis, so that both the axial
and radial degrees of freedom were laser cooled. For this
geometry, the theoretical Doppler cooling limit was 1.1
mK for the axial motion and 24 mK for the radial motion
[3o].

Some of the 194-nm radiation emitted by the ions
perpendicular to the trap axis was focused by a multi-
element lens onto a two-dimensional imaging photon-
counting tube. The probability of a photon emitted by an
ion being detected was about 10 4. Individual ions could

be resolved with this apparatus. Some images showing
several clearly resolved ions have been published previ-
ously [28]. The electronics could be adjusted so that the
photons from any rectangular region of the image, for ex-
ample, a region including only one ion, could be counted
separately. To a good approximation, the ions in the trap
do not interact and are independent.

A stable source of 40.5-GHz radiation was required for
exciting the Siyz(F = 0) ~ (F = 1) hyperfine transi-
tion. The output of a 10.125-GHz frequency synthesizer
was amplified and then frequency multiplied by four. The
output of the frequency multiplier was directed at the
ions with a horn antenna.

The data from the photon-counting tube were recorded
by a computer. The computer also controlled the light
shutters, a microwave switch, the frequency of the mi-
crowave frequency synthesizer, and the magnitude and
orientation of the magnetic field.

C. State preparation and detection

Optical pumping can be used to prepare the ions in
either the (F = 1) or the (F = 0) hyperfine level of
the Sqy2 ground state. In order to prepare them in the
(F = 1) state, both laser 1 and laser 2 are left on. If
an ion in the ground (F = 1) state is excited to the
Piy2(F = 0) state, it is forbidden by electric dipole se-

lection rules from decaying to the ground (F = 0) state,
so it must return to the (F = 1) state. There is a weak
transition rate from the ground (F = 1) state to the
ground (F = 0) state, via the Pi~2(F = 1) state. This
rate is approximately 3 x 10 5 times the rate of leaving
the ground (F = 1) state and returning to the same state,
via the Pig's (F = 0) state, since laser 1 is far from reso-
nance with the Siyz(F = 1) + Pi~z(F = 1) transition.
If an ion does make a transition to the ground (F = 0)
state, laser 2 quickly drives it back to the Pi~2(F = 1)
state, which decays, with probability s, to the ground
(F = 1) state. If laser 1 and laser 2 are both blocked at
the same time, the ion will be in the ground (F = 1) state
with high probability, after a few multiples of the Pqy2
state lifetime (2.3 ns). This method does not select out
a particular MF Zeeman sublevel of the ground (F = 1)
state. If desired, a single MF state could be selected by
switching the polarization of laser 1 (to right or left cir-
cular polarization with propagation along the magnetic
field for MF = +1 or linear polarization perpendicular to
the magnetic field for M~ = 0). However, this was not
done in this work.

An ion can be prepared in the Sr~2(F = 0) hyperfine
level by blocking laser 2 while leaving laser 1 unblocked.
For a typical intensity of laser 1, the ion is pumped to the
ground (F = 0) state in about 10 ms. In contrast to the
previous method, the ion is prepared in a single M~ state.
Laser 1 can also pump an ion from the ground (F = 0)
state to the ground (F = 1) state. However, the rate for
(F = 0) —+ (F = 1) is less than that for (F = 1) ~ (F =
0), mainly because laser 1 is farther from resonance for
this process. In the steady state, the probability of being
in the (F = 0) state is about 94Pg (see Appendix). A
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possible way to improve the state selection, for a single
ion, is to observe the 194-nm photons emitted and to
block laser 1 when the fluorescence drops to zero.

There is a probability of about 10 " that an ion in
the P~g2 state will decay to the D3g2 metastable state
rather than to the Siy2 state [27]. The Dsy2 state has
a lifetime of 9.2 ms and decays, with about equal proba-
bility, to the Sj/2 state or to the metastable D5y2 state,
which has a lifetime of 86 ms [27,31]. This process is a
potential problem for the state-selection methods, since
the metastable states decay randomly to both ground hy-
perfine states. The effect was kept small by reducing the
intensity of laser 1 so that the transition rate to the D3/2
state was less than about 1 s

After the ion was prepared in the ground (F = 0)
state, any desired superposition with the ground (F =
1, Mz = 0) state could be created by applying rf fields
of well-controlled frequency, amplitude, and duration.
These two states were used, because the magnetic shift of
the transition frequency is quadratic, rather than linear,
in the field. Thus, the transition frequency was stable
enough to create the superposition states consistently.

State detection was carried out by counting the 194-
nm photons emitted by the ions for a period, typically
15 ms, with laser 1 unblocked and laser 2 blocked. The
mean number of photons detected was proportional to
the number of ions in the (F = 1) state. However, the
number is subject to statistical fIuctuations, since the
detection is essentially a Poissonian process. Also, laser
intensity fluctuations lead to fluctuations in the overall
counting rate.

Quantitative studies were made with only a single ion.
In this case, the ion was presumed to be in the (F = 1)
state if the number of photons detected was greater than
a given threshold value and in the (F = 0) state if it was
not. This threshold was set empirically, and was usually
either 0 or 1, There was some possibility of error with
this detection method. Dark counts from the phototube
or photons scattered from some surface and then detected
could lead to a false (F = 1) signal. Also, since the
mean number of photons detected from an (F = 1) ion
was small (about 5 in 15 ms), it was possible that not
enough of them would be observed, thus leading to a
false (F = 0) signal. If the detection efficiency could be
improved, both of these problems could be reduced by
using a higher threshold number of photons to distinguish
between (F = 1) and (F = 0).

D. Results

The ability to prepare an ion in either the (F = 0)
or (F = 1) ground hyperfine state is shown in Fig. 6.
Each vertical line denotes the detection of a single pho-
ton at a particular time. The detection electronics were
adjusted so that photons from only a single ion were de-
tected. Before recording the data shown in Fig. 6(a), the
ion was prepared in the ground (F = 1) state by leaving
both laser 1 and laser 2 unblocked for about 0.1 s and
then blocking them both. After a short delay, laser 1
was unblocked, and for 0.1 s, the photons were counted.

0.00 0.02 0.04 0.06 0.08 0.10

Time (s)

0.00 0.02 0.04 0.06 0.08 0.10

Time (s)

FIG. 6. Typical record of the detected photons from a sin-
gle ' Hg+ ion prepared in the ground (a) (F = 1) state and
(h) (F = 0) state. The horizontal axis represents the time
after laser 1, the detection laser, is unblocked. Each vertical
line represents the detection of a single photon. In (a), eight
photons were detected (two photons were too close in time to
resolve on the graph). In (b), no photons were detected.

Their detection times were recorded with a resolution of
100 ps. In the example shown in Fig. 6(a), eight photons
were recorded, but two of them were too nearly simul-
taneous to be resolved on the graph. Before recording
the data shown in Fig. 6(b), the ion was prepared in the
ground (F = 0) state by leaving laser 1 unblocked and
laser 2 blocked for 0.05 s. Laser 1 was then blocked. After
a short delay, laser 1 was unblocked again, and the com-
puter was set to record photons, as for Fig. 6(a). None
was recorded, so, with high probability, the ion was in
the (F = 0) state.

Figure 7 shows the results of 100 successive single-ion
state preparation and detection cycles of the type shown
in Fig. 6. Preparation of the (F = 1) state [Fig. 7(a)] was
alternated with that of the (F = 0) state [Fig. ?(b)], so
that slow drifts in parameters such as the laser intensity
would afI'ect both plots in the same way. Each point rep-
resents the mean photon-count rate during a given 0.5-ms
period after laser 1 was unblocked. The data from the
erst 1.5 ms, which was the time required for the light
shutter to open fully, are not shown. The solid curve in
Fig. 7(a) is a least-squares fit of the data to a decreasing
exponential plus a constant base line. The fitted time
constant of the exponential is 8.66 +0.41 ms. The fitted
amplitude of the exponential is 769 + 22 counts/s. The
fitted base line is 47.3 + 4.3 counts/s. The solid line
in Fig. 7(b) corresponds to 47.3 counts/s, the base line
determined from Fig. 7(a). This value does not differ sig-
nificantly from the mean of all of the points in Fig. 7(b),
which is 50.05 counts/s. The background count rate due
to all sources other than photons emitted by the ion was
measured by detuning laser 1 far from resonance. This
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FIG. 7. Plot of the mean photon count rate as a function
of the time after unblocking laser 1 for (a) a single ion pre-
pared in the (F = 1) state and (b) the same ion prepared
in the (F = 0) state. These plots were generated from 100
measurements like those in Fig. 6. The solid curve in (a) is a
least-squares fit of the data to a decreasing exponential plus
a baseline. The solid line in (b) is the base line determined
from (a). The origin of the time axis is 1.5 ms after the laser
1 shutter is activated. After 1.5 ms this shutter is fully open.

rate was 4 6 2 counts/s, so the actual base line for light
scattered from the ion was 43 + 5 counts/s. The ratio of
the base line to the sum of the base line and the ampli-
tude of the exponential is 0.053 + 0.006. This represents
the steady-state probability that an ion is in the ground
(F = 1) state when laser 1 alone is applied. This com-
pares well with a calculated value of approximately 0.06
(see Appendix).

The Rabi resonance line shape shown in Fig. 8 was
measured by repeatedly preparing the (F = 0) state,
applying a microwave pulse at a given frequency, and
determining whether the ion was in (F = 0) or (F = 1).
At each frequency, 19 measurements were made, and the
results were averaged [(F = 0) corresponding to 0 and
(F = 1) to 1]. For this run, the sequence of operations
for each measurement was as follows.

(1) Both laser 1 and laser 2 were left on for 200 ms to
laser cool the ion. The magnetic Geld was set to about
5 x 10 4 T to avoid optical pumping.

(2) The fluorescence from the ion was measured for
5 ms. This step was repeated if the number of photons
counted was 50 or less. This was done to avoid proceeding
while the ion was trapped in one of the metastable D
states.

(3) Laser 2 was blocked to allow the ion to be pumped
to the ground (F = 0) state. The fluorescence was rnea-
sured for 10 ms. If any photons were detected during this

FIG. 8. Microwave resonance of a single ion. Each dot
represents the average of 19 measurements. The curve is a
calculated Rabi line shape. The calculation does not take
into account the imperfect state preparation.

period, another 10-ms measurement was made. This was
to ensure that the ion was in the ground (F = 0) state
before proceeding.

(4) Laser 1 was blocked, and the magnetic field was
decreased to approximately 5 x 10 5 T in order to reduce
the effect of magnetic field fluctuations on the resonance
frequency. A 30-ms rf pulse near the 40.5-GHz resonance
was applied. The magnetic Geld was then increased to
its previous value.

(5) Laser 1 was unblocked, and the fluorescence was
measured for 15 ms. If 0 or 1 photons were detected, the
ion was assumed to be in (F = 0). If more photons were
detected, it was assumed to be in (F = 1).

The dashed line is a theoretical Rabi line shape for
optimum power and a 30-ms rf pulse duration, calculated
from Eq. (2.4). The deviation between the data and the
calculation is most obvious at the minima of the line
shape. The deviations result from the combined effects of
imperfect (F = 0) state preparation and imperfect state
detection. The combination of these eKects results in a
signal that goes from about 0.1 to 0.95 instead of from 0
to 1. The frequency instability of the microwave source is
known, from separate measurements, to be small enough
as to have a negligible effect on the line shape [28].

We can also compute the variance of the signal at
various positions on the resonance curve. At the point
corresponding to the maximum signal, it is 0.053. At
the two points corresponding approximately to the half-
maximum points, it is 0.26. At the two points corre-
sponding to the minimum signal on both sides of the
resonance, it is 0.051.

We have published a microwave resonance curve in
which the total fluorescence from several ions was mea-
sured [28]. Such a signal is more sensitive to noise from
the intensity fluctuations of the 194-nm sources, back-
ground scattered light, and other sources. In order to re-
duce this noise, it should be possible to count the photons
from each ion separately, in order to clearly discriminate
between ions in the ground (F = 0) and (F = 1) states,
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FIG. 9. Photon count distributions for a
single Hg+ ion prepared in (a) the (E=O,
My=0) state, (b) the (K=1, M~=0) state,
and (c) an equal superposition of these two
states. The bars represent the number of
cases in which a given number of fluores-
cence photons was detected when the detec-
tion laser was applied. The number of mea-

15 surements was 38 for (a), 19 for (b), and 38
for (c).

as was done here with a single ion.
Figure 9 shows the distributions of the numbers of pho-

tons detected at various points on the resonance curve of
Fig. 8. Figure 9(a) shows the distribution at the points
corresponding to the minima on both sides of the reso-
nance. In most cases, no photons were observed. How-
ever, in a few cases one or more photons were observed,
presumably due to a combination of background scat-
tered light and imperfect state preparation. Figure 9(b)
shows the distribution at the maximum of the resonance.
There is a broad distribution of numbers of photons de-
tected, with a mean of about 5.5. In one measurement,
no photons were measured. This may have been due
to imperfect state preparation or to the possibility that
no photons were detected, even though some were emit-
ted. Figure 9(c) shows the distribution at the two half-
maximum points on the resonance. The distribution is a
superposition of those at the maximum and the minima.
This bimodal distribution is the signature of the quan-
tum projection noise for the single-atom case. That is,
for a superposition state with equal amplitudes of the two
components, the measurement finds the ion randomly in
one state or the other.

bers 1—8, as shown in Fig. 10, which correspond, in order
of decreasing energy, to

I

—2, +2&, I

—2, +2&, I+ 2, +z&,
I+-' +-'& I+-' —

g& I+~ —
s& I

—-' —-'& andI —-' —-'&

The 313-nm transition to the 2p P3g~ electronic state was
used for state selection and detection.

B. Apparatus

The experimental apparatus and techniques have been
described previously [32—35]. The Penning trap was
made of cylindrical electrodes, to which static electric
potentials were applied. It was inserted into the bore of
a superconducting solenoid magnet, which generated a
uniform magnetic field Bo of approximately 0.82 T. The
combination of the electrostatic potentials and uniform
magnetic field trapped the ions in three dimensions. The
pressure in the trap was approximately 10 Pa. The
ions were created by electron-impact ionization of neu-
tral atoms.

The state preparation experiments required that the
313-nm light be blocked for some periods in order to avoid

IV. N-ATOM EXPERIMENT

N-atom quantum-state preparation and detection ex-
periments were carried out with Be+ ions in a Penning
trap. The Penning trap was used, rather than the rf
trap, because the number of atoms that could be stably
trapped could be varied from a few to several thousand.
However, loading and detecting single ions was diKcult
with this apparatus.

1

3 Il

Ii

A. 9Be+ energy levels

Figure 10 shows the energy levels of Be+ which were
important for the experiments. The ground electronic
state has the configuration 2s Sj g2. The Be nucleus
has spin 2, so the ground state has eight hyperfine Zee-
man sublevels. In a high magnetic field, as is present in
the Penning trap, the energy eigenstates are approximate
eigenstates of I, and J„the z components of the nuclear
and electronic angular momenta. The static magnetic-
field direction defines the z axis. These eigenstates will
be referred to by their main components in the IMI, Mg&
basis. For brevity, they will also be referred to by num-

FIG. 10. Level diagram for Be+, The ground-state Zee-
man hyperfine states are labeled by numbers 1—8. Their quan-
tum numbers are given in the text. Laser radiation at 313 nm
optically pumps most of the ions into state 4. These atoms are
then transferred to state 3 and then to state 2 by rf vr pulses.
Other rf pulses then create a superposition of states 1 and 2.
Atoms which remain in state 2 are transferred back to state
4. The laser radiation is applied again, and the number of
atoms in state 4 is determined from the fluorescence intensity
in the first second after the laser radiation is reapplied.
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perturbations of the energy levels. In order to keep the
sBe+ ion plasma from heating and increasing its spatial
extent when the 313-nm light was not available for laser
cooling, approximately 1000 Mg+ ions were trapped
and laser cooled at the same time. This cooled the Be+
ions by long-range Coulomb collisions [36]. The 280-nm
3s Sr~2 ~ 3p Psych transition was used for laser cooling
the 6Mg+ ions.

The 313-nm and 280-nm beams required for state selec-
tion and detection of the sBe+ ions and for laser cooling
the Mg+ were generated by frequency doubling the out-
puts of cw dye lasers in nonlinear crystals. Fluorescence
from the ions was focused by a multielement lens onto the
photocathode of an imaging photon-counting tube. The
overall detection eKciency was approximately 2 x 10
To generate the rf magnetic fields required for the state
preparation and detection, the amplified output of a fre-
quency synthesizer was coupled into a wire loop antenna.
The light shutters, rf switches, and frequency synthesizer
were controlled by a computer, which also recorded the
photon counts.

C. Ion-number measurement

In the Hg+ experiments, the number of ions could
be determined directly from the image. This could not be
done for the Be+ ions in the Penning trap, since they
rotate rapidly around the z axis. Therefore, the num-
ber was determined indirectly. Calculations based on a
charged fluid model relate the density of the ion plasma
to its shape, for given external fields [36—38]. The shapes
and sizes of the nonneutral, ion plasmas were determined
by moving the laser beam and observing the imaged fluo-
rescence. The product of the density and volume yielded
the number of ions with an uncertainty estimated to be
about 30Fo.

5. This optical pumping has been discussed previously
[12,39] and studied experimentally [40]. There are fluctu-
ations about these average values, since any given ion is
continually making transitions between states. The ions
could have been completely optically pumped into state
4 by circularly polarized light propagating along the z
axis, but this was not convenient experimentally.

The 313-nm beam was blocked to stop the optical
pumping and to prevent perturbations to the Be+ en-

ergy levels. Next, the ions in state 4 were transferred to
state 3 and then to state 2 by 0.2 s resonant rf pulses.
These were vr pulses; that is, the products of the rf mag-
netic fields and the pulse durations were adjusted so that
bt = 7r in Eq. (2.8). The frequencies were 320 712 280
Hz for the (4 ~ 3) transition and 311 493 688 Hz for the
(3 —+ 2) transition. The Ramsey method was then used
to create various superpositions of states 1 and 2. The
two Ramsey rf pulses were 0.5 s long and were separated
by 5 s; the frequency was 303 016 377.265 Hz.

Then a measurement was made of the number of ions
in state 2. First, the ions in state 2 were transferred to
state 3 and then to state 4 by applying the x pulses in the
opposite order. Then the 313-nm beam was unblocked,
and the fluorescence photons were counted for 1 s.

The ions which were left in state 5 at the time that the
313-nm beam was blocked (about i7 of the total num-

ber) contributed to the fluorescence signal. This is so,
because the time constant for exchanging population be-
tween states 4 and 5 by spontaneous Raman transitions
was about 0.1 s, which was much less than the 1-s obser-
vation time. The time constant for ions in state 1 to be
optically pumped to states 4 and 5 was approximately
10 s. Therefore, the number of ions pumped from state
1 back to states 4 and 5 could be neglected.

E. Results

D. State preparation and detection

In the Be+ experiments, coherent superpositions of
two internal states (states 1 and 2) were created and then
subjected to measurements. These states were chosen be-
cause, for a value of Bo near 0.8194 T, the first derivative
of the transition frequency with respect to Bo goes to
zero. The resulting insensitivity to magnetic-field fluctu-
ations makes it easier to generate coherent superposition
states reproducibly.

The state preparation began by subjecting the ions to
313-nm radiation, polarized perpendicular to the mag-
netic field, for approximately 15 s. The frequency of the
313-nm radiation was slightly below the 2s Sry2 (Mr =
+g MJ —+2) ~ 2p Ps~2 (Mg = +&, Mr = +2) transi-
tion frequency. This is a cycling transition, since electric
dipole selection rules require that the ion return to the
ground-state sublevel that it started from. Spontaneous
Raman transitions induced by the 313-nm radiation es-
tablished a steady state in which approximately

&&
of the

ions were in state 4 and the remaining zz were in state

S = B + K(N4+ N, ), (4.1)

where B is the background signal, N4 and N5 are the
numbers of ions in states 4 and 5, and K is a constant
which must be calibrated for a given set of conditions.
At the line center, the signal is B + (KN/17), where N
is the total number of 9Be+ ions, while at the points of
maximum fluorescence, it is B+K¹ For the N = 5, 21,
72, and 385 data shown in Figs. 11(a)—ll(d), K = 87.3,

Ion plasmas containing numbers of Be+ ions ranging
from a few to a few hundred were studied. Figures 11(a)—
11(d) show the results from plasmas containing approx-
imately 5, 21, 72, and 385 ions. The rf power for the
(2 —+ 1) Ramsey resonance was adjusted so as to give a
minimum fluorescence signal at the line center. Measure-
ments were made at rf frequencies corresponding to the
transition maximum (minimum fluorescence), the first
upper and lower transition minima (maximum fluores-
cence), and the points halfway between the transition
maximum and the upper and lower transition minima.
The measured signal is the number of photons detected
in the first second after the laser is unblocked. This is
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FEG. 11. Plots of the fluorescence detected
from Be+ ions confined in a Penning trap as
a function of the frequency of the applied rf
radiation for {a) 5 ions, {b) 21 ions, {c) 72
ions, and (d) 385 ions. The dots are the ex-
perimental mean signals, and the error bars
show the experimental standard deviations.
On the sides of the resonances, the standard
deviations are mainly due to quantum projec-
tion noise. The dashed lines show the calcu-
lated line shapes, fitted to the experimental
minimum and maxima.

p(Hz) —303 016 377.265 V(Hz) —303 016 377.265

n
s—= —) s, ,

1=1
(4.2)

where S', Sz, . . . , S„is the sequence of n measurements
made under the same conditions. The error bars corre-
spond to +o, where o. was calculated from

) (S~+~ —S')'.
2(n —1)

(4.3)

Equation (4.3) was used, rather than the usual formula,

n
o2= ) (S, —S)2,

%=1

(4.4)

for the standard deviation, because it is less sensitive to
slow drifts of the signal, such as those caused by varia-
tions in the laser intensity or other experimental param-
eters [41].

Table I summarizes the data shown graphically in
Figs. 11(a)—11(d). For each value of N, the data from
the point of minimum fluoreseence is labeled "dip, " the
data from the two points of maximum fluorescence are
combined and labeled "peaks, " and the data from the
two points halfway between the minimum and the max-
ima are combined and labeled "sides."

Four contributions to o. are listed in Table I: o.
proj

73.9, 58.0, and 48.6 counts/ion, respectively. The fact
that K && 1 for all of these cases means that quantum
projection noise should be more important than photon
shot noise, except when the vanishing of one of the state
amplitudes causes the quantum projection noise to go to
zero. This is a good example of electron-shelving detec-
tion. In Figs. 11(a)—11(d), the dots are the experimental
mean signals:

op p o h t and o.t„h. They are assumed to be inde-

pendent, so they are added in quadrature to yield o., l, .

2 = 2 2 2 2
~calc = ~proj + Opump + O shot + ~tech' (4.5)

The quantum projection noise o.
p oj is approximately

zero at the peaks and at the dip and is z~(~~~&N)~7'K on
the sides [see Eq. (2.41)]. The factor of 17 appears in
this expression because, on the average, 17 of the ions
are left in state 5 by the optical pumping that precedes
the rf pulses. The fluctuations in the number of ions
left in state 5 are the source of op p This has the
greatest effect at the dip, where the only contribution to
the fluorescence is from the ions in state 5. At the dip,

(4.6)

This is derived from the expression for the variance of
a binomial distribution [see Eq. (2.18)]. At the peaks,o'„'is approximately zero, because all of the ions are
either in state 4 or state 5 and contribute to the signal. At
the sides, o.

pu p is half as large as at the dip. The shot
noise o," & is equal to (S) and results from Poisson
statistics in the photon detection.

All other contributions to o., such as those due to in-
tensity fluctuations of the laser, are called technical noise
o.t„h. Laser-intensity fluctuations will lead to a contri-
bution to ~t„hproportional to S. Fluctuations in the
shape and temperature of the ion plasma may make a
large contribution to o.t„h,approximately proportional
to S. Such fluctuation have been observed in other laser-
cooled ion plasmas in Penning traps [42,43], but are not
well understood. Small fluctuations in the frequency of
the microwave source, or in the resonance frequency of
the ions, would cause an increase in o.t„hon the sides of
the line shape but not at the dips or peaks. However,
from auxiliary measurements, including the observation
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TABLE I. Mean signals 8 and variances o for N = 5, 21, 72, and 385 Be+ ions. The terms
"dip, " "peaks, " and "sides" refer to the points of minimum fluorescence, the points of maximum
fluorescence, and the points halfway between the minima and the maxima, respectively. The number
of measurements is n. The measured variance is o.,„pt. The calculated variance cr, &, is equal to
o,

&
+ cr~„~+ a,~ ~ + o't„h The value of cr,„~~at the peaks was used to empirically determine

o„,h. Hence o„&,is not listed at the peaks, since it is necessarily equal to o,„~,. However, the
agreement between o. „ptand cr, &, at the sides and at the dip is a test of the theory. The units for
the variances are 10 counts .

N Position 2
o'expt

2
+prOj

2
+pump

2
OShOt

2
tech

2
O'ca. lc

dip
sides
peaks

19
38
38

(counts)
89

275
500

1.0
6.6
2.8

~ Q

9.0
Q

(10 counts )
2.1 0, 1
0.5 0.3
—0 0.5

0.1
0.7
2.3

2.3
10.5

21
21
21

dip
sides
peaks

30
60
60

232
810

1 693

5.5
37.8

7.6

~ Q

27.0
~ Q

6,3
1.6
~ Q

0.2
0.8
1.7

0.1
1.3
5.9

6.6
30.7

72
72
72

dip
sides
peaks

30
60
60

498
2 432
4 429

11.5
61.0
25.2

Q

57.0
=0

13,4
3.4

Q

0.5
2.4
4.4

0.3
6.3

20.8

14.2
69.1

385
385
385

dip
sides
peaks

30
60
60

6 642
16 108
24 253

69
600
367

=0
214
~ Q

50
13

Q

7
16
24

26
151
343

83
394

of lineshapes as narrow as 900 pHz [34j, we determined
that this potential source of noise was negligible. Since
known contributions to o.t„hare roughly proportional to
S, o.t„hwas determined empirically from o.,„pt at the
peaks, where the only other contribution to o. is o.,h &,

which is small. For N = 5, 21, 72, and 385, ot,„h/S at
the peaks was 9.6'%%uo, 4.5%%uo, 3.2'%%uo, and 2.4%, respectively.
The values of ot„hat the sides and the dips were esti-
mated by assuming that, for a given set of experimental
conditions, o.

t,„hwas proportional to S.
The entries on Table I show that difFerent types of noise

dominate at each of the three positions on the line: cr,
„

on the sides, o.
p~mp at the dip, and o.t„hat the peaks.

Shot noise is not a large contribution for any of the cases
shown in Table I. Considering the uncertainties in the
experimental parameters, particularly in N, the agree-
ment between o.

expt and o., &, is quite good. Figure 12
shows that the noise on the sides of the lines is mainly
attributable to quantum projection noise. The quantity
plotted is o/AS and is defined as

I I I I I lli I I I I I 1 III I

CI 0.1—
~X

yO

temperature. However, it should not continue to decrease
indefinitely with N, since the contribution from laser in-
tensity fluctuations, for example, should approach a con-
stant value for large ¹ Hence o./AS should approach
a constant value for large N rather than continuing to
decrease as 1/v ¹ For N = 10 000, cr&, &/S is approxi-
mately l%%uo on the sides, while we might, from the present
results, expect o.

t,„h/S to be about 2%%uo. This is consis-
tent with previous experimental results from a frequency

o o,„p,(sides)

S(peaks) —S(dip)
(4.7)

0.01 & ilail i

ilail

I I I I I Ill

The dashed line is the theoretical prediction for quantum
projection noise alone:

10 100 1000

o p, , ~17 0.515

8@N yN
(4 8)

The deviation of the experiment from theory for large
N is presumably due to technical noise. As noted pre-
viously, o'q«h/8 decreases as N increases, apparently be-
cause the ion plasma becomes more stable in shape and

FIG. 12. Plot of the normalized standard deviations as a
function of N, the number of Be+ ious. The quantity o/AS
is the ratio of the experimental standard deviation on the
sides of the resonance to the diR'erence in the signal between
the peaks and the dip. The dashed line is the theoretical
prediction for the contribution from quantum projection noise
alone.
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standard based on 5000—10 000 sBe+ ions [34]. However,
there is no fundamental reason that the technical noise
cannot be greatly reduced.

V. CONCLUSION

We have prepared one or many ions in well-defined su-
perpositions of two states and then measured the popula-
tion of one of these states. The population measurements
display quantum fluctuations which are greatest when
the amplitudes of the two states are equal. In the case
of a single ion, where photon scattering is used to distin-
guish between the two states, the fluctuations take the
form of random switching between two distinguishable
conditions —the observation of zero photons (or back-
ground) or of some photons. There is good agreement
between the observations and theoretical predictions for
both one and many ions.

Population fluctuations of the type observed here
(quantum projection noise) are present and could be ob-
served in other kinds of experiments, for example, those
using atomic or neutron beams. Quantum projection
noise might be observed in neutron interferometry [44].
In this case, the two neutron beams which emerge from
the interferometer correspond to the two energy states
lA) and lB). Introducing a phase shift in one arm of
the interferometer allows one to create coherent super-
position states. Rauch et al. [44] show counting-rate his-
tograms for phase shifts corresponding to the maximum
and rninimurn counting rates in one beam. However, they
do not show the histograms for a phase shift halfway be-
tween a maximum and a minimum, which might show an
increased variance due to quantum projection noise.

In the preceding discussions, the single-atom and N-
atom experiments were treated from different perspec-
tives. This was because of the different experimental
methods which were used for the Hg+ and Be+. How-

ever, if the N atoms are uncorrelated, there is not a fun-
damental difference between the two cases. We could
simulate the results of an N-atom measurement by mak-
ing N successive measurements on a single atom and
summing the results.

In many experiments, quantum projection noise would
be obscured by other forms of noise, such as fluctuations
in the beam intensity or the statistics of the detection
process. In the experiments described here, trapping
nearly eliminates fluctuations in the number of atoms,
and the electron-shelving detection method nearly elim-
inates statistical fluctuations in the detection, thereby
making quantum projection noise the dominant source
of noise. In spectroscopic measurements on fixed num-
bers of atoms, where transitions are detected by monitor-
ing changes in population, this is the fundamental noise
limit.
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APPENDIX: OPTICAL PUMPING IN Hg+

For low enough laser intensities, optical pumping
among the Zeeman hyperfine sublevels of the ground
state of Hg+ can be described by population rate equa-
tions, The following set of equations applies to the pop-
ulations of the Zeeman hyperfine sublevels of the 6s Siy2
and 6p Piy2 states, when a linearly polarized optical field
of the form E(r, t) = eEp cos(k r —

wA, t), nearly resonant
with the Sq~3(F = 1) ~ P&~2(F = 0) transition, is

applied:

l R.P. +-(P.+P. +P.),~/2
k&s+ &~) 3

dPp

dt

dP = —
2 sin 8RoL(6)Pz —2(l+ cos 8) I l

Ro+1+ (P4+ Ps+ Ps)
fp/2& y

dt 2 2 &&~) 3

dP2 2 &~/2
'

dt
= —cos ORpL(A)Pq —sin 8

l
RpP2+ —(P4+ Ps + P7),

3

dP3 (p/2 & '7

dt
= —-»n ~RoL(&)P3 (1+cos 8) l l

RQP3+ —(P4+ Ps+P7),2 &&~) 3

dt
=

2 sin 8RoL(b, )(P, + P3) + cos 8RpL(A)P2 —pP4,

~Ps 1. 2 p/2 RoPo+cos ~
I I

RoR+ 2»n ~
l

RpP2 —pPs,
&V/2l', , fp/2

&s+Z ~P 4+&) P

RoPo+ —»n'~
I & Ro(R+ P3) —pPs,

dt (As+ &s PV/2, . , p/2RoPo+ 2 sin & RpP2+ cos 8
l

RpP3 —pP7.~/» '
(&s+ &y Ag)

(A1)

( 2)

(A3)

(A4)

(A5)

(A7)

(A8)
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Figure 13 shows the correspondence between the nu-
rnerical state labels used in Eqs. (Al) —(A8) and the quan-
tum numbers. The labels 0—3 correspond to the 68 Sqy2
(F = 0, Mi; = 0), (F = 1, MF = —1), (F = 1, MF = 0),
and (F' = 1, Mp = 1) states, respectively. The labels
4—7 correspond to the 6p Pzyq(F = 0, MF = 0), (F =
1,Mp = —1), (F = 1, M~ = 0), and (F = 1, M~ = 1)
states, respectively. The quantity p is the natural decay
rate of the Pii2 state, 54~ and M~ are the S&y2 and

P~/2 hyperfine energy splittings, and 8 is the angle be-
tween the z axis, defined by the magnetic field, and e.
The quantity Rp, which has dimensions of inverse time,
is

l&p(6p'Phiz II
D'"

ll 6&'Siiz) I

Bp =
6p A,2

(A9)

where (6p Pi~z II
D

II 6s Siiz) is a reduced matrix
element of the electric-dipole-moment operator, defined
according to the conventions of Edmonds [19]. The quan-
tity I (4) is a Lorentzian resonance line shape, defined
by

(~/2)'
(A10)

dt 2
= —

2 (sin 8)Rp L(A) Pj + s pP4,

dt
= —(cos 8)RpL(A)Pz+ spP4,

dP3 = —z(sin 8)RpL(A)Ps+ spP4,1

dt 2
= z(sin 8)RpL(A)(Pi+ Ps)

+(cos 8)RpL(6)Pz —pP4.

(All)

(A12)

(A13)

(A14)

The mean populations of the states are obtained by set-
ting the time derivatives in Eqs. (All) —(A14) to zero.
The mean populations are

2cos 6I

cos2 8'
sin 6I

1+3cos28'

(A15)

(A16)

2cos 8
1+3cos2 6I' (A17)

where 4 = aj, —~p is the laser detuning from the
Si~z(F = 1) —+ Piy2(F = 0) resonance frequency

wp. We consider the low-intensity limit, defined by
RpL(A) (( p. A typical experimental value for RpL(A)
was 10 s, while p is 4.3 x 10 s . The Zeeman shifts
are not included in 4, because they are assumed to be
small compared to p. For a typical magnetic Beld of
5 x 10 4 T, states 1 and 3 are separated from state 2 by
+ 7 MHz, while p, in the same units, is 70 MHz.

When a second laser near the Si~z(F = 0)
P&~2(F' = 1) resonance is present, the atom spends

nearly all of its time inthe Sii2(F = 1) and Pii2(F = 0)
states. The following reduced set of rate equations then
describes the system:

6 &p F=l
P t/2 F 0

6s S,
F-0

N --1 M -0F F

FIG. 13. Hyper6ne Zeeman sublevels of the 68 Sqg2 and
6p P&g2 states of ' Hg+. The labels 0—7 for the sublevels are
used in the discussion of optical pumping in the Appendix.

3 sin 8 cosz 8 RpL(6)
4 cos2 6I

(A18)

The dependence of P4 on 8 is of interest, because the
number of fluorescence photons emitted per ion is pP4.
From Eqs. (A18)—(A15), it can be seen that the fluores-
cence goes to zero for 8 = 0 or vr, when the population
is pumped into states 1 and 2. The fluorescence also
goes to zero for 8 = n/2, when the population is pumped
into state 2. The fluorescence has its maximum value for
cos8 = 3 ii2 (8 —54.7'), when states 1, 2, and 3 are
equally populated.

Another quantity of interest is the mean population
of the Siy2(F = 1) state when only one laser beam is
present. This quantity is equal to Pi+P2+P3 and can be
determined from the steady-state solutions to Eqs. (Al)—
(A8). In the low-intensity limit,

Pi+ P2+ Ps ( 6+ l' 2(1+3cos'8)
Pp k+s+ &p) 1+3cos48

(A19)

The quantity inside the square brackets varies from 2
to 3, depending on 6I. It reaches its maximum value
for cos8 = 3 ~z, the same value for which Eq. (A18)
predicts the maximum fluorescence when both lasers are
present. Since 8 was set empirically so as to maximize the
fluorescence, it was probably close to this value in the ex-
periment. From Eq. (A19), and using Pp+Pi+Pz+Ps—
1, we find that P~ + P2 + P3 lies between 0.041 and
0.06. This compares well with the experimental value of
0.053 + 0.06 determined from the data shown in Fig. 7.

In order for the rate-equation approach to be valid, the
laser intensity must not be too large. A density-matrix
calculation including the coherences between states 1, 2,
3, and 4 shows that if the magnetic field is not large
enough compared to the optical electric field, the atom
is optically pumped into a nonfluorescing superposition
state [45]. While the density-matrix approach is valid
over a larger range of parameters, the rate-equation ap-
proach is used here because it is simpler and is still a
good approximation for the low laser intensities which
were used in the experiment.
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