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A method is presented for the construction of WKB wave functions that avoids explicit consideration
of any matching between results pertaining to classically allowed and classically forbidden regions. The
formalism is based on the maximization of a suitably defined quantal pseudoentropy, subject to the con-
straints posed by the expectation values of a reduced number of operators, which are evaluated accord-
ing to special WKB techniques that consider expansions up to orders R and A . The algorithm is tested
with reference to the harmonic and quartic anharmonic oscillators.
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I. INTRODUCTION

Semiclassical methods, although already introduced in
the early days of quantum mechanics, enjoy still wide po-
pularity [1—6], as they are usually able to provide us with
analytical expressions that pave the way for an approxi-
mate description of the mechanisms underlying some
physical phenomena. Foremost among these methods is
the WKB approximation [7], which still receives the at-
tention of different investigators because it constitutes
one of the most useful available tools in facing a variety
of problems [1], and has even found some place among
quite contemporary developments [8—16].

Recently, a detailed review of the WKB method has
been presented [5] that enables one to appropriately re-
late it to other semiclassical approaches such as the
Wigner-Kirkwood (WK) approach [17,18]. As it is well
known, the WKB approximation constitutes a valid
theoretical tool as long as characteristic actions of the
problem at hand are large in relation to A. In the study
referred to above [5], the "smallness" of fi is exploited in
two different fashions, namely, (i) to obtain an explicit A'

expansion, and (ii) to "smooth" the level density. The
first aspect corresponds to the usual WKB expansion
which has been treated according to the Dunham formal-
ism [19—21]. The second facet provides the connection
between WKB and WK.

From a practical point of view, the treatment
developed in Ref. [5] yields a quite convenient recipe for
evaluating expectation values, something which, as
remarked by Landau and Lifschitz, constitutes a serious
difficulty in dealing with semiclassical approaches [7].
Nevertheless, this treatment does not allow for an explicit
semiclassical expansion of the wave function. It is true
that the usual WKB formulation does yield such an ex-
pansion, by recourse to the pertinent connection formulas
at the turning points. However, the concomitant effort to

be invested is often greater than the one related to deal-
ing with the exact quantal derivation [5].

It would be of interest to have at our disposal the ad-
vantages of the WKB formulation derived in Ref. [5],
while, at the same time, being able to obtain a corre-
sponding semiclassical wave function. This is just the
motivation of the present effort. It has recently been
shown [22] that starting with the knowledge of a few ex-
pectation values, application of information-theory (IT)
tools enable one to infer reasonably good wave functions.
By recourse to a suitable defined "quantal" entropy that
measures the lack of information associated with the
probability distribution of a quantum state over a given
known basis, this inference approach allows for a variety
of interesting applications [22—25].

The objective of the present paper is to incorporate to
the developments of Ref. [5] the IT tools advanced in
Ref. [22] so as to obtain inferred WKB one-dimensional
wave functions that will not exhibit any kind of diver-
gence at the turning points. In addition, the techniques
for incorporating corrections of the order of A can easily
be accommodated within the scheme to be presented and
help one to understand their significance.

The paper is organized as follows. A brief review of
WKB concepts is presented in Sec. II. A summary of the
method for inferring wave functions by maximizing the
quantal pseudoentropy is given in Sec. III. Our present
proposal is introduced in Sec. IV and applied to the har-
monic oscillator and the anharmonic one in Sec. V. Fi-
nally, some conclusions are drawn in Sec. VI.

II. WEB EXPECTATION VALUES

Following the method proposed in Refs. [5,21] and us-

ing a first-order perturbation theory, the expectation
value of a given one-body operator for a given level of en-
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ergy E can be computed as

(F),= lim —[e( V+AF) —E( V)],1

A, ~O A,
(2.1)

and

S= g (i') S (e„,V, A'),
m=0

(2.4)

S(e„,V, 1r1) =(n+ —,
' )h, (2.2)

where n is the number of zeros of the exact wave func-
tion. The S function is de6ned as

where E(V+AF) is the eigenvalue of the energy when a
term A.F is added to the potential V.

The eigenvalues of the energy are determined by re-
quiring

c=co+A F)+

Equation (2.1) can be rewritten as

( )
—5S(F,E)

BS
aE,

with

(2.5)

(2.6)

S= (y+i 1r1y, )dz, (2.3)

where y is the solution of the Ricatti equation, and the
contour integration in the complex z plane encloses the
segment of the real axis between the turning points.

The semiclassical WKB approximation is recovered by
assuming that y (therefore also S and e„) admits a power
expansion in A',

6$(F, c, ) = lim [S(E,V+AF) —S(e, V)]/A, .
A, —+0

(2.7)

The expansion of S and E„can be truncated at order A

and allowing for the explicit expressions of S [5], the ex-
pectation value of one-body operators for one-
dimensional systems can be written as

dz

dz

2

VI IF Vl d
5/2 6f47/2 & d 1 f 1/2(Eo —V) (eo —V) «o (Eo —V)

1

V)1/2
dz

+O(A' )+

V"

V 3/2

24~ 1

V)1/2

(2.10)

All the contour integrations of (2.8) and (2.10) can be
computed in the real axis, evaluating derivatives with
respect to the energy:

dc
(E V) " dz = —n /2 (e —V) '"+

0
0

(2.11)

where eo is the eigenenergy (order fi), determined using
(2.2),

f QEO —V dz =(n+1/2)h, (2.9)

and c,
&

is the correction of order A' of the eigenenergy

(2.8)

I

for a potential with two turning points, z& and z2, one
chooses a path C that encloses z, and z2. It is assumed
that the potential V is both single valued and analytic on
C and in all regions enclosed by C. We have tested this
method for the harmonic-oscillator potential. In this
case the integrals of (2.8) for an operator x" are analyti-
cal. We have also controlled that the results are indepen-
dent of the integration contour.

III. ON INFERRING QUANTUM
WAVE FUNCTIONS

Consider a system described by a Hamiltonian 8. Let
I O, a = 1, . . . , m j be a set of (relevant) independent
commuting operators, diagonal in the common basis

I ~j),j=1, . . . , k]. It has been shown in Ref. [22] that
the ground state of the system denoted by ~0) can be in
ferred to be of the form

and using

gdz=2 I +dx, (2.12)

~0) = g C,'"~j),

with

(3.1)

where x+ are the turning points.
If the integrals in the real axis are not analytical, the A

corrections of (F), [cf. Eq. (2.8)], imply the numerical
computation of fourth-order derivatives, with the subse-
quent loss of accuracy. In that case we compute all the
integrals of (2.8) in the complex z plane. As in Ref. [26],

~CIO'~ =exp, — Ao+ g X O (j) (3.2)
a=1

where O (j)=&j~O ~j) and the A, constitute a set. of
optimizable parameters. Normalization is ensured by set-
ting
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A,0
= ln g exp —g k 0 (j) (3.3) IV. PRESENT APPROACH

The square moduli (3.2) have the functional form that
maximizes the so-called quantal entropy [22—25] (not to
be confused with the ordinary, thermodynamic entropy,
which vanishes for a pure state)

S= y ~

C(0) 2ln~ C(0) ~2

J

subject to the constraints

(3.4)

(3.5)

g;=&G;(x)&= f P (x)G, (x)dx . (3.6)

The least biased wave function (for the ground state)
adopts the appearance [22]

The information entropy (3.4) obviously differs from the
conventional one and measures the lack of information
concerning the probability distribution over the common
basis, vanishing only if ~0 & coincides with one of the basis
states. It has been shown in Refs. [23] and [25] that a
very accurate description of the ground state of various
many-body systems can be achieved in this way by
recourse to just a few relevant one-body and two-body
operators 0 for all values of the pertinent coupling con-
stants, including transitional regions. Application of this
method to one-dimensional problems is made in Ref. [22].
The discussion of how to deal with energy spectra and ex-
cited states can be found in Refs. [24] and [27]. The main
point of the method reviewed here is to infer an appropri-
ate wave function on the basis of a few pertinent expecta-
tion values by recourse to the maximum- (quantal) entro-
py principle (MEP).

In the one-dimensional case one assumes to know the
ground-state expectation values g; of n linearly indepen-
dent functions G; of the coordinate x,

We shall consider one-dimensional potentials V(x) and
Hamiltonians of the form H = —,'P + V(x). We follow the

WKB prescriptions of Krivine, Casas, and Martorell [5]
and obtain pertinent expectation values of x " (n integer)
both to order fi (WKBO) and to order fi (WKB2). With
these values for the moments of the powers of x we can
infer ground-state wave functions by recourse to the ideas
expounded in the previous section [22]. For excited
states, we consider the series of functions $0(x), x/0(x),
x $0(x), x $0(x), . . . , with p0 of the form (3.7). By
recourse to Schmidt's orthonormalization procedure we
obtain a concomitant series of orthogonal wave functions
and the approximate positions of the pertinent zeros for
the excited states. The new wave functions are of the fa-
miliar form (polynomial in x) times (exponential) which
satisfy a relative maximum-entropy principle [27]. By
recourse to the appropriate WKBO and WKB2 expecta-
tion values, we optimize the wave functions inferred for
the excited states by suitably adjusting the Lagrange mul-

tipliers X;. Some loss of orthogonality (which is mainly

due to the fact that we employ as input information the
WKB mean values) ensues, which is largely compensated,
as we shall see below, by the quality of the inferred wave
functions.

The simple procedure here outlined yields semiclassical
wave functions for the ground and excited states without

any "quantum" input. All the information provided is of
a semiclassical origin. We thus extend here the metho-
dology of Krivine, Casas, and Martorell [5], by dealing
with WKB wave functions that are obtained without any
consideration to the position of the turning points. No
"matching" of any kind is necessary [7]. With the rather
small effort of evaluating a few WKB expectation values
we infer a corresponding wave function, whose quality
will be discussed in what follows, by reference to some
concrete (and important) examples.

g(x)=exp. —
—,
' A0+ g A, , G, (x) (3.7)

V. APPLICATIONS

with A. Harmonic oscillator

n

A0=ln f exp —g A, ;G(x) dx . ,
i=1

(3.8)

where the Lagrange multipliers k, are to be obtained as
the solutions of the system of equations

~~o
gl ~

l

(3.9)

For additional details the reader is referred to Refs.
[22—25]. In what follows the figures g,. will correspond
to expectation values of powers of x evaluated according
to the WKBO (order )rt) and WKB2 (order fi ) prescrip-
tions of Krivine, Casas, and Martorell [5], out of which
we shall infer quantum wave functions in the fashion de-
scribed in the present section.

Any decent approach to the quantum problem should
work quite well when applied to the harmonic oscillator
(HO). As the concomitant energies are well predicted by
the WKB approach, some people tend to believe that this
technique is indeed successful here. This belief is actually
unjustified.

Let us consider the orthodox WKB treatment of the
HO, as expounded, for example, in Ref. [29]. We find the
following anomalies concerning the concomitant wave
functions for the different HO states. (i) They are defined
only between the turning points. A quite complicated
matching procedure is necessary in order to have a wave
function defined over the whole coordinate range. (ii)
The virial theorem is violated as the &x & value is wrong.

The WKB described by Krivine, Casas, and Martorell,
although not able to provide us with a wave function,
does yield the exact value for &x & (the virial theorem
holds).
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TABLE I. Harmonic oscillator. The overlap
&0(&= i)lf(%=3)) and the transition probability
i&/(&= 1)~x ~g(%=3)&i evaluated in different WKB environ-
ments are compared to the exact values. N is the phonon num-

ber.

Method

Orthodox WKB
Present approach (WKBO)
Present approach (WKB2)

Quantal (exact)

Overlap
(%)

14
0.20
0.3
0.0

Transition probability

0.0803
1.0513
1.2299
1.50

Table I neatly illustrates some of the shortcomings of
the orthodox WKB approach. It is clearly seen that the
present approach undoubtedly yields much better results.

A few remarks are in order here. It is well known that
the inferred wave functions become exact if one provides,
for the HO, the IT algorithm with just the correct expec-
tation value of x [22]. We have evaluated the (inferred)
WKBO (order R) and WKB2 (order A' ) wave functions by
introducing, as inputs, the pertinent (WKBO and WKB2)
expectation values of both x and x . This entails, of
course, the introduction of partially wrong information
into our inference scheme, as the WKBO and WKB2 pre-
dictions for (x ) do not coincide with the exact ones.

A more complete set of results is displayed in Table II,
where expectation values evaluated in different WKB en-

B. Anharmonic oscillator

We consider now the celebrated one-dimensional quar-
tic anharmonic oscillator

8=—,'(P +x )+yx (5.1)

vironments are compared. We exhibit here the moments
(x ), (x ), (x ), and (x ), evaluated according to (i)
the orthodox WKB approach (as outlined, for example,
in Ref. [28]), to (ii) the WKBO and WKB2 recipes of
Krivine, Casas and Martorell [5], and to (iii) the inference
procedure that constitutes the leitmotiv of the present
effort. In this last case, the appropriate WKBO and
WKB2 expectation values of x and x constitute the in-
put to the inference algorithm described in Sec. III.

As a general conclusion it can be fairly stated that our
methodology does provide, in most cases, better results
than the alternative techniques discussed here. Excited
states are better described than the ground state, as a
consequence of the fact that WKB fares poorly, as it is
well known, in this particular instance [5]. It is also seen
that inferences based upon WKB results evaluated up to
order A are almost always better than those based upon
expectation values evaluated just up to order A. Notice
also that present inferred results approach the quantum
ones in a closer fashion than the original WKB values
(except for two instances corresponding to the ground
state).

TABLE II. Harmonic oscillator. Expectation values of several powers of the coordinate evaluated
according to different WKB prescriptions are compared to the exact results. IW denotes an inferred
wave function.

Expectation value

Moment
WKB

orthodox
Quantal
(exact)

WKBO
(Ref. [5])

WKBO
(IW)

WKB2
(Ref. [5])

WKB2
(IW)

0.410 71
0.290 62
0.236 09
0.203 79

0.50
0.750
1.875
6.5625

0.50
0.375
0.3125
0.273 44

0.50
0.375
0.336 79
0.341 56

0.50
0.5625
1.093 75
2.187 50

0.50
0.5625
0.878 26
1.679 20

1.542 78
3.222 11
7.667 52

19.5068

1.5
3.75

13.125
59.0625

1.5
3 ~ 375
8.4375

22. 1484

N=1
1.5
3.375
9.764 98

33.8262

1.5
3.5625

10.7812
39.3750

1.5
3.5625

11.3200
44.4018

2.658 33
9.676 15

38.6282
163.170

2.5
9.75

46.875
269.063

2.5
9.375

39.0625
170.898

N=2
2.5
9.375

41.4318
209.546

2.5
9.5625

42.9687
218.750

2.5
9.5625

44.0726
237.161

&x')
&x4)
&x')
&x'&

3.762 83
19.5953

111.017
659.180

3.5
18.75

118.125
846.563

3.5
18.375

107.188
656.523

N=3
3.5

18.375
112.405
775.373

3.5
18.5625

112.656
750.312

3.5
18.5625

115.231
810.048
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TABLE III. Anharmonic quartic oscillator (y =1). Expectation values of x, x, x, and x' evalu-

ated according to different prescriptions. N is the principal quantum number. IW denotes an inferred

wave function.

Expectation value

Moment
Quantal
(exact)

Quantal
(IV&')

WKBO
(Ref. [5])

WKBO
(IW)

WKB2
(Ref. [5])

WKB2
(IW)

&x'&
&x4&

(x'&
&x'&

0.257 15
0.182 21
0.201 13
0.293 93

0.257 15
0.182 21
0.200 56
0.291 07

0.295 57
0.13621
0.070 40
0.038 33

0.2.95 57
0.13621
0.076 09
0.048 32

0.295 12
0.142 40
0.135 93
0.167 98

0.295 12
0.142 40
0.084 57
0.057 55

&x'&
&x4&

&x'&

0.662 93
0.691 66
0.962 35
1.65047

0.662 93
0.691 66
0.960 90
1.641 59

0.657 90
0.681 86
0.794 44
0.976 24

N=1
0.657 90
0.681 86
0.941 70
1.600 26

0.659 55
0.684 56
0.863 62
1.295 13

0.659 55
0.684 56
0.946 06
1.607 66

&x'&
&x'&
&x'&
&x'&

0.942 47
1.412 27
2.513 88
5.157 11

0.942 47
1.412 27
2.515 15
5.161 66

0.942 29
1.403 52
2.351 89
4.157 85

0.942 29
1.403 52
2.479 53
5.042 43

0.943 40
1.405 47
2.421 99
4.626 42

0.943 40
1.405 47
2.484 38
5.053 30

&x'&
&x4&

&x'&
&x'&

1.19059
2.250 61
4.923 42

11.9336

1.19059
2.250 61
4.895 50

11.7052

N=3
1.19031
2.243 64
4.759 81

10.6547

1.19031
2.243 64
4.865 48

11.6017

1.191 11
2.245 23
4.830 35

11.2540

1.191 11
2.245 23
4.867 36

11.5979

&x'&
&x4&

&x'&
&x'&

1.415 74
3.182 61
8.18993

22.9304

1.415 74
3.182 61
8.16909

22.6396

1.415 54
3.176 70
8.025 75

21.3969

1.415 54
3.176 70
8.13747

22.5108

1.416 15
3.178 06
8.096 56

22. 1151

1.416 15
3.178 06
8.139 32

22.5074

with [x,P]=i This so. rt of potential has been the subject
of considerable work during the past years (see, for in-
stance, Refs. [30—39]), due to its relevance in the descrip-
tion of molecular vibrations and to its importance in the
modeling of nonlinear quantum field theories. Attempts
made recently to tackle the Hamiltonian (5.1& with the
WKB weaponry [39], have not been regarded as success-
ful [28].

In order to apply the procedure described in Sec. IV we
have found it convenient to base the orthonormalization
procedure upon the wave function inferred for the Grst
excited state. In Table III we present results for y=1
and in Table IV the corresponding ones for y =10. None
of these situations can be regarded, obviously, as a per-
turbative one. We compare the expectation values (x ),
( x ), ( x ), and ( x ) evaluated within the framework of
the diverse WKB environments of the previous subsec-
tion and compare them to the exact quantal results. In
all cases the inferred wave functions are built up with two
Lagrange multipliers, corresponding to the prior infor-
mation [cf. Eq. (3.5&] provided by the expectation values
(x ) and (x ). These are either the WKBO &order A) or
the WKB2 &order A' ) computed according to the recipes
described in Sec. II. We have checked that the same
ground-state wave function is obtained if one uses more

complicated information as, for instance, the expectation
values (x ) and (ln(x +1&) instead of (x ) and (x ).
Notice that we also include figures under the label "in-
ferred quantum results. " These correspond to MEP in-
ferred wave functions constructed with the input provid-
ed by the (exact) quantum expectation values (x ) and
(x ). The inferred wave functions do not coincide with
the exact ones [22], although the inferred expectation
values (x 6) and (x ) are quite reasonable ones.

The inferred results compare better, in general, to the
quantum ones than the original semiclassical values, ex-
cept for the ground-state figures, where it is well known
that the WKB technique fares rather poorly [5]. As ex-
pected, predictions inferred with WKB2 inputs are of a
better quality than these in which the semiclassical ex-
pansion is stopped at order A' (WKBO).

The figures display some typical densities
p(x)=~/(x)~ for the first and the fourth excited state.
Figures 1 and 3 display results for the first excited state
while Figs. 2 and 4 show the values corresponding to the
fourth excited states. Figures 1 and 2 are drawn for the
anharmonic well with y = 1 and Figs. 3 and 4 depict situ-
ations corresponding to y =10. Within the scales of the
figures it is somewhat hard to distinguish between the
different approximations and the exact quantum results
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Expectation value

TABLEIV A
denotes an i

nharmoni
inferred wave f

c quartic os
ve unction.

. Details aare i enticalal to those of T ba le III. IW

3535

Moment

&x'&
(x4)
&x'&
&x'&

Quantal
(exact)

0.13002
0.045 83
0.024 91
0.017 79

Quantal
(IW)

0.13002
0.045 83
0.024 82
0.017 57

WKBO
(Ref. [5])

0.152 18
0.036 78
0.009 98
0.002 86

N=O

WKBO
(IW)

0.152 18
0.036 78
0.01081
0.003 62

WKB2
(Ref. [5])

0.157 60
0.038 00
0.01707
0.01060

WKB2
(IW)

0.157 60
0.038 00
0.011 04
0.003 63

&x4&

&x'&
&x'&

0.326 52
0.166 50
0.11259
0.093 45

0.326 52
0.166 50
0.11239
0.092 85

0.321 45
0.164 42
0.094 76
0.057 64

0.321 45
0.165 05
0.11297
0.961 30

0.322 91
0.165 05
0.101 92
0.074 32

0.322 91
0.165 05
0.112 85
0.095 23

(x'&
&x4&

(x'&

0.453 92
0.329 77
0.283 61
0.280 21

0.453 92
0.329 77
0.283 84
0.280 67

0.453 73
0.327 89
0.267 03
0.229 56

0.453 73
0.327 89
0.282 17
0.280 33

0.454 50
0.328 35
0.274 21
0.253 23

0.454 50
0.328 35
0.281 77
0.278 50

(x'&
(x')
(x')
&x'&

0.569 25
0.517 36
0.543 87
0.632 29

0.569 25
0.517 36
0.540 66
0.619 58

0.568 99
0.515 86
0.527 13
0.568 62

N=3
0.568 99
0.515 86
0.538 12
0.61641

0.569 49
0.516 23
0.534 32
0.598 38

0.569 49
0.51623
0.538 08
0.615 45

(x'&
(x'&
&x'&
&x'&

0.673 78
0.724 50
0.891 94
1.193 61

0.673 78
0.724 50
0.890 03
1.179 30

0.673 61
0.723 23
0.875 21
1.118 12

N=4
0.673 61
0.723 23
0.889 30
1.18009

0.673 97
0.723 54
0.882 40
1.153 40

0.673 97
0.723 54
0.888 94
1.178 03

1.0
I

I I I
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