
PHYSICAL REVIEW A VOLUME 47, NUMBER 4 APRIL 1993

Accurate ground-state calculations of H2+ using basis sets of atom-centered Slater-type orbitals
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The variational method is used to find the ground-state energy of the molecular hydrogen ion, Hz+, by

employing a linear combination of atomic orbitals (LCAO) of the Slater type, all with the same exponen-
tial parameter g. For the equilibrium position, R =2 a.u. , eight-digit accuracy was achieved using 21 or-
bitals on each nucleus, with the highest principal quantum number, N=6. Beyond R =50, thirteen-

digit accuracy is obtained. The wave function is given for various LCAO at the equilibrium position.
Strategies developed here will be useful in our studies of polyatomic nonlinear molecules.

PACS number(s): 31.20.0i

INTRODUCTION

Basis-set methods, i.e., the algebraic approximation
method, in molecular electronic structure calculations
have been shown by Wells and Wilson [1] to give excel-
lent results for simple molecules, including H2+. They
employed an even-tempered basis set of Gaussian-type
orbitals (GTO's). In this paper, we use the more "intract-
able" [2] Slater-type orbitals (STO's) as basis with the
hope of developing strategies so that we will be able to
take advantage of their more physical nature for use in
scattering phenomena and molecular structure calcula-
tions. Wells and Wilson also emphasize the advantages
of basis-set methods over methods employing numerical
grids, especially in regard to nonlinear polyatomic mole-
cules.

Bishop and Schneider [3], in their study of transforms,
remarked that completeness in basis sets for s orbitals
may be achieved by variation of the principal quantum
number or the exponential parameter. Thinking of the
first possibility, Jones, Etemadi, and Brown [4] used s or-
bitals from 1s to 8s to obtain convergence with these
spherically symmetric orbitals on the nuclei of H2+. En-
couraged by these results, we extend our study by use of
an ordered sequence of orbitals with increasing principal
quantum numbers and angular momentum. (All orbitals
have the same orbital parameter or screening constant g.)

By this procedure, the ground-state energy of H~+ for
nuclear separations from 0.2 to 50 a.u. is calculated to an
accuracy of from six to thirteen digits. In addition, the
wave function for the equilibrium position (R =2.0 a.u. )

is given for various numbers of orbitals.
Finkelstein and Horowitz [5] were the first to use ls or-

bitals on each nucleus with an adjustable orbital ex-
ponent. Dickinson [6] (corrected by G.eller and Frost [7])
used ls and 2p on each nucleus. Miller and Lykos [8]
used a ls, 2p, and 3d orbital on each nucleus. (We note
that our result for a 1s, 2s, and 2p orbital on each nucleus
is more accurate. )

LCAO METHOD FOR H2

y= Ar" 'e &"Y~M(e, cp), A =
1/2

(2g)2N+ 1

(2N)!

We take a straightforward linear combination of STO's,

high N —1

/=K g g C~L Attr 'e ~ Yt (H, tp),
N=1 L =0

as our LCAO for the ground state (M = 0) and center a
set on each nucleus, i.e., nucleus a and b. K is the nor-
malization constant chosen such that

%*Id~——1 0=
~ + b

TABLE I. Exponential parameter g at the lowest energy for
various values of the internuclear distance R and maximum

principal quantum number Nh;gh for a LCAO, pertaining to
H, +.

Nh gh

0.2
1.0
2.0
3.0
20.0
50.0

1.94
1.54
1.24
1.09
1.00
1.00

2.12
1.91
1.58
1.34
0.98
1.00

2.50
1.93
1.70
1.56
0.98
1.00

2.50
2.11
1.76
1.57
0.97
1.00

2.20
1.93
1.68
1.00
1.00

2.30
2.00
1.80
1.00
1.00

In the variational treatment of a quantum-mechanical
system, the g function with one or more adjustable con-
stants or parameters is assumed as the solution of the

problem, and then the parameters are adjusted to mini-
mize the energy. For our specific example, we take a
linear combination of atomic orbitals (LCAO), all with
the same value for the nonlinear parameter g, for our p
function. A STO has the form
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C~l are the linear parameters and N„,g„ is the value of
the largest principal quantum number used for a given
trial (it will vary from 1 to 6).

We write the Schrodinger equation
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and substitute in the 0 under consideration, and arrive at
a secular equation for the energy (eigenvalue) [9]. This ei-
genvalue problem was solved on a CRAY-YMP comput-
er using an IMSL program. The matrix elements for this
problem can essentially be written as combinations of
overlap integrals [10]. Tai [11]pointed out numerous er-
rors in early work that evaluated overlap integrals. It is
only recently that reliable methods for the evaluation of
STO overlap integrals with high quantum numbers have
been developed (see Weniger and Steinborn [12], and
Jones [13]).

RESULTS

Table I shows the values for g that give the minimum
energy for various values of the internuclear distance and

Table II shows the corresponding electronic ener-
gies. The exact energy for the first row was taken from
Wind [14]. The other exact energies were taken from
Madsen and Peek [15]. (The values were obtained by
subtracting the Coulomb energy, 1/R, of the nuclei from
the electronic energies. ) Using Xh;sh=6, which puts 21
orbitals on each nucleus, and R =2, we obtain the same
energy to the eight digits given by Wells and Wilson [1]
who used 42 Gaussian-type orbitals on each nucleus. The
faster convergence of STO's was expected. For the large
separation of nuclei at R =50, we obtain full thirteen-
digit agreement with Madsen and Peek, for Nh;gh =5, i.e.,
15 orbitals on each nuclei. This complete agreement is
found for all values of R beyond 50. At R =0.2, we can
only use ten orbitals (K„; h =4), otherwise, linear depen-
dencies prevent the IMSL program from functioning.
Nevertheless, even at the small distance of R =0.2, prac-
tically six-digit accuracy is achieved. Table III records
the orbital coe%cients obtained from the eigenvectors of
the energy minima at the equilibrium distance, R =2 a.u. ,
for a various number of orbitals determined by Nh; h.

CONCLUSION
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We have shown that STO's are a viable alternative to
GTO's when dealing with a simple one-electron molecule.
Furthermore, it has been demonstrated that orbitals with
varying principal quantum numbers are an e6'ective re-
placement for even-tempered basis sets that mostly vary
the nonlinear orbital parameters. The Lowdin o;-function
method [16] has proven to be effective in a production
mode for generating accurate values of overlap integrals.
More complicated molecules are under investigation us-
ing these methods.
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TABLE III. Coefficients C&J before orbitals that make up LCAO with highest quantum number

Thigh at the equilibrium distance R =2.0 a.u. , for H, . Each nucleus has identical orbi tais. E is the
normalization constant.

Orbital

1s
2s
2po
3$

3po
3do
4s
4p o.

4d o.

4 o
5s
5p o.

5d o.
5fo.
5go
6s
6p o.

6d o.

6fo.
6g o.

6h o.

K

&~;gh =2

1.0
0.597 502
0.185 418

0.131 681

&hgh=3

1.0
0.598 182
0.130488
0.191 573
0.112262
0.045 904

0.105 231

&~;gh =4

1.0
0.636 512
0.112303
0.209 123
0.150 186
0.047 706
0.060 503
0.013 549
0.013046
0.013 812

0.093 3144

&h-gh =5

1.0
0.737 380
0.094 421
0.448 071
0.152 873
0.026 401
0.076 795
0.069 072
0.051 045
0.016 356
0.111965
0.019 395

—0.005 287
0.000 791
0.003 948

0.063 955 1

&h gh
=6

1.0
0.745 909
0.094 957
0.400 324
0.153 366
0.026 356
0.164 076
0.076 866
0.053 648
0.016 315
0.031 038
0.023 338

—0.000 982
0.004 847
0.007 663
0.035 435 1

0.006 673
0.003 870

—0.000 462
—0.002 835

0.001 134
0.063 350 8
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