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Quantum-dynamical semigroup generators for proton-spin relaxation in water
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Various aspects of a rather general treatment of proton-spin relaxation in water are discussed within

the framework of quantum-dynamical semigroup theory for a four-level system coupled to a reservoir in

equilibrium. In particular, the specifications of the infinitesimal generator of time evolution, either in

Kossakowski or in Davies form, are worked out in detail. With the help of the Lie algebra of SU(4), the
results are used to derive, under suitable simplifications, generalized Bloch equations for the static and
alternating-field case. The relevant correlation functions are calculated using conventional approaches
but supplemented by taking into account explicitly results from a stochastic model for formation and

breaking of hydrogen bridges. A further approximate reduction of the coupled general equations to
simpler ordinary Bloch equations leads to an identification of the relevant relaxation times. This ap-
proach provides a somewhat di6'erent interpretation of rotational correlation times whose numerical
values are estimated over a wide temperature range.

PACS number(s): 33.25.—j, 05.40.+j, 76.60.—k

I. INTRODUCTION

The ordinary equation for the evolution of the density
operator, which is widely used in the NMR literature to
investigate spin relaxation in Quid systems, is given by the
Redfield master equation [1,2], which is derived from an
approximative solution of the Liouville equation for the
density operator of the open quantum system S with a
large time-independent interaction Hamiltonian and a
comparatively small time-dependent one. The applica-
tion of this or similar equations for the density operator
can, of course, lead to difhculties. The basic laws of
quantum mechanics require that the density operator
satisfies, for all times, the von Neumann conditions of
hermiticity, trace preservation, and positivity. The
description of the time evolution of an N-level system
with a completely positive quantum-dynamical semi-
group guarantees automatically that the von Neumann
conditions are fulfilled. The detailed mathematical struc-
ture of the associated generator is given by the theorem
of Gorini, Kossakowski, and Sudarshan and by Lindblad
[3,4]. It must be stressed that the method used to derive
the structure of the Kossakowski generator is totally
different from the considerations leading to Redfield's re-
sults. The underlying relation for the time evolution of
the open quantum system S is now obtained by a partial
trace operation acting on the state of the total system Q
constituted by S and the reservoir R. The necessary con-
ditions for the validity of the Redfield theory are replaced
through the positive semidefiniteness of the relaxation
matrix.

On the other hand, in a series of papers Davies showed
[5—7], starting from the exact Nakajima-Zwanzig master
equation, that a second more special form of the
quantum-dynamical semigroup generator exists. The re-

lationship between the Kossakowski and the Davies gen-
erator allows the determination of relaxation parameters
from first principles. Especially, one is able to express in
a quantum mechanically correct way the elements of the
relaxation matrix and the diagonal relaxation parameters
in the spectral density functions of the reservoir. More-
over, the transition from the original Kossakowski mas-
ter equation to the corresponding matrix equation for the
coherence vector [8] yields generalized Bloch equations in
the static field case as well as in the alternating field case.

In this paper we investigate the spin relaxation in wa-
ter with quantum-dynamical semigroup generators. To
make the reader familiar with the basic results, the next
section gives a short review of the general theory. For
the four-level system of the two proton spins in an HzO
molecule the exact expansion of the diagonal relaxation
parameters in terms of the correlation functions of the
reservoir R will be given. To get the connection between
the spectral density functions and the microscopic pa-
rameters of the reservoir an attempt is made to calculate
approximately the quantum correlation functions. Final-
ly, from the coherence vector formulation of the Kos-
sakowski master equation, one can deduce the general
Bloch equations for the Quid system of water molecules.
The general Bloch equations allow the identification of
the longitudinal relaxation time T, . The expression for
T, also depends on the characteristic times ~Ha, ~f of the
hydrogen bond dynamics. In the extreme narrowing case
one can compare the calculated value for T, with con-
ventional results.

II. GENERAL THEORY

In the following we consider an open quantum system
S coupled to a reservoir R. The total system Q=SUR
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does not exchange any energy with its environment. The
reservoir remains in a fixed reference state P~ for all
times. An example for an open quantum system is given
by a spin- —, particle in a static, homogeneous magnetic
field and a time-dependent electromagnetic field whose
field modes serve as a reservoir [9]. In order to describe
the time evolution of an open quantum system one needs
a one-parameter family of dynamical maps [A„t~0],
such that

p(t) =A,p(0), t ~ 0, Q. 1)

where p is the density operator of the open quantum sys-
tem S. The family of the dynamical maps A, has to fulfill
the conditions of a completely positive quantum-
dynarnical semigroup. We mention here only the impor-
tant semigroup condition

(2.2)

Especially, the two following relations hold:
M

[F;,Fk]=i g fikiF, ,
1=1

M

[F;,Fk] =—Fo5ik+ g d;kiFi,
1=1

(2.10)

(2. 1 1)

where [, ] denotes the anticommutator. The f;ki's are
the completely antisymmetric (with respect to inter-
change of any pair of indices) and the d;ki's the complete-
ly symmetric structure constants of the Lie algebra. In
the literature the reader can find a systematic scheme for
how to construct the I'; matrices for arbitrary 1V and a
complete list of the generators and structure constants [8]
for SU(N), N =2, 3,4. To investigate the differential
equation (2.4) it is appropriate to go over to the
coherence-vector formulation

p(t) =Lp(t) ~v(t) =Gv(t)+k . (2.12)

A, =e~' t &O (2.3)

Under these conditions it follows from the Hille-Yosida
theorem [10] that one may write The components of the coherence vector v(t) appear as

coefficients in the expansion of the density operator in the
basis [F;I,

where L is the infinitesimal generator of the completely
positive quantum-dynamical semigroup. For the
differential equation corresponding to (2.1), one finds

M
p(t)= —Fo+ g v;(t)F; .

N
1

(2.13)

By trace operation it follows immediately that
(2.4)p(t)=Lp(t) .

(2.14)u;(t)=tr[F p(t)] .

According to the structure of the Kossakowski generator
one can decompose the (M XM) matrix G into a matrix
Q and a matrix R,

Gorini, Kossakowski, and Sudarshan have shown that
the most general generator of a quantum-dynamical semi-
group for the case of a finite-dimensional Hilbert space
&, can be written in final normal form as [3]

where

+[Fp(t), Ft]],

N —1
2

Lp(t) = i [H,p(t)]+ ——,' g a, I [F,,p(t)Ft)

(2.5)

G=Q+R .

Bearing in mind the expansion
M

H= g h„F„, h„CR
n=1

(2.15)

(2.16)

H =H, tr(H) =0,
tr(F; ) =0, tr(F, Fj ) =5,j, . .

(2.6)

(2.7)

Q.8)

A=[a; J ~0, i,j =1, . . . , M=N —1 . (2.9)

The first term of the generator L describes the pure Harn-
iltonian dynamics of the open N-level system, whereas
the second term represents the non-Hamiltonian dynarn-
ics of S. Possible energy shifts due to the interaction with
the reservoir are taken into account through the Hamil-
tonian H of the open quantum system S. The linear
operators F, together with the unit operator I'o= I form
a basis in the Banach space %(&s ). Of great importance
is the positivity property (2.9) of the complex matrix A.
For further features which follow from the positive
semidefiniteness of the relaxation matrix 2 the reader is
referred to the lecture notes by Alicki and Lendi [8]. A
convenient representation of the operators I'; is realized
by the Hermitian (N XN ) matrices that constitute a basis
set of the Lie algebra associated with the SU(N) group.

M

asm X hnfnms
n=1

(2.17)

In consequence of the complete antisymmetry of the
structure constants f;ki, the matrix Q is skew symmetric:

for the Hamiltonian H, one gets for the matrix elements

q, of Q the result

Q= —Q

Next, we consider the following commutators:

(2.18)

(2.19)[H,p(t)]= g h, u (t)[F, ,F ],
i j =1

1 M

[F, ,p(t)Fk]= [F,,Fk]+ g v (—t)[F;,F Fk],
j 1

(2.20)

M

[F;,FjFk ] =—Q zjkl [F&~F
2 1=1

(2.21)

(2.22)zijk fij k +idijk

where the complex structure constants z; & are defined by
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Together with the properties
M

Re(a;k )(fki, d;i~ f—;i,dki
i, k, l = 1

M

Im(a;k)(f;i, fk/ +fki fi'
i, k, l = 1

(2.23)

(2.24) D =DH+D~ )

where

(2.31)

The exact structure of the generator D can be found from
Eq. (2.28) by rescaling the time and going over to the
weak-coupling limit. This procedure yields the following
result for the Davies generator D [16,17]:

we finally find for the elements r, of R the real forms

r, = —
—,
' g (2—5,.k )Re(a;k )

i, k, l = 1

(i &k)

DH = —i g g s;k(co)[ Ak(ro) A;(co), .],
coESp([H, . ]) i, k

(2.32)

X(f i,fkl ++fki fI'
+ g Im(aik )(fkisdiim f isdki

i, k, l= 1

(i &k)

(2.25)

D g ck(co)([A;(co). , Ak(ro)]
coESp([H, , j) i, k

+[A;(co), . Akt(co)]) .

(2.33)

2
k, = ——g Im(a;k )f;k„s= 1, . . . , M,

i, k=1
(i &k)

(2.26)

The components k, of the inhomogeneous part k of the
differential equation (2.12) are given by

Sp([Hs, . ]) denotes the spectrum of the Liouville —von
Neumann operator [Hs, . ] [18]. It is the set
[E —e„IE,s„ESp(Hs)] if one assumes that the Hamil-
tonian Hz of the open quantum system has a discrete
spectrum

where we have used the relations Hs= +E, Ii)(iI . (2.34)

»m IIU „-~U',—2
—e 'pll=0

X~O
(2.29)

One may show then that the generator D satisfies a semi-
group condition and the connection with the density
operator is determined again through

p(t)=e 'p(0) . (2.30)

An interesting fact is that one can deduce the neces-
sary decay properties for the correlation functions of the
reservoir from the Davies restrictions for the terms in the
Feynman-Dyson expansion of the kernel K(A, , s —u ).

Re(a;k ) =Re(ak; ), Im(a;k ) = —Im(a«. ) .

For a detailed discussion of the differential equation
(2.12) the reader is referred to the literature [8,11]. In ad-
dition to the structure theorem (2.5) of Gorini, Kos-
sakowski, and Sudarshan, there exists a second approach
to the reduced dynamics of an open quantum system, sys-
tematically investigated by Davies [5]. The fundamental
equation in this context is given by the Nakajima-
Zwanzig master equation. We will present it here in the
integrated form

p(t)=U, p(0)+k f f U, ,X(A, , su)p(u)du ds .
s=0 u =0

(2.28)

A detailed derivation using the projection operator tech-
nique can be found elsewhere [12—14]. It is important to
note that the Eq. (2.28) for the reduced dynamics of the
open quantum system S is exact. Now a powerful
theorem by Davies states which conditions the single
terms in the Feynman-Dyson expansion [15] of the in-
tegral kernel K(i(,,s —u ) have to be fulfilled in order that
a generator D exists with the property

Furthermore the operators A;(co) are given by

A;(ro) = P„„A,P, P„=I. )n(mI . (2.35)

Recall that the operators 3; appear in the interaction
Hamiltonian H&„,

Hs„= g A;B;, A;=At, B;=B; (2.36)

where

h;k(t)=tri, [PtiBkB;(t)],

with

(2.39)

B,(t)=U, B;U, , U, =e (2.40)

The first term DH of the Davies generator (2.31) yields a
correction to the Hamiltonian part of the dynamics,
whereas the second term Dz contains pure non-
Hamiltonian contributions. A comparison of the two
generators (2.5) and (2.31) allows one to express the ma-
trix elements a;k of the relaxation matrix A in the
Fourier transforms c;k(co) of the reservoir correlation
functions h,.k(t). Especially for a two-level system, it is
possible to identify the longitudinal and transverse relax-
ation times and to give their exact expansions in the
Fourier transforms of the reservoir correlations [8,19].

which couples S to the reservoir R. The coefficients
ck(co) and s;k(co) are the Fourier —and the Hilbert-
transforms of the correlation functions h;k(t),

c;k(co)= f dt h, k(t)e ' ', (2.37)

s;k(co)=i f dt h;k(t)e ' ' ——c;k(ro), (2.38)
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III. OPEN QUANTUM SYSTEM

The H20 molecule carries two hydrogen proton spins.
The gg nucleus of the oxygen atom possesses no spin. In
a static, homogeneous magnetic field B=(0,0, Bo—) the
interaction Hamiltonian of the open quantum system of
the two proton spins is given by

IHs Ip;&&p, l)=(E; —eJ)lp;&&pjl (3.9)

where E; denotes an eigenvalue of Hz. Thus, the eigen-
values of the Liouville —von Neumann operator are

The complete set of eigenvalues and eigenvectors of the
Liouville —von Neumann operator [Hs, . ] can be obtained
from

Hg =cOLI1, +coL I2, +JI1 I2, (3.1)
+2e1L, +(coL +J),+coL, +(coL —J),+J,o . (3.10)

where

coL =yBO(1 cr—), (3.2)
All allowed transitions are obtained from time-dependent
perturbation theory using the Hamiltonian [25]

[Hs, I ]=0, [Hs, I, ]=0, [I,I, ]=0 . (3.3)

Consequently, the simultaneous eigenstates are obtained
from the transformation equation [23,24]

Ij,j2jm &= g Ij,j2m, m2&& j,j2m, m2lj, j2jm & .
m&, m2

with the proton gyromagnetic ratio y, the chemical shift
o, and the indirect coupling constant Jof the water mole-
cule [20—22]. The operators Hs, I=I, +I2, and
I =I1 +I2 satisfy the commutation relations

H(t)= —,'yB1[—(I1+I2+)e ' '+(I1 +I2 )e' ']

(3.11)

for the interaction of the two proton spins with an alter-
nating field B1( t) =B 1 (coscot, singlet, 0). The transition
probability Wb, (t) for a transition from a state la ) with

energy E, to a state Ib ) with energy Eb is given in first
order by the equation

)
2

8'&, (t)= f 'dt'e"' ' '&bIH, (t')Ia & . (3.12)
0

As a result one gets the selection rules

As a result one gets the following eigenstates:
j=1, Am =+1 (3.13)

1
singlet: Ip, &

= I-,'-,'oo &
= —(a1p2 —p, a2)

for the allowed transitions, in good agreement with the
experiment.

ala2 alp2 pla2 p1p2 (3.6)

is spanned by the eigenvectors of I„and I2, . The repre-
sentation of the interaction Hamiltonian Hz in the basis

Ip, ) yields

Triplet: Ip2) =
I —,

'
—,
' l l ) =a,a2,

Ip, &
= I-,'-,'1O& = (a,p, +p, a, ),1

2

lp. &
= I-,'-,'1, —» =p,p, ,

where the particular basis in the direct product spin
space of the composite system

IV. RESERVOIR

3

Hs~ g I„@B
p, =1

(4.1)

We consider a system of water molecules in the liquid
state. Each molecule is represented by a hard sphere.
The total spins are at the centers of the identical hard
spherical molecules [1,26]. The system is placed in a stat-
ic, homogeneous magnetic field 80. The transitions in
the open four-level system of a molecule are induced due
to the statistically modulated intra- and intermolecular
dipole-dipole interaction. For the corresponding Hamil-
tonian one may write [22, 27 —29]

3J4

0

0 0

J
Q)L + 0

(3.7)

with

6~
5

1/2

y2 y y ~(j/)(j) (4.2)

0 0

J0 —co +-L

or, in spectral representation,

The operator I is the total spin of the open quantum sys-
tem, whereas S' ' is the spin operator of the reservoir
molecule j. To study the transformation properties of the
dipole-dipole interaction Hamiltonian, it is of course
more convenient to use its representation in terms of irre-
ducible second-rank tensor operators. The Hamiltonian
of the reservoir is given by

H = —
—,'Jlp, )(p, I+ +— lp, )(p, l

J
Pj

H~ = g + g cozS,'J'+ g U(r, —r. ) . (4.3)

+ —„Ip3&&p3l+ —~, +
4 lp, &&p, l

. (3.8) Details about the structure of the interaction potential
U between the molecules are available elsewhere [30,31].
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We will investigate now the expansion of the matrix ele-
ments a,.k of the relaxation matrix A in the Fourier trans-
forms c;k(col) of the reservoir correlation functions. To
solve this problem one starts with the Davies generator D
for the open four-level system of the H20 molecule

The only nonvanishing ones are given by

13 1, —3 13 1, —3 23 2, —3 23 2, —3

(4.15a)

D =DH+D~,

where

(4.4)
263

—A, 26 3
—A, 2133 —X213

3
——A, 713

7

3

3 +5
DH — i —g g s;k(011 )[ Ak(cdl ) A;(col ), .],

i, k =11=—5

3 +5
DR =

p g Q Cik(&l )([Ai(&l )'~ Ak(&1)]

(4.5)
14 14* l
13 1, —3

3 8 151 1 2
130 ~ y A30 ~ y A30

2 6 3

(4.15b)

(4.15c)

i, k=11=—5

+ [A;(col ), . Akt(col)]) .

A; ( col ) =I; ( id 1 ) = P„„I;P~~ .

A comparison of (2.36) with (4.1) yields

(4.6)

(4.7)

This result together with the relation (4.14) allows the
explicit calculation of the matrix elements a„. The sys-
tematic evaluation yields

1
33 33(~0 88 6 33

E. E =CO
m n

Here we use the convention
1

38 33(~0) 8, 15&12
2

C33(&0) (4.16)

COO
—0, CO+3 =

COL

id+, =+J, id+4=+(cOL+ J),
Cd+ 2

=+( COL J ), CO+ 5
= +2Q)L (4.8)

and

a3 15
= (

&
) C33(&0), a15 15

=—C33(&Q),1/2 —4

a66=a6 13 =a77 a7 14 a,3» =a,4,4
=f+ ig—

(4.17a)
for the eigenfrequencies of the Liouville —von Neumann
operator [Hs, . ]. After some calculations one finds that
the only nonvanishing matrices A;(col ) are

l
A 1 (co+3 } 2

I A (c2+o3 )=+ I +, A (3' )0=I—,2

a67 a6, 14 a7, 13 a13, 14 g+

with the abbreviations

(4.17b)

F, =F;, tr(F;)=. 0, tr(F;FJ )=5;J (4.10)

(4.9)

The operators I+,I denote the ordinary raising or
lowering operators. The expansion of the operators
A;(col) in terms of the basis [F,], with

f+ = —,
' [cii(co3)+C22(CO3) [Cii(CO 3)+C22(cd 3)]j

(4.18a)

+ =
—,
' [C12(M3) C21(CO3)—[C12(~—3) C21(CO 3) ] ] .

(4.18b)

yields

15

A;(col)= g 1;"(F„. ,

p=1
(4.1 1)

The remaining matrix elements vanish. In a next step
we treat the correction DH to the Hamiltonian part of the
dynamics. By expressing the commutators in D& accord-
ing to the relations (4.9), one finds

15

[A, (cdl), . Ak(col)]= g A,",(ski*[F1„,.F~],
p, v=1

(4.12)

Consequently, one gets for the two commutators in the
second term D71 of the Davies generator (4.4) the results

DH = i [A,(I„+I )+v—I, +@I„.],
where the coefficients are given by

A, =—[sii(co3)+$22(co3)+$11(co 3)+s22(co —3)]

(4.19)

15

[Ai(~l ) ~ Ak(~l )l X ~~(l~kl [ p'~FV]
p, v=1

(4.13)

l+—
[ 12( -3)—2i( -3)—»( 3 + »4

(4.20a)

Inserting (4.12) and (4.13) in Dz and comparing (4.6) with
the non-Hamiltonian part of (2.5) leads to

3 +5
a„,= g g A,I7A, ki c;k(col )

i, l =1 1=—5

(4.14)

for the matrix elements of the relaxation matrix A. The
expansion coefficients A,",1 can be found from Eq. (4.11).

l
—3)—2i( —3)+ i2( 3) 2i( 3)]

v =s33(MQ)

(4.20b)

(4.20c)

P' 4 [ 11 3 22 3 11 — » — ]
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Thus the modified Hamiltonian 0& including level shifts
can be written in the form

s,k(cot ) satisfy the properties

A, =v=1m(p) =0, Re(p)%0 (4.22)

Hs=Hs+A. (I„+Iy)+vI, +@I, . (4.21)

Later on we shall show that the Hilbert transforms
I

with respect to the reservoir model under consideration.
Hence one finds for the structure of the matrix Hz the
final form

3J4

0

0

[col +Re(p)]+-/

0

0

0 0

(4.23)

0 —[co +Re(IM)]+-JL 4

where, obviously,

tr(Hs) =0 (4.24)

15
r',"=——.

' & 2a;;[f;t,f;I j

in agreement with (2.6). Furthermore, the resonance fre-
quency mL is shifted to

15

+
2 g ™(aik) [filsdklm fklsd Im j ++'S

i, k, 1 =1
(i &k)

col. =coL+Re(p) . (4.25) (4.26b)

Later on we shall estimate the frequency shift Re(p) of
the highest and the lowest energy level. The study of the
diff'erential equations (2.12) for the components of the
coherence vector indicates that the diagonal relaxation
times play an important role. Especially, one needs them
to identify the measured longitudinal and transverse re-
laxation times. Thus, we proceed to the calculation of
the diagonal relaxation times in terms of the Fourier
transforms c;k(cot ) of the reservoir correlation functions.
We rewrite Eq. (2.25) in terms of two matrices I' ' and
I (c)

15

2Re«;k)[f Ifkl +fkl fil 'j +S
i, k, 1=1

(i &k)

(4.26a)

where

15

+S = s g 2 Re(a 38 )[f3lsf 8lm +f8lsf 3lm j
1=1

15

+ —,
' g 2Re(a315)!f3!f15I +fist f31 j

1=1
15

+ g 2 Re(a8, 15)jf8I f lsl +f15I f8l j
1=1

(4.26c)

It should be noted that the matrix I' ' is symmetric.
Furthermore the definitions (4.26a) —(4.26c) allow one to
write the matrix elements r, in the compact form

[r(b)+r(c)
j (4.27)

The diagonal elements of the matrix I" given by the
equation

15 15

g a (fi ) +—' g-Im(ak)[ft dki fki di j
i, l =1 i, k, I= 1

(i &k)

15

+ g [Re(a38)f3! f81 +Re(a3, )s)fst fist +Re(a8, is)f8t fisi
1=1

(4.28)

define, at the same time, the diagonal relaxation times.
With the relation [8]

(4.29)

it may be verified that the inequality

I (c))0
/I (4.30)

is satisfied. From Eqs. (4.16)—(4.18) one finally gets the

expressions

( o)+f +f
r(;,) =-,' [f,+f j,
I (c)—I (c)—g

44 55 J +

r,",=r(;,)=-,'[c ( )+3f +f j,
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1'ss'=
6 {13f+ +f ]-

r99'=rio'io=, '{ „(,)+f+ f —
]

(~o)+f(c) (c)

=f'", = l{c»(~o)+3f+ f —]-
1 Is'i5=-'{2f+ f ]—-

(4.31)
—Hs lk~ T

pti=Z 'e ', Z =trs(e *
) .

In the high-temperature limit one finds

&S„'~'&=—,'Itr (S„'~')—tr (H /k Ts„'~')] .

With the relations

(4.38)

(4.39)

trs(Hss J') =trs(Hssi~~) =0, trs(Hss~~~) =2coL
for the expansions of the diagonal relaxation times in the
spectral density functions.

To proceed further, we evaluate the diagonal relaxa-
tion times in the microscopic parameters of the reservoir.
We follow an idea by Abragam and assume that a
snapshot of the reservoir always yields a quasicrystalline
structure for the microscopic distribution of the water
molecules [25]. Thus the mean field that couples to the
components of the total nuclear spin I is generated by the
surrounding reservoir molecules in a triplet state and can
be calculated with the method of Pierre Weiss [29,32].
The statistical properties of the local field will be realized
through the fluctuating functions M„'J'. To become famil-
iar with these principal assumptions we begin with the re-
lation

Hs~, „ I„e XS ~ p=x, y, z
J

(4.32)

for the components of the interaction Hamiltonian (4.1)
with the abbreviations

6~F=
5

1/2
2 S (J) —~ ~(J)g(J)

V & p ~ pv v (4.33)

By comparison of the two relations (4.32) and (4.34) one
gets

Bi,= ——g g M,'~'
&
S"'

& n,
j v=1

(4.35)

for the local field in the z direction [n, =(0,0, 1)]. The
Weiss approximation consists of replacing the spin opera-
tors of the reservoir particles by their expectation values.
Analogous results follow for the x and y components.
Consequently, one may write the total local field in the
form

On the other hand the z component of the local field is
given by

(4.34)

(4.40)

one may introduce the following definition for the corre-
lation functions of the fluctuating field 81..

h„.(t) =K g tr„[P~M,'t,'(0)M,", (t)], (4.41)

where K is an effective coupling constant. According to
present knowledge the evaluation of these correlation
functions is possible only under some simplifying assump-
tions. It has been assumed in all theoretical treatments so
far that the properties of h .(t) are entirely determined
by rotational and translational diffusion dynamics of the
molecules. As far as the explicit time dependence is con-
cerned we will follow this point of view without
modifications. However, the weight with which these
processes determine the relaxation rates is also affected
by another important stochastic process, namely, the
fluctuating formation and breaking of hydrogen bridges.
From a purist point of view one should construct, conse-
quently, a universal conditional probability density
comprising at the same time all three stochastic processes
and perform the calculation in the same way as has been
done for diffusion only. On one hand this is not practic-
able on the basis of presently available data which, on the
other hand, suggest a reasonable alternative treatment
due to obviously different time scales. In a comprehen-
sive review article [33] the lifetimes r/ (H bond broken)
and aliis (H bond intact) are given over a wide tempera-
ture range. We will see that these values are shorter than
rotational or translational correlation times, in most
cases by more than one order of magnitude. Assuming
that diffusion dynamics is effective only in the absence of
hydrogen bridges, these processes take place during a
fraction of time, which is given by ~I/(rI+~iis). This
determines the effective coupling constant as

3

Bi = ——g g (M,",' &
S'~'

& n, +M"'
&
S"'

& n~
j v=1

Tf +VQB
(4.42)

+M,'J'&S'&'&n, ) . (4.36)

The expectation values of the bath operators S„'' can be
calculated with the equation

&s~~'
& =t.,(s„'J'p,), (4.37)

where the thermal equilibrium state p& of the open quan-
tum system is given by

where s is as defined in (4.33). Note that E = E is the re-
sult in agreement with earlier approaches and valid obvi-
ously in the limit ~f )&~&B in this treatment.

For the evaluation of the correlation functions some
standard calculations for a dipole-dipole interaction
Hamiltonian yield the relationship between the M„' ' com-
ponents and the spherical harmonics [29,34,35]. We omit
the details but quote some intermediate results with the
upper index j dropped. In terms of the abbreviations
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24m

5

1/2

(4.43)

F =br Yz(Q),

F '=br Y+—'(II),
F—=br Y2 (0),

(4.44)

+tr„[P~F 'F ' (t)]
—trq [P~F 'F ' (t)]
—tr~ [P~F 'F+' (t)]] . (4.45)

A complete list of all expansions of the functions h;k(t)
will be given in Appendix A. Because there is no analyti-
cally accessible procedure to calculate the quantum
correlations trz [PttF'F (t)] one assumes a classical be-
havior of the reservoir rnolecules. This assumption is
based on the fact that the mean de Broglie wavelength at
room temperature [36,37]

k~ =(2Mk~T) ' =0.07 A (4.46)

is small compared to the intermolecular distance d; =3.5
A. Thus, it is possible to link the correlations h (t) to.
the classical propagator P(y2, y„t) in the following
manner [25,38]:

tr„[PttF F" (t)]
= f fp(vi)P(v2 Vl, t)F (vi)F" (v2)dvl, dv2,

(4.47)

where m, n=0, +1,+2. P(y2, y„t) is given by the solu-
tion of the appropriate Fokker-Planck equation [39,40].
To treat this problem we first make some remarks con-
cerning the rotational and translational motion of the wa-
ter molecules. The rotational motion of the water mole-
cule, inAuenced by a continuous bombardment from oth-
er molecules, produces a random behavior of the in-
tramolecular dipole-dipole interaction. The translational
motion of a water molecule relative to a neighboring one
produces a random behavior of the intermolecular
dipole-dipole interaction. Furthermore, translational and
rotationa1 motion may be investigated independently of
one another; in other words, we neglect rototranslational
effects. In a next step we evaluate the rotational correla-
tion functions h, (t) of the bath. An extended descrip-
tion of the underlying method can be found elsewhere
[25,41]. For this reason we present here only the basic
equation

trz[P+F F" (t)]= ro g e '8k 61,„4m

one gets the following expansion of the reservoir correla-
tion function f» (t) from the Eqs. (4.1) and (4.2):

hi, (t)=Eh, [tr~[P~F+'F+' (t)]

with m, n =0,+1,+2. Recall that r2 denotes the rota-
tional correlation time while r0 is the intramolecular dis-
tance. If use is made of Appendix A, (4.48), and (2.37),
one obtains

c .(co)=0, qWq',
(4.49)

where X denotes the density of spins per cm, D is the
translational diffusion coefficient, and d is the molecular
diameter. The spectral density functions c (co) are pro-
portional to the integral

I, (co)= f du u[J3i2(u)] [u +co r ]
0

r=d l2D .

Its solution is [42]

I, (z) =p
&
(z)+e '[p2(z)cos(z)+p3(z)sin(z) ],

where

p, (z) = —2z +z

p2(z) =2z +4z +z

p3(z) = —2z +z, z =&2ico~1 .

(4.52)

(4.53)

(4.54)

The limit of I, (z) as z ~0 is —,', . Hence one finds for the
Fourier transforms cqq (co) the following results:

c .(co)=0, qWq',

c „(co)=c22(co) =—,'c33 (co) = ,'KN(dD ) 'I, (co) . —
(4.55)

The Hilbert transforms can be deduced from the solution
of the integral

I2(co)= b'f du—[J,i2(u)]'[u(u +co'r )]

c „(co)=c22(co) = 3c33(co)= ro—
1+ cor2

for the spectral density functions. According to (2.38) it
follows immediately that the Hilbert transforms are given
by

s (co)=0, qWq',
(4.50)

s'„(~)=s22(~) =-,'s,', (~)= ro '
1 + cor2

The translational diffusion can be investigated in a
similar manner [1,25]. The basic result is

tr~[P~F F" (t)]
=( —1) ' +"' 'NA d—

4

+2
x 6 5—m, m m, —n

m = 2

X f [J (u)] e I I d 'u 'du

(4.51)

(4.48)
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As a result one gets [43]

Iz(z)=vrIp((z)+e '[p2(z)cos(z)+p3(z)sin(z)]], (4.57)

where we have used the abbreviations

pl(z)=(3z )
' —(2z )

' —z

pl(z)=z —(2z )

p3(z) —z +2z +(2z ), z =+2~co~'y

(4.58)

The limit of I2(z) as Z~O is 0. Therefore the Hilbert
transforms s . ( co ) are given by

2 4

r,', = 6Ay ~f
(5d + 18m.¹o)r2,3 6

25d yo( fr+ rHs)
(4.62)

where the extreme narrowing case has been assumed and
D has been replaced by

the coherence vector. This will be done in the next sec-
tion, but we anticipate here that after some faster tran-
sient behavior, the essential time decay of the diagonal
density matrix elements is like exp( —I ~4't) and, there-
fore, T, is given directly by the inverse of I 44'. The final
explicit formula in terms of all relevant parameters is
given by

sqq (co) =0, qWq', D ' = 18&2/d (4.63)

KXs ( l ( ci) ) =s 22 ( co ) = 4 s 33 ( co ) =—sgn( co ) I2 ( co )

(4.59)

We are now in a position to verify the relations (4.22).
Bearing in mind (4.50) and (4.59) the imaginary parts of p
and X may be omitted. Because the Hilbert transforms
s;; (co) and s;; (co), i = 1,2, 3 are odd functions of co, the real
part of A, is zero, while the level shift Re((tc) is determined
by

Re((M) = ro +— I2(coL ) .
3 KX

2lr 1+(nl~r2)2 lr 2dD
(4.60)

The remaining relation v=s33(co=0) =0 follows directly
from (4.50) and (4.59). An average numerical estimate
using parameter values from Table I in a static field of 1

T yields for Re((tt) about 10 Hz, that is much smaller
than the indirect nuclear coupling J~H=7. 18 Hz and
can, therefore, be neglected in the following.

Substitution of the calculated spectral density func-
tions in (4.31) leads to the desired expressions for the di-
agonal relaxation times in terms of the microscopic pa-
rameters of the reservoir. We only need to focus our at-
tention on specific values of the matrix elements I 44', I'55':

p( ) p(g) E —s + 3 KI(I I ( ) (4 61)
2m 1+(nil r2) 2 dD

The collection of all diagonal relaxation times can be
found in Appendix B. In order to find the relationship
between the relaxation times t T„Tl} and the I';,"s one
has to study the solution of the differential equation of

as follows from the Rayleigh-Stokes relations [1,25]. The
temperature-dependent quantities are ~f, ~HB, and ~z.
Given the data by Bertolini et al. [33], one can use mea-
sured longitudinal relaxation times for a determination of
the rotational correlation times ~z. Note that from our
point of view ~2 is a "free" correlation time, that is one in
absence of any interrupting effects caused by hydrogen
bridges. Qualitatively, this must yield values which are
longer than those obtained from the conventional theory
for which ~2 must be interpreted as an "effective" correla-
tion time, including somehow the neglected bridge
effects. A detailed evaluation and comparison is
displayed in Table I on the basis of available data (includ-
ing some extrapolations) for a wide temperature range.
The following parameter values have been used:
d=3. 5X10 cm, ro=1.5X10, cm, %=6.67X10
cm, %=1.055X10 erg s, y=2. 675X10 s ' G

For completeness we also give values in the limit
7 f )%7HB where one should get more or less the standard
values as obtained from Redfield theory. The discrepan-
cies are by no means surprising since the level of approxi-
mations is different in the two approaches.

V. GENERALIZED BLOCH EQUATIONS

A. Static field case

In this section we solve the coupled system of
differential equations for the components of the coher-
ence vector (2.12) in the static, homogeneous magnetic
field. We start with the equation

TABLE I. Parameter values T, and ~'s for a range of temperatures. T, : experimental values [45];
Tf 7 Ha. hydrogen bridge data [33]; y2. calculated from Eq. {4.62); r2 ': values of y2 in the limit
Tf ))r„s; r, : values of y2 from ordinary Redfield theory [25,33].

T ('C)

10
20
25
30
40
50
75

Tl (S)

2.39
3.15
3.6
4.03
5.0
6.02
9.09

~f (ps)

0.329
0.319
0.313
0.307
0.298
0.289
0.272

+HB (ps)

0.683
0.579
0.536
0.497
0.431
0.377
0.278

~2 (ps)

18.70
12.98
10.97
9.44
7.11
5.56
3.23

(ps)

6.08
4.61
4.04
3.61
2.91
2.41
1.6

4.29
3 ~ 15
2.73
2.39
1.87
1.57
1.0
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1S

q, = g h„f„„s,m=1, 2, . . . , 15.
n=1

(5.1)

1S

Hs= Q h„F„=h3F3+h()F((+h,5F(~, (5.2)

where

1 1
h 3

= — —(coL +J ), h s
= (r)~ —J),

2 6

1 J
h, s

= — 2a)L ——
3

(5.3)

The h„'s can be evaluated from the expansion of the ma-
trix Hz in terms of the matrices F„F2, . . . , F». The re-
sult is

(c)—2t 44
(c)t 44 0

V3

V8

V1s

I (c) &s I (c)
44 6 44

0 2 21(c)
44

2v'2 (,)
44

I (c)4
44

V3

V1s

(5.7)

for the diagonal density-matrix components. Since the
matrix is symmetric and, therefore, diagonalizable, the
solutions can be found by the simple standard
eigenvalue-eigenvector method [11,44] in the form

x(t)=c, e 'w"'+c2e 'w' '+c3e 'w' ', (5.8)

where the eigenvalues are given by

Thus with the symmetry property (2.18) one is able to
determine the matrix Q. The computation of the matrix
8 is more complicated. The basic equation is given by
the relation (2.25) with M=15. Note that the first term
defines a symmetric matrix. The somewhat lengthy rou-
tine calculations are omitted. The results, especially the
connection between the matrix elements r, and the diag-
onal relaxation times I'; can be found elsewhere [43).
To treat the remaining vector k, one uses the following
equation:

w("= 5
6

v'2
3

1

2

(2)— v'3
6

3

3t 44', ~2= —I 44', ~3=0

v'6
3

v'2

3

3

(5.9)

(5.10)

1S

ks = —
—,
' g Im(a, „)f,„„

E, k=1
(i (k)

s=1,2, . . . , 15 . (5.4)

The information (4. 16)—(4. 18) about the detailed struc-
ture of the relaxation matrix 2 yields for the components
k& the relations

The vector of solutions is defined by

u3(t)
x(t) = u()(t)

u(s(t)

B. Alternating field case

(5.11)

ks =0, s%3, 8, 15,
1 1

k3 —Im(a6'7 ), k() = — —Im(a/7 )
2 2 2 6

1
k, 5= — —Im(ab7) .

3

(5.5)
Hs(t) =cuL I„+cut I2, +JI( I~+ W(t)

with

(5.12)

ln an additional alternating field
B(t)= [ 2B,cos(cu—t ),0,0] the Hamiltonian may be writ-
ten in the form

In consequence of (4.18a), (4.49), and (4.55) the com-
ponents k3, k8, and k1s vanish, too. Hence, k=0 holds
for the reservoir under consideration. This agrees with
the fact that in the thermal equilibrium the triplet states
are nearly equally populated. For two neighboring triplet
states with energies E„Eb, and occupation probabilities
p(E, ) and p(Eb ), one has

W(t)= —,'W(e' '+e ' ')

or else

W(t)= —p B(t)=—,'yB, (I++I )(e'"'+e ' '} .

By comparison of (5.13) with (5.14), one gets

(5.13)

(5.14}

p(E, ) =exp, E, (Eb .
p Eb ~T

(5.6)

The ratio BI /k~T is approximately 10 at room tern-
perature. Therefore, one may assume that
p(E, )/p(Eb ) =-1. The diff'erential equations for the com-
ponents of the coherence vector are as follows. Due to a
decoupling, one distinguishes six linear and homogeneous
systems of first-order di6'erential equations. Four of them
involve an antisymmetric (2X2) matrix, one a symmetric
(3 X 3) matrix, and one a (4X4) matrix of mixed symme-
try. We present here only the system

W= yB ((I++I ) (5.15)

and the matrix representation

0 0 0 0
0 0 v'2 0

W(t) =to,cos(cut ) (5.16)

o o v'z o

of the operator W(t) with respect to the basis ~p; ), where
co(=yB(. For the ratios (co) lcoL ) usually met in nuclear
resonance the Bloch-Siegert shift may be neglected,
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which means that the action of the alternating field can
be taken into account in the rotating-wave approximation
[46-48]

glk(t)Pkl(t) glk(t)gkl(t)Pkl(t) Pkl(t) (5.31)

Substituting (5.31) into the right side of (5.26) gives us the
new result

pr RwA( t )
1 cv ( e

—i cotz + +e irotz —
)2 (5.17)

U(t ) =exp(icotz, ), (5.18)

The time dependence of W (t) is eliminated by trans-
forming to a rotating coordinate system. By introducing
the unitary operator

.(d) 4

pj (t)= g [Ld(t)];"&pk/(t) .
k, 1=1

Use has been made of the definition

[Ed(t)],"J~=gj(t)g/k(t)(Ld ) j~ .

(5.32)

(5.33)

any operator 0 is transformed into

0= U(t)OU (t) .

By direct calculation one verifies that

(5.19)

From the structure of the Hamiltonian part Lz of the
Kossakowski generator I it is obvious that the commuta-
tion relation [dldt, Lk ]=0 is satisfied. Thus, we are left
with the condition

~RWA ]2~1' . (5.20) ,Ld(t) =0
Bt

(5.34)

Furthermore, the master equation in the rotating frame is

p(t) = [L&+Ld(t)]p(t),

where

Lk = —i [(coL cv )I, +J—I/ I2+ co,z„,.],
15

Ld= —,
' g a;. [[F;(t),.F (t)]+[F,(t). ,F (t)]] .

(5.21)

(5.22)

(5.23)

Here, we assume again a constant matrix A. Now, fol-
lowing the standard procedure [8,19], we use the supero-
perator notation

to reestablish the original structure of the master equa-
tion (2.5) in the rotating frame. With the help of the two
equations

P; Ld(t)P(t) Pj = Q [gcj(t)g/k(t)(Ld )i&Pk/(t)]ai , at

(5.35)
and

4

d( ) P~ ) Pj X g j(t)glk(t)(L'd )jPkl(t)'c}t
k, l =1

(5.36)

m, n =1

and the abbreviation

+(p;~[F ~p„)(p ~, F„]~p ) ] (5.24)

it follows that the commutator in (5.34) vanishes only if
gj(t)g/k(t) =const for all i,j,k, 1 =1,2, 3, 4. With respect
to the relations (5.28) and (5.29) there exist only two pos-
sibilities for the product g;j(t)g/k(t) to become time in-
dependent:

g,,(t)= U, , (t)U,, (t) (5.25)
.(d)

to get the matrix elements p," (t) of the operator

p '"'=Ldp in the compact form

.(d) 4

P~~J (t) =gij(t) y (Ld ),"j'p/, l(t) .
k, 1 =1

In a next step we investigate the product

g/J(t)g/, /(t) = U;; (t) Ujj(t) U/, /, (t) U/l(t) .

(5.26)

(5.27)

Evaluation of the matrix elements of the operator U
yields

gij (t)glk(t) ~ij ~k/

g J(t)g/k(t)=5;k5J/ .

(5.37a)

(5.37b)

(~d )j ( d )ij [~j'~k/( 1 ~ k )+~ik~j/] (5.39)

To get the connection with the components of the coher-
ence vector in the rotating frame, one needs the relation

The combination of the two possibilities leads to the
equation

gi (t)glk( ) ~' ~k/( ~'k )+~ik~j/

Consequently, one obtains for the dissipative part Ed the
following result in superoperator notation:

g, (t)gkl(t)=exp[i(m; —m +mk m/)cot]—
and therefore

(5.28) vk =tr(Fkp) =tr(Fkp'"')+tr(Fkp'"')
A. (Q) /

A. (d)=Vk +V (5.40)
gi;(t)gkk(t)=gk(t)gk;(t)=1, V(/, k) . (5.29)

where

By utilizing (5.25), (5.29), and

p,,(t) = U, , (t)U,, (t)p;, (t),
we obtain

(5.30)

15

p(t)= Fo+ g v;(t)F, . —
i=1

Thus, one finally finds, on one hand

(5.41)
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4
k"'= —

~ g &p, lFklp;&[&p;ll(toL, —co)I, +JI, I2]lpga&&pilp(t)lp, &+&p;Ice~~. lpt&&pilot)lp, .
&

i,j,1=1

—
&p; Ip(t) lp~ & & pi I [(~L, —~)r, +JI, I2] lp, &

—
&p; I p~t) Ipi & &p, Iro, r, Ip, & ],

and, on the other hand,

(5.42)

& k"'= g p~ IFklp; & Q (Ld) J'[5;~5~t(1 —5;~)+5; 5 )]p ((t), k=1,2, . . . , 15 (5.43)
i j =1 m, l =1

. (h) .(d)
for the two contributions Yak and uk . Now, with the preceding equations (5.42) and (5.43) the generalized Bloch equa-
tions in the alternating field case can be written down. A detailed calculation yields two homogeneous systems of first-
order differential equations. We present here only the system with the (6 X 6) coefficient matrix

U1 I (c)
11 [(cot —co)+J]

T

V1

A.
V2 —[(coL —co)+J] I (c)

11 0 V2

U4 0 I (c)
44 0 V4

U5 I (c)
44

U9 0 I (c)
11

—[(cot —co) —J ]

V1o . [(~oL —co) —J ] I (c)
11 . V1o .

(5.44)

whereas the other one will be given in Appendix C. As in
the static field case the nonzero matrix elements of the
coefficient matrices are composed of certain relaxation
rates, the indirect coupling J, the effective resonance fre-
quency coL, and the pair of frequencies (co„co) character-
izing the alternating field. It is interesting to note that in
comparison with the static field case no new diagonal re-
laxation times enter the matrices. Furthermore, the
coefficient matrix in (5.44) is purely antisymmetric
whereas the other one in (Cl) is of mixed symmetry.
Both systems, can be solved by the same standard
method, as mentioned in Sec. V A.

VI. DISCUSSION

The application of the mathematically rigorous con-
cept of completely positive quantum-dynamical semi-
groups for Markovian master equations to the problem of
proton-spin relaxation in water leads to more general re-
sults than in Redfield's theory. Especially, the transfor-
mation of the Kossakowski master equation into
coherence-vector form, using the Lie algebra of the spe-
cial unitary group SU(4), allows the derivation of general-
ized Bloch-type equations for the four-leve1 system under
consideration. In particular, we have obtained two sets
of homogeneous linear systems of differential equations,
one for the static field case, the other for the alternating
field case. If needed the corresponding eigenvalue prob-

lem must be solved on a computer. Recall that the solu-
tions of these generalized Bloch equations fulfill the von
Neumann conditions of hermiticity, trace preservation,
and positivity as required by the general laws of quantum
theory. This is guaranteed by the fundamental concept of
complete positivity, which represents an essential distinc-
tion in comparison to Redfield's theory. It is worthwhile
to note also from the preceding sections that one can
study finer details concerning the relaxation processes
with the new theoretical approach [8,19]. Moreover,
with the Davies theorem one is able to link, in a very gen-
eral manner, the matrix elements of the relaxation matrix
A to the Fourier transforms c;z(co) of the correlation
functions h;k(t) of the reservoir. Finally, to get a form of
the general Bloch equations similar to that obtained from
Redfield's theory, one only has to find the relations be-
tween the diagonal matrix elements I,'.,". of the matrix I"
and the a;k 's of the matrix A. As a result one obtains the
general Bloch equations in terms of the spectral density
functions c;k (co).

Following the method of Pierre Weiss to calculate the
local mean field that couples to the components of the to-
tal nuclear spin I, we have established general expressions
for the quantum correlation functions h;k(t) of the bath.
They are generated by a classical propagator. This is
justified as seen by comparison of the mean de Broglie
wavelength of the reservoir particles with the interrnolec-
ular distance. Using the standard procedure to find the
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rotational and translational contributions to the correla-
tion functions, one finally gets the spectral density func-
tions in terms of the microscopic parameters of the reser-
voir. Thus the diagonal relaxation times and, therefore,
the coefficient matrices of the general Bloch equations,
for example, depend on the parameters ~Hz and ~f of the
hydrogen bond dynamics of the reservoir. Now, the
study of the differential equations for the components of
the coherence vector in the static field case suggests that
the relaxation rate I 44' can be used to interpret the mea-
sured longitudinal relaxation time ~& ~ The resulting inter-

pretation of rotational correlation times or else, by the
Rayleigh-Stokes relations, of the self-diffusion constant
must necessarily refer to diffusion dynamics of free water
molecules in the liquid in absence of any hindering by in-
termolecular bonds. The latter effect is accounted for by
an effective coupling constant. Disregarding the hydro-
gen bond influence, we have also shown that a systematic
derivation of Bloch equations from quantum-dynamical
semigroup concepts leads to relaxation or correlation
times comparable to those obtained from conventional
Redfield theory.

APPENDIX A

After some calculations, one finds the following expansions of the reservoir correlation functions h;k(t):

h»(t)= [tr„[P„F+'F+' (t)]+trz[P„F 'F ' (t)]—trz[P~F+'F ' (t)]—trz[P„F 'F+' (t)]j,
Q2

(A 1)

h)2(t)=i [trz[P&F+'F ' (t)]—trz[P+F+'F+' (t)]+trz[P&F 'F ' (t)]—trz[P+F 'F+' (t)]j,
Q2

(A2)

h)3(t)=
2 [trz[P+F F ' (t)]—tr71 [PFF F+' (t)]j,

6 52 (A3)

h21(t)=i [trz [P+F+'F ' (t)]+tr71 [P11F+'F+' (t) j —trz [P+F 'F ' (t)]—trz [P~F 'F+' (t)]j,
Q2

(A4)

h22(t)= [trz [P~F 'F ' (t)]+tr7([P~F+'F+' (t)]+trz [P~F 'F ' (t)]+trz [P7(F 'F+' (t)]j,Q2
(A5)

h23(t)= — —i [trz[P+F F ' (t)]+trz[P1(F F+' (t)]j,
6

(A6)

h 3, ( t ) = — [ tr71 [P~ F'F ( r ) ]——tr~ [P~F+ 'F ( t ) ]j,6 b,
(A7)

h32(t) = —i [tr„[P11F+'F (t)]+tr1([P+F 'F (t)]j,
6 b,

h33(t) =—
2 trz [P„FF (t)] .

8 X p pQ

3 Q2

(A8)

(A9)

APPENDIX 8

The list of the diagonal relaxation times I"';,". is as follows:
c

1 (c) 1 (c) 1 (c) 1 (c)
&

—6
11 22 99 10, 10 2 0 2 3 2 1+( )2 dD 15 4 1 L

L

(B1)

I 33
=——ro(,) + — I, (03L ),3 KX

1+(coL72)2 4 dD
(B2)

~() ~() K 6 +2 +3 KNI
( )55 "0 1+( )2 2 dD 1 0)L (B3)

T

I =I =I =I =—r ~ —+— +(~)— (~)— (c) (c) K1V 2 g
66 77 1313 1414 0 2 3 2 1+( )2 gD 15 4 1 L+ I (co )—(B4)

~(,) 13 K 6 r2 13 KNI
6 7r 1+(coL r2)2 4 dD

(B5)
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r =r =—r ~ —+(c) (c)
11 11 12 12 0 2

7r

r

I +EN 8 +3I ( )
I+(cot r, )'

~2
15, 15 3 0 I+( )2 dD I ~L (87)

APPENDIX C

The second homogeneous system of first-order differential equations in the alternating field case shows the following
structure:

V3 1I (c)
44

3I(c)
44 V3

V6

V7

Vs

CO1

v'2

3 I(c)
44

I (c)
66

(co —a) ) I (c)
66

(
3 )1/2
2

(
3 )1/2
2

13 I (c)
44

C01

v'2

(
2 )1/2~
3

2v 2 (c)
44

V7

vs

I (c)
11,11

2(coL —m) I (c)
11,11

N]

v'2 V 12

V13 I (c) —(BL —co)

(
2 )1/2
3

I (c)
66

2C01

v'3 V14

A.. V15 0 2 p(c)
44

2CO1

v'3
4T (c)

44 V1
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