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Approximate topology and the nonexistence of spin-symmetry species of hindered methyl groups
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The usual assumption of proton spin-symmetry species of hindered methyl groups is not consistent
with the approximate nature of the multiply connected topology of rotation, which leads instead to a
U(1) gauge theory in which wave packets transport three anyons around a void and gain phase due to a
vector potential related to angular velocity. Though spin-symmetry species do not exist, some of their

properties appear at low temperatures.

PACS number(s): 03.65.—w, 35.20.Jv, 76.90.+d

The discussion of methyl rotation entails the introduc-
tion of a closed coordinate space ¢ with a range of 2.
The ““approximate topology” in the title means that this
multiply connected space has no fundamental status. It
merely serves to separate what is observationally impor-
tant in the motion from what is discarded because it is
undetectable. Like any trio of atoms moving as part of a
solid, the triangle of hydrogen atoms in a methyl group
has a quantum state that is a superposition of many basis
functions, and the motion of the atoms including the ro-
tation of the group as a whole is contained in the set of
evolving complex amplitudes. From this large set, two or
three parameters are extracted to describe the evolution
of measured observables, usually associated with the spa-
tial distribution of components of the collective nuclear
magnetism. By associating each basis function with a
value of ¢, the amplitudes are made to define a wave
packet ¢¥(¢,t) which, if it happens to rotate without shape
change, has the form (¢ —wt). After a time 27/, the
distribution of amplitudes with respect to ¢ is restored,
but the state function is different because there are many
basis functions for each value of ¢. The methyl-group
shape, for example, is not restored after a revolution,
though the change is not directly detectable. In addition
to its shape, a wave packet has a phase and, in general,
this changes during one rotation. Since other coordinates
have been discarded, the wave-packet phase carries the
residual information that the true topology is simply con-
nected. It is consequently the key to describing interac-
tions with the environment and transformations to rotat-
ing frames.

Existing quantum theories of methyl dynamics (see
[1]-[3] for bibliography) incorrectly assign a fundamental
status to the multiply connected space. This is because
they assume that rotation through 27 /3 cyclically per-
mutes three fermions identified with the nuclei of the
three hydrogen atoms. From this they infer that the
Pauli exclusion principle imposes the constraint
Yo, 1)=AP(¢p+2m/3,t), where A>=1, leading to the con-
clusion that the hindering potential has perfect threefold
symmetry and that there are three species [4] of methyl
group characterized by A=1 or exp(*i2w/3), each with
its own set of spin states. The constraint is inconsistent
with wave packets, rotational phase, coordinate transfor-
mations, and exchange of angular momentum with an en-
vironment. It results from a confusion between fermions
and quasiparticles. Fermion properties are satisfied by a
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basis of Slater determinants, which associate spin states
X,y,z with three lattice sites 1,2,3. In each basis function
(x,y,z), each fermion is equally distributed at all three
sites and has all three spin states. Rotation replaces
(x,p,z) with (z,x,y). If a quasiparticle is associated with
each spin state, then rotation through 2m/3 cyclically
permutes quasiparticles and may be associated with a
wave-packet phase change 270 /3. Spin-symmetry
species result from imposing the Pauli principle on the
quasiparticles instead of the fermions.

The fact that 0 may take any value has led to the term
“anyons.” Wilczek [5] defines them as quasiparticles
confined to a plane and exchanging positions by winding
around a hole, so changing a winding number in a system
in which time-reversal symmetry is broken by rotation.
Theories in which quasiparticles are required to be indis-
tinguishable are restricted to delocalized states in which
the quasiparticles are distributed equally amongst the
three lattice sites, requiring the hindering potential to
have threefold symmetry at all times. It is usually as-
sumed that the dynamics of the environment is con-
strained to maintain this symmetry. Though this is com-
monly regarded as one of the fundamental differences be-
tween quantum and classical mechanics, it is really a
symptom of two contradictory assumptions. The multi-
ply connected topology implies dynamic isolation of the
methyl group, while the influence of lattice fluctuations
implies nonisolation. We may anticipate that with the
near isolation of low temperatures, an approximate three-
fold symmetry and some of the properties of spin-
symmetry species appear as a limiting case. Strictly,
though, spin-symmetry species are incompatible with dy-
namics. Methyl rotation involves the least complicated
nontrivial approximate topology [6—8], which it shares
with the Aharonov-Bohm effect [9]. Three lines of argu-
ment based on topology, coordinate transformations, and
dynamics demonstrate the existence of a vector potential
[8,10] which, being equivalent to the rotational phase, is
the essential element of rotation theory. It governs the
angular velocity of a wave packet and the rotational iner-
tia of the methyl group.

The motion of methyl protons is confined to a plane
with a zone near the axis of the methyl group where the
proton wave functions are almost zero. -By notionally ex-
cluding the protons from this region, we convert the
space on which they move to a multiply connected one.
This is similar to the exclusion of the electron from the
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solenoid in the Aharonov-Bohm effect and results in what
Shulman calls an approximate topology [6]. The true
path of the complex of methyl group and environment is
simply connected [11], but the decomposition into methyl
rotation and environmental motion discards coordinates
whose change counts rotations. They are replaced by a
logically essential topological property of the artificial
multiply connected rotation space. The paths of rotation
divide into homotopy classes with different winding num-
bers [6—8]. Because of the hole, it is not possible to de-
form paths belonging to different classes into each other.
This is linked to the absence of a cyclic boundary condi-
tion. A wave packet making one circuit of the space in a
right- or left-handed sense changes its winding number,
while its phase changes by 270, where o is the average
wave number of the wave packet, connected through the
energy wave-number relation to the angular velocity [7].
A moving wave packet has a phase gradient o from lead-
ing to trailing edges. The phase difference between lead-
ing and trailing edges is 27ro. In constructing the multi-
ply connected space, we cause the leading edge of the
wave packet on a circuit n +1 to follow immediately
after the trailing edge on circuit #n, resulting in an abrupt
phase change of 270, due to the change of topology. At
high temperature, o0 and the methyl angular velocity
have broad distributions. At high temperature, the sim-
ple classical hopping model of methyl rotation [12] ig-
nores spin-symmetry species and introduces a distribu-
tion of angular velocities through the reciprocal of a
correlation time. The quantum and classical theories are
thus compatible.

Essential to the spin-symmetry-species assumption is a
dynamic constraint in the form of a cyclic boundary con-
dition

PY(o+2m,t)=1(¢,t) . (1)
This is usually justified as ensuring the singlevaluedness
of ¥(¢,t) on the multiply connected space, but in fact it
cannot relate directly to that space on which ¢ and
¢+27 do not both exist. It relates instead to the univer-
sal covering space [9], and its effect is to restrict o, and
hence angular velocity, to zero. Thus (1) is not consistent
with the high-temperature hopping model. By showing
that it is also inapplicable in the quantum domain, we
eliminate spin-symmetry species and remove the source
of incompatibility between the quantum and classical
theories. Equation (1) is an extension of a time-
independent condition

Yo +2m)=y(¢d) , )
which selects eigenfunctions of a time-independent Ham-
iltonian and accounts for a discrete tunnel frequency as
an interval between energy levels. In contrast, (1) refers
to mobile wave packets. The elementary formulation of
quantum mechanics in terms of stationary states of hy-
pothetical conservative systems gives no indication of the
generalizations that are necessary in introducing time.
This explains the widespread omission of the topological
quantum phase, which is associated with the closed
geometry of the coordinate or Hilbert space upon which
wave packets are deemed to evolve. The condition (1) is
thus only a guess, and a poor one. It implies that dynam-
ics contains no features that are not in statics as
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represented by (2). This leaves no room for inertia,
torque, and angular velocity. It assumes that a symmetry
property of a stationary state becomes a dynamical con-
straint when time is introduced. A simple pendulum il-
lustrates how, on the contrary, a stationary (axial) sym-
metry is dynamically broken with the creation of a new
(azimuthal) dynamical coordinate.

The correct generalization of (2), obtained using path-
integration methods [8], shows that a wave packet mak-
ing a rotational circuit without changing its form changes
phase by 270, replacing (1) by

W, t +2m/0)=1Y(¢,t) exp(i27o) . (3)

There is, however, another more physically meaningful
representation of a rotating wave packet. This is on the
universal covering space where the coordinate (written
¢.) is unbounded. On the ¢.,¢ plane, two important
points are expressed, (a) the fact that the path of the
methyl group (and environment) is really simply connect-
ed, while (b) our choice of coordinates forces an apparent
change of topology. We choose in (3) to regard two
points in space-time as the same point on a subspace at
two different times. This approximation results in the
concept of rotation, but it changes the relationship of
space and time. It is useful to defer this step. The propa-
gation of wave packets and coordinate transformations
are therefore handled on the universal covering space,
and then a mapping transfers the result to the multiply
connected space-time ¢,7. Whereas ¢,¢ is a cylindrical
surface with ¢ parallel to the axis, (¢,,?) is an infinite
plane. A rotating wave packet occupies a strip 27 wide
on this plane, so that ¥ (¢, £2m,t)=0 if ¥ .(¢.,1)70. It
is transferred to ¢,¢ by

Y, 0)=3 P (p+2nm,t) . (4)

As an example, we form a wave packet by superimpos-
ing two states exp[i¢.(octm)] of a quasi-free rotor for
which the energies are (#°/2I)(o0 £m)*

Yo, t)=-expli[(m+o)p.,—(Q+mw)t]}
+exp{i[(—m +o0)p,—(Q—mw)t]}
=2cos[m (¢, —wt)] expli(cd.— Q)] , (5)

where Q=(#/2I)(0c?+m?) and w=(%c /I). The wave
packet whose envelope is 2 cos[m (¢, —wt)] is confined to
a 2m-wide strip by nodal boundaries

QCur+7/2m)<¢,—wt <[(n +1)27+7/2m] . (6)

The effect of (4) is to roll this inclined strip into a cylinder
with a helical seam that separates the leading and trailing
edges of the rotating wave packet. The wave packet fol-
lows a helical path around the (¢, ¢) cylinder. The strip is
inclined to the ¢ axis of the ¢_,? plane at tan” Yw). A ro-
tational impulse at time ¢ has the effect of bending the
strip and changing the pitch of the helical path on (¢,1).
Transformation to a rotating frame also changes the in-
clination of the strip by changing the m values and hence
changing the angular velocity . For example, a trans-
formation that changes m to m —o and —m to —m —o
stops the wave packet’s rotation and removes the phase
gradient. The ¢, plane can accommodate an infinite set
of similar parallel strips with an infinite set of similar
wave packets differing in their winding numbers and so
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belonging to different homotopy classes. Specifying the
winding number of a particular wave packet selects one
strip. Each strip covers ¢,¢, through (4). The operation
¢.— ¢, + 2 transforms to a new wave packet trajectory
¥, which is displaced from the original wave packet on
the covering space. Instead of (1), we have

Y (¢, +2m, )= (¢, t)expli2mo) . (N
In failing to discriminate between the multiply connected
space and its simply connected covering space, or be-
tween wave packets of different winding numbers, (1) in-
correctly assumes rotation to be fundamentally different
from translation as represented on the universal covering
space.

By choosing a reference frame in which the wave pack-
et is stationary, the phase gradient o is made equal to
zero and the quantum numbers in the basis functions are
retained as integers. Now o appears in the angular-
momentum operator for the relative motion of wave
packet and lattice. The classical equation of motion for a
nonconservative rotor I dw/dt =T is derived from the
Lagrangian

L=(Iw*/2)+#0w , (8)
where T = —#ido /dt and w=d ¢ /dt. Transformation to
an arbitrary rotating frame replaces o by o—pu, and
changes the integer quantum numbers m to m +u. The
angular-momentum operator obtained from dL /dw by
the usual operator substitution is

A[(—id/3¢)+o—u] . 9)

The effect of (9) on exp[i¢(m +u)] is the same as
#A[(—i#0/9¢)+ 0 ] operating on exp(im¢), so the expec-
tation value of the relative angular momentum is in-
dependent of the reference frame. The choice u=0
leaves the integral of the torque as a vector potential in
the propagating Hamiltonian, while the choice p=o
makes it appear as a Doppler shift in the wave numbers
of the basis functions. The former is most convenient.
The propagating Hamiltonian has the form
2

i o | —Veos3¢)+ W (d1) . (10

9¢
The last term is the low-symmetry dynamic potential,
which generates and accelerates wave packets. It de-
clines at low temperature to leave the threefold term V.
Then the eigenvalues separate into librational triplets
with the ground-state tunnel splitting identifiable with
3A, where A is an overlap integral connecting functions
localized in adjacent potential wells of — ¥V cos(3¢4). The
tendency of the wave packet to come to rest in the lattice
frame is described by

40— —o/rt s, an
where f(t) represents thermal fluctuations like W. At
low temperature, W—0. The quasistationary states are
combinations of localized functions, which are really am-
plitudes of Slater determinants. In terms of Slater deter-
minants (x,y,z), etc., they are

H=(#/2I)

1/1(k)=(§)1/2[(x,y,z)+ exp(i2mk /3)(z,x,y)
+ exp(idmk /3)(y,2,x)] , (12)
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where k =0, 1, or —1, the energies being
E(k)=—2Acos[2m(k +0)/3] . (13)

The discrete tunnel splitting 3A, the Kramers degeneracy
of k==1, and the approximate threefold symmetry of
the hindering potential are thus characteristic of o0 =0
and the zero-temperature limit.

The functions (12) belong to the A, Ea, and Eb species
of C;. The spin functions (x,y,z) can be expanded in
terms of eigenfunctions of the total spin, four of which
correspond to a total spin F =3 and four to F =1, the
latter dividing into two pairs. These sets of 4,2,2 belong
respectively to A, Ea, and Eb. When the spin functions
are inserted into (12), the coefficients are zero except for
those having the form (A XA), (EaXEb), and (EbXEa),
where the first symbol indicates the value of k and the
second the permutation symmetry of the spin function.
Thus k =0 is associated with F =3 and the other two
with F =1. These properties resemble those attributed to
spin-symmetry species, but they have nothing to do with
fermion indistinguishability, which is satisfied by the
Slater-determinant form of the basis functions. They ex-
press the indistinguishability of the quasiparticles in a
completely delocalized state, which distributes them
equally amongst all three sites. The breaking of the
threefold symmetry makes the quasiparticles distinguish-
able, which does not, of course, conflict with the Pauli
principle.

Without the threefold-symmetry constraint and the
boundary condition (1), the true nature of methyl dynam-
ics as a U(1) gauge theory appears. There are two gra-
dients of the wave-packet phase, the spatial gradient o
and the time gradient Q). In electromagnetism, there are
four gradients which together form a four-potential. In-
stead of the six electromagnetic-field components derived
from the curl of the four-potential in the six planes of the
four-dimensional space-time, there is only one com-
ponent, the torque, because there is only one plane, (¢,?).
Equating the torque to the single space-time component
of the curl of the potential, one obtains

dQ , do
¢ + ot

which can be compared with E = —grad(V)+094 /0t.
The analog of Maxwell’s equations reduces to a single
equation corresponding to Faraday’s law, and this is the
classical equation of motion, torque equals rate of change
of angular momentum.

For a hindered group, ¢ is only sampled in the wells of
—V cos(3¢). Wave packets can be represented approxi-
mately by three complex amplitudes. The resulting
three-vector (or equivalent density matrix) is propagated
by a time-dependent 3 X 3 matrix with properties extract-
ed from (10). There is an analogy with spin dynamics,
though methyl dynamics is based on SU(3) operations
rather than SU(2). The propagating matrix incorporates
fluctuations of the hindering potential W, the tendency A
to delocalize by tunneling, and the vector potential o
representing the inertial effect of previous torques. In the
localized basis (x,y,z), (z,x,y), and (y,z,x), the propaga-
tor is

T =% , (14)
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W cos(pt) Aexp(iy) Aexp(—iy)
S(t)= |Aexp(—iy) Wcos(pt +27/3) Aexpliy) , (15)
Aexp(iy) Aexp(—iy) W cos(pt +4m/3)

where y =270 /3. If p =w, the ripple W and the wave packet rotate quasisynchronously, and the ripple exerts a torque
whose sign depends on their relative phase. If the ripple speeds up, it accelerates the wave packet, changing the vector

potential in response to the torque. In the delocalized representation (12), S becomes

2A cos(y) W explipt) W exp(—ipt)
S'(t)= | Wexp(—ipt) 2Acos(y+2m/3) W explipt) (16)
W expl(ipt) Wexp(—ipt) 2Acos(y+4m/3)

The ripple term is resonant when #p is equal to one of the
differences between a pair of diagonal elements. Then
one of three types of two-component wave packet is ex-
cited. Differences between the diagonal terms in (16)
govern the two modes of evolution of a wave packet,
namely, rotation and shape changing. The evolution of a
wave packet from pure tunneling motion (shape chang-
ing) to pure rotation can be compared with the trajectory
of a pendulum changing from planar swinging to conical
rotation. To show this, we form a localized three-
component wave packet by superposing equal amplitudes
of the functions ¥(k). This may be done by first forming
three two-component wave packets like (5) on the univer-
sal covering space, and then transferring them to ¢,¢ us-
ing (4), where they interfere, giving
Y(t)=[a,,a,,a;]1=a,(x,y,z)+a,(z,x,y)+a;(y,z,x) ,

(17)

a,=1+ expfi[o;t +2(n —1)7/3]}
+ expf{i[wyt —2(n — 1) /3]} , (18)
fiw, =2A[ cos(y)— cos(y +2nm/3)] . (19)

The trajectory is displayed by plotting the coordinates of
the center of gravity of the wave packet on a plane
defined by

X=(2a,a} —a,a3 —asa})/3'?

= cos(w,t)+ cos(w,t)+ cos[(w,—w)t] , (20)
Y:(aza; —“030;)
= — sin(w,#)+ sin(w,t) — sin[(w, — @ )t] . (21

When y =0, this describes an oscillating linear path on
the (X, Y) plane, like a swinging pendulum. Three points
on the plane that form an equilateral triangle represent
the three methyl orientations ¢ =0 and *27 /3, each la-
beled by the spin states associated with the lattice sites.

[
The delocalized stationary states (12) are represented by a
stationary point at the center of the triangle, the degree
of localization being given by the distance from the
center. The wave-packet trajectory changes smoothly
from the linear path when ¥ =0, through rotating ellipti-
cal orbits like a Foucault pendulum, to a right- or left-
handed circuit of the three orientations when y == /2
and w;= —w,. The progressive development from delo-
calized stationary states to rotational trajectories of local-
ized wave packets like those implicitly assumed to occur
in high-temperature classical theories is similar to the ex-
citation of a stationary pendulum to a conical orbit. In a
rotational orbit, the spin states are transported around
the lattice sites, modulating spin-dependent interactions
and so enabling the rotation to be observed experimental-
ly. Spin-symmetry species have concealed this evolution
and had the effect of divorcing methyl rotation from oth-
er topics involving the dynamics of quasiparticles in con-
densed matter, with which it is closely allied. It has con-
sequently been denied two roles for which it is well fitted,
as a paradigm of coherent quantum molecular dynamics,
mirroring the established role of coherent spin dynamics,
and as a particularly clear example of the quantum to
classical transition from localization in k space to locali-
zation in coordinate space. Elimination of the unphysical
constraints removes a number of conceptual difficulties
and makes redundant a number of bogus rationalizations
of previous incompatibilities. It provides an alternative
point of departure. Experimentally it opens perspectives
for new types of experiment aimed at reproducing in
molecular dynamics some elements of the coherent time-
domain techniques of spin dynamics.
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