PHYSICAL REVIEW A

VOLUME 47, NUMBER 4

APRIL 1993

Quantum optics of traveling-wave attenuators and amplifiers

J. R. Jeffers*
Physics Department, Essex University, Colchester CO4 3SQ, England

N. Imoto
NTT Basic Research Laboratories, 3-9-11 Midori-cho, Musashino-shi, Tokyo 180, Japan

R. Loudon
Physics Department, Essex University, Colchester CO4 3SQ, England
(Received 26 October 1992)

We use a continuous-mode quantization scheme to derive relations between the output- and input-field
operators for traveling-wave propagation along attenuating and amplifying optical fibers. These rela-
tions provide complete information on the temporal and longitudinal spatial developments of the signal
field. They are used here to obtain the effects of propagation on the first and second moments of the
photocount in direct detection and of the signal field measured in balanced homodyne detection. Some
of the results are similar to those obtained for attenuation or amplification of standing waves in cavities,
and, for example, the survival of any input squeezing still limits the maximum gain to twofold. There
are, however, additional propagation effects for the traveling-wave system. Thus, in direct detection, it
is necessary to take account of the changes in gain profile with propagation distance, and in homodyne
detection there are fundamental quantum-mechanical restrictions on the minimum field uncertainties
that can be achieved in measurements at separated space-time points. These uncertainty properties are
derived in detail and illustrated by the example of a squeezed input signal.

PACS number(s): 42.50.Lc, 42.50.Dv, 42.81.Dp

I. INTRODUCTION

There is much current interest in the generation of
light beams whose measured noise levels lie below those
allowed by the semiclassical theory of photodetection [1].
Such nonclassical light may have important applications
in low-noise measurement and communication systems,
where the effects of optical processing on the nonclassical
properties can only be understood within the framework
of quantum optics. Thus in optical communications with
nonclassical input light, it is necessary to use the quan-
tum theory to determine the effects of propagation along
lossy or amplifying fibers on the initially reduced noise.

The quantum theory of light has traditionally been for-
mulated in terms of the discrete standing-wave modes of
the electromagnetic field confined within an optical cavi-
ty [2]. This quantization scheme is, however, awkward to
apply to traveling-wave propagation along an optical
fiber, where the beam properties vary with distance, in
addition to the time dependences associated with the in-
formation carried by the beam. The cavity-quantization
theory can easily handle only the time dependence of an
optical field, and it also suffers from the lack of any readi-
ly identifiable cavity in most traveling-wave systems,
where the optical energy flows from sources to detectors
with no significant reflection or recycling. These
difficulties have stimulated the development of cavity-free
continuous-mode quantization schemes [3-5] that are
better suited to the treatment of traveling-wave problems.

Optical fibers are made from dispersive materials with
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frequency-dependent refractive indices 1(w). There has
been much recent work on the quantization of the elec-
tromagnetic field in such media and on the resulting
dielectric effects on the quantum properties of light
[5-12]. The form of the positive-frequency part of the
electric-field operator appropriate to propagation along
an optical fiber of effective cross-sectional area A4 is

E*(z t)=if°°da) o l/zﬁ(a))
’ 0 dregc An(w)
Xexp{—iw t—@ ], (1.1)

where the creation and destruction operators of the one-
dimensional continuum of modes of frequency w satisfy
the usual commutator

[a(w),aT(0)]=8w—0) . (1.2)

The purpose of the present paper is the application of
these quantization methods, particularly in the form de-
scribed by Blow et al. [5], to the quantum optics of
traveling-wave attenuators and amplifiers (brief prelimi-
nary accounts of the work are given in Refs. [13] and
[14])). Previous work has treated the traveling-wave
phase-sensitive degenerate parametric amplifier [3,15,16],
and there is also existing theoretical and experimental
work on phase-insensitive amplifiers, for example, rare-
earth-doped fiber amplifiers [17] and Raman amplifiers
[18]. Our aim here is to give more comprehensive treat-
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ments of traveling-wave phase-insensitive attenuation and
amplification. We pay particular attention to the field
properties that can be measured by direct and by homo-
dyne detection. In the latter case we derive uncertainty
relations for the homodyne noise in measurements made
at different propagation distances, and we show how the
minimum noise conditions can be realized for a
squeezed-light input signal. The effect of propagation
along a gain-compensated low-loss fiber on the noise level
of initially squeezed light is determined.

It is usually the case that the signal bandwidth B is
much smaller than its central frequency w, Further-
more, for weakly amplifying fibers, the variation of the
refractive index 7(w) across the signal or detection band-
width is often quite small. In this regime it is a valid ap-
proximation to put the square-root factor in the field
operator (1.1) equal to its constant value at w=w, and to
extend the range of integration down to —oo. These
narrow-bandwidth approximations are made in all of the
calculations that follow. It is also sometimes permissible
to ignore the frequency dependence of 7(w) in the ex-
ponent in (1.1), and the properties of the electric field in
this case are determined by those of the full-range
Fourier transformed operators

fdwa

These satisfy the commutation relation

a(n)= w)exp(—iwt) . (1.3)

L
2T

[an,aten =80t —1) . (1.4)

The flow of energy, in the narrow-band approximation, is
proportional to the flux of the light beam, measured in
photons per unit time. This quantity is represented by
the flux operator [5]

Ffin=atman)

J— 1 ’ 'l' ’ . PN
—;fdwfdw 2'(w)a(o)explilo—w')t] . (1.5)

The continuous-mode formalism can handle light
beams whose fluxes have arbitrary time dependences, in-
cluding for example pulse trains and beams of constant
mean intensity. The beam in the latter case has a
frequency-dependent correlation function of the form

(a'(wia(o")) =27f(0)80—0"), (1.6)

where f(w) is the beam spectrum, defined as the mean
flux per unit @ bandwidth. The total mean flux from (1.5)
has the constant value

f=(f0)= [dof()=F (1.7)

in this case.

The calculations that follow assume that the conditions
for the validity of the narrow-bandwidth approximations
are satisfied, but the time dependences of the light beams
are otherwise arbitrary.
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II. TRAVELING-WAVE ATTENUATION

A. Beam-splitter model

- The scattering centers that cause the attenuation of a
light beam in an optical fiber can be modeled [3] by beam

splitters of the kind represented in Fig. 1. The output
mode operators are given by
Bou(@)=1(0)8,(0)+7(0)b(w) ,
(2.1)

a,(0)=r(0)a,(0)+t(0)blo) ,

where r(w) and t(w) are the complex reflection and
transmission coefficients of the beam splitter at angular
frequency w. The transformation from input to output
operators is unitary if

[r(@)]?+]|t(w)
)+r(w)t*

=1,
(2.2)

r*(o)t (o (0)=0,

and independent boson input operators then produce in-
dependent boson output operators. The practical realiza-
tion of a frequency-dependent beam splitter is outlined in
Appendix A.

The time-dependent operators for the beam-splitter in-
put and output modes defined in accordance with (1.3)
are not in general simply related on account of the fre-
quency dependence of the reflection and transmission
coefficients. However, it is not difficult to show with the
use of (2.2) that the integrated input and output fluxes are
equal
[arial(nay,(+alna, )

= f dr{al(na;

J(O+BT0B() . 23)

For the special case of steady-state light beams, where the
input operators satisfy (1.6), the mean fluxes are related
by

(@l (a0 +(alna, 1)
=(al(na

The scattering centers in an optical fiber of length z are
modeled [3,16,19] by the line of beam splitters represent-

)+ (BN bw) . (2.4

>

out

FIG. 1. Attenuating beam splitter.
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ed in Fig. 2. These are taken to be discrete components
in the initial stages of the calculation, but their number

N=z/Az (2.5)

is later taken to infinity in order to model a continuous
attenuating medium. The input signal-mode operator
@;,(®) has the commutator

(8, (0),8] (0)]=8w—0w") , (2.6)

similar to (1.2). The input operators b,(w) refer to in-
dependent thermally excited modes, and their commuta-
tor is

(6,,(0),61(0)]=5,,,8(0—0w") . @2.7)

A calculation of the effects of attenuation requires an
expression for the output signal operator in terms of the
input operators. This is readily obtained by iteration of
the expression (2.1) for a single beam splitter. Thus tak-
ing account of the beam propagation phase with wave
vector w/c, the required expression is

Bo(@)= [t(w)e' Vg, (w)
N
+r(e) 3 [te)e' @/ N =mh (). (2.8)
=1

The beam splitters are now converted to a continuous
array by taking the limits

N>, Az—0, and |r(w)®>*—0 2.9
such that the imaginary part of the wave vector
k(w)=|r(w)|*/2Az (2.10)

remains finite. The usual exponential limit then gives
[t ()¥=[1—]|r(w)]?*]¥

=[1—2k(w)z /NN —exp[ —2«(w)z] . (2.11)

The frequency-dependent phase of the transmission
coefficients in (2.8) has the effect of changing the real part
of the wave vector from its free-space value w/c. When
the limits (2.9) are taken, this real part, denoted by k, can
be expressed in the usual way in terms of a refractive in-
dex n(w),

k=own(w)/c . (2.12)

out
—_ > > [—
A

ai
n A R N
b () bz(m) b (@)

FIG. 2. Beam-splitter representation of scattering in an opti-
cal fiber.
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The residual phase of the reflection coefficient in the same
limit can be chosen to be /2.

The thermal input operators and their commutator are
converted to continuous spatial dependences by the re-
placements

b, (0)—(Az2)*b(w,z') and §,, —Az8(z'—z"),
(2.13)
with the result
ﬁ)(w,z'),i)\t(m’,z")]=8(w-cu')8(z’—z") . (2.14)

These operators are assumed to have the expectation
values

(6(w,2))=(b"(w,2)) =0 (2.15)
and
(BT(w,z’)B(w',z”) Y=n(Téw—w')6(z'—2") , (2.16)
where

n(T)=1/[exp(fiw/kgT)—1] . 2.17)

The excitation bandwidths are assumed to be sufficiently
narrow that the frequency dependence of n (T) can be ig-
nored.

The above developments in conjunction with the usual
replacement of summation by integration convert the
output operator (2.8) to the form

8, (w)=explikz —k(w)z]a,,(»)
+i\/2K(w)fozdz’exp{ [ik —k(w)])(z —2")}
(2.18)

It is not difficult to verify with the use of (2.6) and (2.14)
that the output operators have the proper boson commu-
tator,

[By(@),8] (0)]=8(w—0w') .

XB(w,z’) .

(2.19)

It is seen from (2.18) that the effect of the attenuation is
to reduce the input component of the output operator
and to introduce contributions from the noise operators.

The above derivations are concerned only with propa-
gation in the positive z direction. An expression very
similar to (2.18) relates the input and output operators for
propagation in the negative z direction. In particular, the
attenuation produces negative-traveling noise contribu-
tions even in the absence of any input signal in this direc-
tion.

B. Pulse propagation

The input-output operator relation (2.18) includes the
well-known classical effect of optical pulse distortion in a
dispersive medium [20]. Consider, for example, an input
Gaussian pulse represented by a coherent state [5] with
complex amplitude

()= (278%) " Viexpli (0 —wo)ty— (0 —wy)? /48%] ,

(2.20)
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and

a;, (1) =(282/m) *exp[ —iwoty+8Ht —1)?] . (2.21)

The pulse properties at the output from the fiber are ob-
tained with the use of (2.18). Suppose for simplicity that
the imaginary part of the wave vector k(w) has a constant
value k, across the pulse bandwidth. A Taylor expansion
of the real part of the wave vector around the central fre-
quency of the pulse gives

k=ky+(o—wky+Ho—wy)ky + -+, (222
where

ko= wy)/c , (2.23)

kp=20k -1 (2.24)

o |o=0, Vg

and k(| measures the dispersion in the group velocity vg.
A simple Fourier transform now leads to the mean out-
put amplitude

(@, (1)) = (2m)"1/420%/8)! 2

Xexp{ —iwgt +ikgz —Kgz
— ANt —to—kz)?) , (2.25)

where

A2=8%/(1—2i8%z) . (2.26)

The pulse therefore travels with the group velocity and
its shape remains Gaussian, but with a duration increased

by the factor
(14+48%(%22)1? . .27

This effect of the group-velocity dispersion in increasing
the pulse width is of course well known [20].

C. Direct detection

Suppose that the output from the attenuating fiber is
fed into a photodetector of quantum efficiency { that runs
from time t,+ T,. The mean photocount is given by

(m )=§ft;0+T0dt Fout(t) (2.28)
where

Fou(D) = Fou()) (2.29)
and

Fow(D)=a1 ()84, (1) (2.30)

is the operator that represents the output photon flux.
The expectation value (2.29) is obtained with the use of
(2.18) and the Fourier transform, analogous to (1.5),

_ 1 (At .
fout(t)—;fdcof do'{a (0)a,, (o))
Xexp{ilo—o')t —ilk —k')z
— k(@) +k(w')]z}

+ 2D [dol1-K (@], 231

3349

where k' is the real part of the wave vector at frequency
' and

K (w)=exp[ —2«(w)z] (2.32)

is defined to be the attenuation coefficient of the fiber at
frequency w. The first term in (2.31) represents the
dispersed and attenuated input flux, while the second
term represents a flux of chaotic light, or noise, provided
by the scattering of light from thermal sources into the
detected beam. This chaotic flux can often be neglected
at optical frequencies where » (T) is usually very small.

The output flux can be reexpressed in a simpler form
when the input signal has a sufficiently narrow bandwidth
that the refractive index and attenuation coefficient can
be set equal to their values at the central frequency w, of
the signal. Then (2.12) can be approximated by

k=wn(wy)/c=wny/c , (2.33)
and (2.32) by
K,=K(wg)=exp[ —2k(wy)z] =exp[ —2kyz] , (2.34)

and the output flux (2.31) reduces to

FouO=Kofu(tr)+ ”2‘:’ [dol1-K ()], (2.35)
where

Fin(tr) =@ (158, (22)) (2.36)
is the input flux at the retarded time

tr=t —(nez/c) . (2.37)

The effects of propagation along the fiber on the input
signal in the narrow-band limit clearly correspond to sim-
ple physical expectations.

The output flux also simplifies for an input beam of
constant mean intensity whose frequency correlation

function has the form
(af(@)a,(0) =27 (0)80—a) , (2.38)

in accordance with (1.6). The total mean input flux is
thus time independent with the value

= [do fi(@)=F, .

The output correlation function obtained with the use of
(2.16), (2.18), and (2.38) is

(2.39)

(@l (@)a (0")) =27fu(0)8o—0'), (2.40)
where
Soul@)=K(0)fi(0)+[n(T)/27][1-K (0)] . (2.41)
The total mean output flux is

fou= [do fou(@)=F,, . (2.42)

The output spectrum depends of course on the frequency
dependences of the input flux and the attenuation
coefficient. We consider again a narrow-band input, for
example, the “single-mode” coherent state |{c;,}) with

(5]
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(@)= 27F;,) explid;)8(0—wy) ,
(2.43)
a(t)=Fl/?exp(—iwgt +id;,) ,

where the total output flux is
J

tan+T, tn+T, A N
(BmP=Cm )+ [ ° e [ * de (P OF o) =Flu)
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F

0m=K0Fin+[n(T)/Z#]fdw[l—K(w)] . (2.49)
The mean photocount is obtained from (2.28) and (2.29)
with the use of (2.35) or (2.44) as appropriate.

The variance in the direct-detection photocount for an

input beam of constant mean intensity is given by [5]

(2.45)

where the colons denote normal ordering. This can again be expressed in terms of the input and thermal operators with

the use of (2.18). The factorization property

(BT(CO,Z’)ET((O’,Z”)/b\((O”,Z“I)g(w,l',z’lll)): </b\T((t),ZI)3((0”,ZI”))(/b\T(Q),,Z“ )B(G)”’,Z””))

+ < BT(a)’zr)g(wul’zuu)><3T(w;’zlr)3(wlr’zll/)>

(2.46)

enables the chaotic noise contribution to be evaluated in terms of the expectation value (2.16). The general result is
quite complicated, and we present only the special case of the coherent input specified by (2.43) when the integrand in

(2.45) takes the form

(Fout(OF u(t):) =F2 = KoFiu[n(T) /7] [ do[1—K (@)]cos[ (wp—w)7]

+[n(T)/277]2‘fdw[1—K(

where

T=t—t". (2.48)

The above expression clearly vanishes for zero attenuator
temperature 7, when (2.45) reduces to

(Am)*={m) , (2.49)

the usual shot-noise result expected for the photodetec-
tion of purely coherent light.

D. Balanced homodyne detection

The measurement made by a balanced homodyne
detector that runs from time ¢, to time t,+ 7T, is
represented by the operator [5,21]

ta+T,
O0=if" ‘arfa'wa,(—alwa() (2.50)
0
corresponding to the difference between the integrated
photocounts in the two detector arms. Here @(¢) can be
the fiber input or output operator, and @, (¢) is the local
oscillator operator. The local oscillator is assumed to be
in a coherent state |{c; } ) with a very narrow spread of
frequencies, so that its amplitude has the single-mode
form

a; (t)=F}%expli¢; —iwgt) , (2.51)

where F; is the mean flux of the local oscillator light in
units of photons per unit time, and ¢; is its phase angle.
Then if the local oscillator is much more intense than the
signal, it is a good approximation to replace the local os-
cillator operators in (2.50) by the corresponding c-
numbers, and the measurement operator can be written
O=(F.Ty)"?E(¢,,1,) (2.52)

where

w)]exp(—iowT)

2
> (2.47)

[
N ta+T,
E($y,t0)=T; " ft0° “dt[ iat(Dexp(—iwgt +idy)

—ia(t)expliogt —id; )] .
(2.53)

The dimensionless electric-field operator defined in this
way represents the property of the signal field that is
measured in balanced homodyne detection.

The mean difference photocount in balanced homo-
dyne detection of the output from the attenuating fiber is

(m)Y=E((O)=EF, Ty)"(E ,(b;,t0)) , (2.54)

where § is again the detector quantum efficiency. The
output-field expectation value is related to the input-field
expectation value by means of (1.3) and (2.18). We as-
sume that the input signal has a narrow bandwidth cen-
tered on the same frequency as the local oscillator so that
any deviations of the refractive index and attenuation
coefficient from their values 1, and K, at frequency w,
are insignificant. The output-field expectation value is
then given by

<E\out(¢L’t0)>:(K0)1/2<Ein(¢LR’tOR)) ) (2.55)

where the retarded local oscillator phase and detection
period, defined by

WMoz NoZ
Sr=éL = tr=lo— > (2.56)
merely compensate the time taken for the signal to travel
through the fiber.

The balanced homodyne detection photocount vari-
ance is given by [5]
(Am)P*=E(1—5)F To+EF L Tol [AEou (41,10 1) -
(2.57)
The output-field variance is related to the input-field vari-

ance by means of (1.3) and (2.18), and making use of the
noise operator properties (2.14) and (2.16), we find
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([AE 1 (b1,10)12) = Ko [AE (b1, t0r ) P) +2[20 (D) +1] [ doo[ 1 —K (@) Isin?[ (0g—a) Ty /2] /m(wo—0)*T, .

The magnitude of the added noise term depends on the
profile K (w) of the attenuation, but a simple result
emerges when the integration time is sufficiently long and
the dispersion in the attenuation coefficient is sufficiently
small that the inequality

1 dK(w)

T,>
7Ky dw

(2.59)
0)2010
is satisfied. The final factors in the integrand of (2.58)

then have the effect of a delta function, and the result
reduces to

(AE . =Ko AE, P+ [2n(T)+11(1—K,) , (2.60)

where the field variances are written in abbreviated nota-
tion. The added noise represented by the second term on
the right takes its minimum value for zero temperature,
when the result can be written [19]

(AE ) —1=K,[(AE,)*—1] . (2.61)

It follows that the noise tends to the value 1, characteris-
tic of coherent light, under conditions of severe attenua-
tion when K, << 1. It is easily shown from (2.58) that this
conclusion holds generally provided that K(w) is very

(2.58)

small throughout the detection bandwidth.

The effects of attenuation on the homodyne electric-
field operator of (2.53) can be written in compact forms in
terms of the operator

a

Fzﬁout(qsL’tO)—(KO)l/zﬁin(‘ﬁLR’tOR) , (2.62)
when (2.55) and (2.60) take the forms

(Fy=o0, (2.63)
and

(AF)?=[2n(T)+1](1—K,) . (2.64)

This last result has exactly the form of the standard
fluctuation-dissipation theorem [22], where the factor
1—K, represents the dissipation in the attenuator.

The above calculations refer to homodyne measure-
ments made at a given distance z along an attenuating op-
tical fiber. We now consider the compatibility between
measurements made at different distances z and z’ with
different local oscillator phase angles ¢; and ¢;, and
with integration periods T, that commence at different
times ¢, and ¢;. The required homodyne field commuta-
tion relation, obtained with the use of (1.3) and (2.18), is

(B i br,t0,2), E (), 20,2")]=— 7r4_71’0f doexp| —k(w)|z —z'|Jsin[¢; —d] —k(z —z')+(@—wy)(ty—1t§)]

Xsin?[(0—w) Ty /2] /(0—awg)? , (2.65)

where the field operators are given by (2.53) with their notation expanded to show the propagation distance.

The commutator can be set into a more explicit form only if k() and 17(w) are assigned specific functional forms.
We consider here only the simplest case in which these functions have constant values «, and 7,, corresponding to
negligible dispersion over a frequency range of order 1/T, around w,. The wave vector can then be approximated by
(2.33), and the sine that contains it can be expanded in terms that contain the contribution proportional to (o — ;) and
the frequency-independent remainder. The integration in (2.65) can then be performed using standard results [23], and
the commutator becomes

[Eou(r:10:2), Equ($1,10,2")]= = ;—ZCXP[_K0|Z —2'|Jsin[¢, — ¢} —wgne(z —z')/c]
X[To—lto—to—molz —2")/c| 1O(Ty—to—tH—molz —2') /c|) , (2.66)
where © is the usual unit step function. The uncertainty relation that follows from (2.66) is
([AE u (¢1,10,2) PIC[AE oy (7 ,20,2') %) Z exp[ —2k0lz — 2| Isin[ b, — ) —wonolz —2') /c]O (2.67)
where the overlap O is
O=[1—|ty—ty—moz —2")/c| /Ty 1*O[Ty—|to—to —mo(z —2z') /c|] . (2.68)

This function determines the fractional overlap between the sections of the propagating signal that are sampled by the
detection windows at coordinates z and z’. In the absence of any overlap, the uncertainty relation (2.67) provides no re-
striction on the field variances at the two positions. The maximum value of the uncertainty product occurs for com-

plete overlap, where
to=tyt+mlz'—z)/c , (2.69)

and both detection processes observe exactly the same section of the signal beam; the function defined in (2.68) is equal
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to unity in this case.

An example that realizes the minimum uncertainty product is provided by a squeezed vacuum state input in the limit
of an integration time T, that is much longer than the correlation times of the light. The input-field variance is then

[21,24]

([AE,(¢y,19)]*) =exp(2s)cos® |¢p; — = | +exp(

—2s)sin?

6

¢L _'2—' ) (270)

where s and 0 are the usual parameters that describe the amplitude and phase of the squeezing. Minimum variance
product is achieved by making one of the measurements at z =0, so that one of the output fields in the uncertainty rela-
tion (2.67) becomes the same as the input field. Then choosing

0=2¢, —m (2.71)
it follows that
([AE ($1,20,0) 1) =([AE,, (¢, ,20)]*) =exp(—2s) . (2.72)
The field variance obtained from (2.60) and (2.70) at an arbitrary position z' is
([AE 0087, 1,2) 1) =expl( —2uc52" )| exp(2s)sin’(§;, — b, — o1z’ /c)
+exp(—2s)cosX () —d; —wnoz’ /c)]+1—exp(—2kyz') , (2.73)

where the temperature 7 has been set equal to zero in the
interests of reducing the noise as much as possible. If the
squeezing amplitude s is now allowed to become infinite,
the product of the variances (2.72) and (2.73) is

([AE (81,10, I [AE  ($1,15,2)]%)

=exp( (2.74)

—2koz")sin®(¢) —d, —wonez’ /),

in agreement with the minimum value permitted by the
uncertainty relation (2.67), the overlap function being
essentially equal to unity for the steady-state light beam
considered in this example.

More generally, the presence of the overlap function in
(2.67) reflects the well-known requirement that measure-
ments at two space-time points can interfere only if one
measurement can communicate with the other, that is, if
the two points lie on the same light line [25]. A further
impediment to communication between the two measure-
ment points is provided by attenuation, and the associat-
ed decaying exponential in the uncertainty relation (2.67)
further restricts the interference to points whose spatial
separation is of the order of the characteristic attenuation
distance or less.

III. TRAVELING-WAVE AMPLIFICATION

A. Beam-splitter model

Optical signals can be continuously amplified as they
propagate along a fiber, for example, by stimulated Ra-
man scattering or by interaction with an inverted atomic
population. The process can be modeled by a line of
beam splitters similar to that shown in Fig. 1 but with
modified input-output relations. The amplifying property
of the beam splitter is achieved by inverting the harmomc
oscillator associated with the thermally excited b(w) in-
put mode and assigning a negative temperature to the
thermal excitation. The harmonic oscillator associated
with the scattered d@,(w) output mode must also be invert-

[

ed for consistency of the model.
With these modifications, the beam-splitter output and
input mode operators are related by

8y (@0)=t(0)8;,(0)+r(0)bN(w),

+ . (3.1)
o (w)=r(w)ay(o)+t(w)blw),
where the complex coupling coefficients now satisfy
lt (o)) —r(0)]*=1 3.2)

in contrast to the conventional beam-splitter properties in
(2.2). The relation (3.2) ensures that the independent in-
put mode operators produce independent output mode
operators. The time-dependent mode operators are
defined by (1.3) as before and it is not difficult to show
that the integrated input and output fluxes satisfy

[drfal,(

N, (0 —al(a, (1)
= [drfal(na,(0—b'(nb)} . (3.3

This expression represents energy conservation at the
beam splitter, with the negative contributions corre-
sponding to inverted oscillators [26]. In the special case
of steady-state light beams, the mean fluxes are related by

(alva, (1)
=(al(na,, (1)) — (BT (b)) . (3.4)

( aout( D84y (1)) —

The line of beam splitters shown in Fig. 2, now as-
sumed to have the amplifying properties described above,
is converted to a continuous array by steps similar to
those used for the attenuating fiber in (2.9), (2.11), and
(2.13). The imaginary part of the wave vector is defined
by

glw)=r(w)|*/2Az , (3.5)

similar to (2.10), but with the use of (3.2)



[t (@)|PN=[1+|r(w)]?]¥

=[14+2g(w)z/NN—exp[2g(w)z] , (3.6)

which represents optical gain, in contrast to the attenua-
tion expressed by (2.11). The output operator obtained
by iteration of (3.1) is thus [13,17]

a,(w)=explikz +g(w)z]a;,(w)
+i\/2g(w)fozdz’exp{[ik +g(w)])(z—2")}

XN w,z’) . (3.7)

The real part k of the wave vector is still given by (2.12),
where the refractive index 7(w) now includes the effects
of the gain process. The thermal mode correlation func-
tion is given by (2.16) but with the mean photon number
of (2.17) evaluated at | T, since the temperature T itself is
now negative.

The relation (3.7) between input and output operators
has a form that agrees precisely with the relation derived
by Caves [27] in his general theory of linear amplifiers.
In accordance with this theory, the square modulus of
the prefactor of @;,(w) is taken to be the gain coefficient,
given by

G (w)=exp[2g(w)z], (3.8)

while the second term on the right-hand side represents
the noise added by the amplifier. The forms of these
terms are such that the output commutator retains its
value given by (2.19).

B. Direct detection

The basic calculation of the mean photocount in direct
detection described by (2.28) to (2.31) can be applied to
the output from an amplifying fiber by substitution of the
output operator from (3.7) to (2.31). The results are simi-
lar in outline to those for an attenuating fiber, but there
are important differences in detail. Thus for an input
beam of constant mean intensity, where (2.28) to (2.40)
are valid, the output spectrum analogous to (2.41) is

fou@)=G(0)fi,(0)+[(n(|T)+1)/27][G(w)—1] .
(3.9)

The two terms on the right-hand side represent, respec-
tively, the amplified input flux and the noise added by the
amplification process. Some additional noise is inevitable
since the latter term does not vanish even for zero nega-
tive temperature, when it takes a limiting minimum value
in accordance with the requirements of the general
theory of linear amplifiers [27].

The expression (3.9) for the amplified flux can be ob-
tained from the expression (2.41) for the attenuated flux
by means of the formal replacements

K(w)>G(w) and T——T , (3.10)
if use is made of the property
n(TN=n(—|TH=—n(|T))—1 3.11)
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of the thermal function (2.17) for negative temperatures.
The thermal factor in (3.9) applies directly to Raman or
nondegenerate parametric amplification where n(|T])
denotes the population of the material excitation or idler
photon, respectively, that contributes to the amplification
process. For amplification by an inverted atomic popula-
tion with N, and N, atoms in the upper and lower levels,
respectively, the population factor that occurs in stan-
dard theory [28,29] is

=n(|T])+1, (3.12)

Nu_Nl

where the ratio of populations is described by a
Boltzmann factor with negative temperature,

N,/N,=exp(#iw/kg|T|) . (3.13)

Thus perfect inversion with N;=0 corresponds to | T|=0
with minimum noise flux in (3.9), while imperfect inver-
sion produces a nonzero n (|7T]) with an enhanced noise
flux.

The mean photocount is readily obtained from (2.28)
for the single-mode coherent input described by (2.43),
when the mean output flux obtained from (2.42), with the
gain coefficient (3.8) at w =wq denoted by G, is

Fou=GoFi, +{[n(ITH+1]/27} [do[G(e)—1].
(3.14)

The detailed form of the frequency integral depends upon
the gain function g (). The integral can be evaluated in
some important special cases, the simplest being that of a
constant gain profile of angular frequency bandwidth B
centered on the input frequency w,,

gw)=gy®(w—wy+B/2)0(—w+w,+B/2), (3.15)
when (3.14) reduces to
FomzcoFiﬁi‘—ﬂ%ﬂB(Go—n . (3.16)

The analogous results for Lorentzian and Gaussian gain
profiles are given in Appendix B.

The variance in the direct detection photocount is ob-
tained from (2.45), with the output photon fluxes given by
(2.30) and the output photon operators given by the
Fourier transform of (3.7). Because of the occurrence of
5" in this last expression, normal ordering of the output
operators produces antinormal ordering of the thermal
operators. However, the required expectation values are
straightforwardly calculated by factorizations similar to
(2.46) and use of the basic properties (2.14) and (2.16) of
the thermal operators. The general result is again com-
plicated and we consider only the special case of a
coherent input specified by (2.43), when the integrand in
(2.45) simplifies to
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(F ot Fou(t):) —F2 = GoFin { [n (T + 11/7) [ do[ G (@) —1]cos[(wg— )]

+{[n(|TH+1]1/27}? (3.17)

fda)[G(a))—l]exp( —ioT) tz .

These terms survive even for a perfectly inverted amplifier with | 7| =0, and they represent, respectively, the beating of
the amplified coherent input with the noise flux given by the second term in (3.14) and the beating of this chaotic noise
with itself. The integrals in (3.17) are readily evaluated for the constant gain profile (3.15), with the result
2 2
n(|TH+1 2 . .
“gin sin
o

BT
2

n(|TH+1
2

2
;

BT

<:fout(t)fout(tl):>_F(2>ut=GO(GO_I)Fin 2

+(Gy—1)?

(3.18)

The intensity fluctuation spectrum that can be measured by direct detection is determined from the Fourier trans-
form of (3.17) according to

S(@)=CFo+8 [ 7 dr{{:Fou(0)fou():) = Fiy Jexplior) . (3.19)
The 7 integral is readily evaluated to give
S(w)=§G0Fin+§{[n(|Tl)+1]/27r}fdw’[G(w')—l]Jré‘zGOFin[n(|T|)+1][G(w0—w)+G(wo+w)—2]
+{[n(|ITH+172/27) [ de'[G () —1][G (o' —a)—1] . (3.20)

The four contributions to the noise spectrum are similar to those found in conventional amplifier theory. Thus the first
two terms, which are independent of the frequency, represent the shot noise in the detection of the amplified signal and
spontaneously emitted light, respectively. The frequency dependence of the spectrum arises from the third and fourth
terms, which as in (3.17) represent, respectively, the excess noise produced by the beating of the amplified signal with
the amplified spontaneous emission, and the beating of the amplified spontaneous emission with itself. These contribu-
tions are illustrated by the example of the constant gain profile (3.15), where

)n(|T|)+1
2

S(w)= EGF;, +E(Gy—1 B+28%Gy(Gy— F,[n(|T)+116(B/2—w)

+EH Gy — 1) [n(|TH+11*/27}(B —0)O(B — ) . (3.21)

Analogous results for the Lorentzian and Gaussian gain profiles are given in Appendix B.

In experiments with a sufficiently strong coherent input flux F;, it is possible to achieve conditions where the noise
spectrum is dominated by the first and third terms on the right-hand side of (3.20) or (3.21). Measurements of the noise
as a function of the traveling-wave gain in this case can provide values for the thermal excitation factor »n (|T]), a quan-
tity that is difficult to determine for some inverted-population amplifiers [30].

C. Balanced homodyne detection

The effects of amplification on the measured mean and variance in balanced homodyne detection are determined by
calculations that are very similar to those given in Sec. II D for the effects of attenuation. The relation between the
homodyne field operators before and after amplification is now obtained from (2.53) by substitution of the input-output
relation (3.7). The mean and the variance of the difference photocount are still given by (2.54) and (2.57), but (2.55) and
(2.58) are replaced by

(Eouldr,10))=(Go) " En(brrytor)) (3.22)
where G is again the gain coefficient at frequency w,, and
([AE 0 (b1,10) 1) = Gol [AE (b1, 10 ) P +2[20 (| TN+ 1] [ dw[ G (@) —1]sin*[(wg—w) Ty /2] /[m(wo—)*Tp] .

(3.23)

In the limit of a long integration time, analogous to
(2.59), the variance reduces to

(AE . )*=Gy(AE, )+ [2n (|T)+11(Gy—1) .

(AE )+ 1=G,[(AE)*+1] . (3.25)
Thus, in contrast to the corresponding result (2.61) for at-

(3.24) . L. . . :
tenuation, the noise is always increased by amplification.

The added noise represented by the second term on the
right-hand side is again minimized for zero temperature,
when the result can be written

The mean and the variance of the homodyne electric-
field operator can again be written in compact forms in
terms of an operator F similar to that defined in (2.62) but
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with the attenuation coefficient replaced by the gain
coefficient. The fluctuation-dissipation theorem analo-
gous to (2.64) is

(AF?=[2n(|TD+1)(Gy—1) . (3.26)
The output signal from the amplifier shows squeezing if
(AE,, %<1, (3.27)
and it follows from (3.24) that this condition is satisfied if

2n(|T)+2
(AE;, ) )+2n(|TDH+1

0 (3.28)

The gain is thus restricted to very modest values, even for
a perfectly squeezed input, with s — o0 and 6=2¢; — in
the variance (2.70), and an amplifier with complete popu-

lation inversion, where (3.28) reduces to
Gy <2 for (AE;,)*=0 and n(|T])=0. (3.29)

The maximum twofold gain for the preservation of
J

squeezing is a well-known property of the single-mode
cavity amplifier [28,31,32] and the above analysis shows
that the same limitation applies to the traveling-wave
amplifier.

The compatibility between measurements made at
different distances along an amplifying optical fiber with
different local oscillator phases and different times of
commencement for the integration period is treated by
the same methods as used for the attenuating fiber in Sec.
IID. Thus the homodyne field commutation relation is
the same as (2.65) but with the wave vector «(w) replaced
by —g(w). The commutator (2.66) and the uncertainty
relation (2.67) in the limit of negligible dispersion are
converted to the case of an amplifying fiber by the re-
placement of —xk, by go=g(w,). The remarks that fol-
low (2.68) apply with equal force to the amplifying fiber.
The minimum uncertainty product is again realized by a
squeezed vacuum state input, with variance given by
(2.70). Thus one of the measured variances is given by
(2.72) while the other is given by (3.24) in the form

([AE o (87,15,2") 1) =exp(2g02 )] exp(2s)sin($}, — b, — ez’ /c)

+exp(—2s)cos’(¢p] —d, —wonez’ /c)]+exp(2goz’)—1 .

The product of (2.72) with (3.30) in the limit of an
infinitely squeezed input state gives the same result as
(2.74) but with —«, replaced by g,. The product thus has
the minimum value permitted by the uncertainty relation.

It is seen that the minimum uncertainty product for
both attenuating and amplifying fibers has common fac-
tors of the trigonometric function of local oscillator
phase given in (2.67) and the overlap function given by
(2.68). The remaining exponential factor in each case is
identical to the factor by which the signal intensity is
changed by propagation from one observation point to
the other. The significance of this factor in terms of com-
munication between two measurement points in an at-
tenuating fiber is discussed at the end of Sec. II D. In the
case of an amplifying fiber, the interference between mea-
surements at points that lie on the same light line is in-
creased by the amplification, with a resulting exponential
growth in minimum uncertainty product as the spatial
separation of the two points is increased.

The results of Sec. IID are readily combined with
those of the present section for an optical fiber that
simultaneously has an attenuation wave vector k(w) and
a gain wave vector g (w). The generalization of (2.18) and
(3.7)is

. (w)=exp{[ik +g(0)—«k(w)]z}8;(w)
+ifozd2'exp{[ik +g(0)—k(w)](z —2")}

X[V2g ()b, (0,2)+V2k(0)b _(w,2")],
(3.31)

where the + (—) subscripts denote the independent
thermal input modes associated with the amplification
(attenuation). The relation between the input and output

(3.30)

I

homodyne field operators is readily calculated as before.
Thus for a narrow-band input signal, the mean-field re-
sults (2.55) and (3.22) are generalized to

(B u(dr,t0)) =(GoK )V Ey(drrrtor)) , (3.32)

while the variance results (2.60) and (3.24) in the limit of
a long integration time are generalized to

(AEout )2: GOKO(AEin )2
| GoKo—1

2n  (|T))+1
€0 — Ko {gol2n 4 ]

+Ko[2n_(T)+1]} . (3.33)

There is particular practical interest in the achieve-
ment of optical transmission lines in which the fiber loss
is exactly compensated by gain, so that g,=k,, and the
input and output means and variances are related by

(Bl t0))=(E, (rr tor)) (3.34)

and

(AE  )*=(AE; ) +4kyz (go=kK,) » (3.35)
where the thermal mode temperatures have been set
equal to zero. The added noise thus grows linearly with
the propagation distance. For gain-compensated low-loss
optical fiber with

k,=0.023 km ! (=0.2 dB/km) , (3.36)

and for a highly squeezed input with essentially zero
noise, the squeezing defined by the inequality (3.27) is lost
after a propagation distance of about 11 km.
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IV. CONCLUSIONS

We have applied the one-dimensional continuous-mode
quantization method of Blow et al. [5] to the problems of
electromagnetic wave propagation in attenuating and am-
plifying optical fibers. With the use of simple beam-
splitter models of the scattering centers and the
amplification processes in the fiber, the formalism em-
braces both the spatial and temporal variations in the
electromagnetic field. The calculations are simplified by
the assumption of a narrow-band input signal, in accor-
dance with the usual conditions of optical transmission
systems. The field operators satisfy the appropriate
quantum-mechanical commutation relations at every
point in the fiber, and in particular they conform to the
general requirements on the input and output operators
of phase-independent amplifiers [27].

In calculations of the effects of attenuation and
amplification on the initial statistical properties of the in-
put signal, it is convenient in the continuous-mode for-
malism to work with measured quantities instead of the
abstract operators of the electromagnetic field. We ac-
cordingly use simple models of direct and balanced
homodyne detection that take account of quantum
efficiency and integration time. For direct detection that
take account of quantum efficiency and integration time.
For direct detection we have calculated the mean and the
variance of the integrated photocount, and also the inten-
sity fluctuation spectrum. The results obtained in this
case are formally similar to those found for a cavity
standing-wave attenuator or amplifier, but the traveling-
wave amplifier displays the additional important feature
of a gain profile that generally narrows in frequency as
the propagation distance is increased.

The mode-matching requirements of homodyne detec-
tion with a narrow-band local oscillator have the effect of
restricting the measurement to field components of sharp-
ly defined propagation direction and frequency. We have
calculated the mean and the variance of the homodyne
electric field that is selected by such measurements.
There are again some similarities between the traveling-
wave results and those obtained for lumped or cavity
components, and, for example, the restriction to a max-
imum of twofold amplification for the retention of some
squeezing from an infinitely squeezed input signal
remains in force. However, there are also specific propa-
gation effects in the traveling-wave attenuator or
amplifier, and we have given detailed treatments of the
uncertainty relations that govern measurements of the
homodyne fields at different space-time points. These are
essentially one-dimensional versions of the better-known
uncertainty relations that govern the electric fields at
different points in three dimensions, and the homodyne
field results can be similarly interpreted in terms of the
feasibility of communication between the two measure-
ment points.

The noise in both kinds of detection increases with the
magnitude of the effective temperature in accordance
with the natures of the functions n(7T) for attenuation
and n (|T]) for amplification. These functions vanish for
zero positive or negative temperatures, when the noise
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takes its smallest allowed values. This ideal limit can be
achieved in practice for Raman amplification, where the
scattering material vibration often has negligible thermal
excitation [18], but the thermal function is usually much
larger than unity for Brillouin amplifiers [29]. In the case
of inverted population amplifiers, where the populations
of the active levels may be difficult to determine indepen-
dently, measurements of the amplifier noise provide a
useful technique for obtaining this information via the de-
duced variation of the thermal function with the gain
[30].

Finally, it should be emphasized that although many of
the results have for the sake of simplicity been illustrated
by examples of steady-state coherent inputs, the main
input-output operator relations apply to arbitrary input
signals, within the overall conditions of validity of the
narrow-bandwidth approximations. The results can thus
be used to obtain complete information on the temporal
and spatial development of traveling-wave signals in at-
tenuating and amplifying fibers.
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APPENDIX A: LORENTZIAN BEAM SPLITTER

Figure 3 shows an example of a composite beam split-
ter that produces a scattered spectrum with a Lorentzian
line shape for appropriate values of the parameters. The
active element is a Fabry-Pérot étalon that consists of
two identical mirrors of infinitesimal thickness separated
by a distance d and with complex frequency-independent
reflection and transmission coefficients 7 and ¢ such that

in. ; /: y |
N
_ _T__

D>

—_— — =

o>

FIG. 3. Model for a Lorentzian beam splitter.
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|72+ 1¢|*=1 and exp(2i¢,)= —exp(2i¢,) . (Al)

Then with the origin for the optical phase taken in the
center of the étalon, it is easily shown that the reflection
and transmission coefficients of the composite beam split-
ter are

[t|%exp(2ig,)
1—|r|%exp[2i (¢, +¢)] ’

r(w)=— (A2)

and

L exolai6 4 o
(o= L2 4 O rlexpli, —id)
1—|rIPexp[2i (4, +4)]

where
d=wd/V2 . (A4)

It is readily verified that these coefficients satisfy the uni-
tarity relations (2.2).

According to (2.10), the attenuation profile of the beam
splitter is determined by the function

lr (@)=t /[ |2]*+4|r|’sin®(¢, +¢)] . (A5)
Maximum attenuation occurs at frequencies w, given by

w,=V2c(nr—¢,)/d (n =integer) , (A6)
and for w close to w,,

Ir()*~T*/[(0—w,)*+T?], (A7)
where

r=|tl%/v2|rld . (A8)

This Lorentzian scattered spectrum has a full width at
half maximum height (FWHM) of 2I"'. The scattering as-
sociated with a given mode n of the étalon can be con-
sidered in isolation when the adjacent modes are made
sufficiently narrow and distant by the choice of appropri-
ately small transmission |¢| and mirror separation d. A
more versatile composite beam splitter that produces less
than 100% scattering at exact resonance can be con-
structed by the use of different mirrors in the étalon, or
more generally by the insertion of additional optical com-
ponents.

A complete set of modes of the composite frequency-
dependent beam splitter is provided by the sets of plane
waves of continuous frequency o that are incident from
the directions of the four arms of the beam splitter. It is
not difficult to show that the corresponding mode func-
tions have orthonormal properties, provided that the spa-
tial integrations include the propagation paths within the
compound beam splitter itself. The modes therefore form
a proper basis for the quantization of the optical field in
terms of the operators used in (2.1).

APPENDIX B: TRAVELING-WAVE AMPLIFICATION
WITH LORENTZIAN OR GAUSSIAN GAIN PROFILES

Consider first the effects of a gain profile that produces
a Lorentzian variation of the gain wave vector, with

g(@)=goy*/[(0—wy)*+7?] . (B1)

The full width of the Lorentzian function at half max-
imum height is

W, =2y . (B2)

The integral that determines the noise flux in (3.14) is
difficult in general, but it can be evaluated simply in two
limiting cases.
(i) goz << 1. In this case the gain coefficient (3.8) is ap-
proximately
2g027*

Glo)=1+———F—. B3
(@ (@—w)?+72 (B3

We evaluate the various output quantities only for zero
noise temperature. The output flux (3.14) is then

Fou=GoFin+1(Go—1) . (B4)

The measured intensity fluctuation spectrum (3.20) is
similarly evaluated without difficulty to give

s<w>=§G0Fin+5—2l(Go—1>
+282G(Gy—1)F,, —L—
(1)
3
+E(Gy—1)2—L— . (B5)

(ii) goz>>1. In this case of high gain the initial
Lorentzian form (B3) of the gain coefficient is distorted to
a Gaussian, whose form can be shown to be [33]

G (0)=Gexp[ —280z (@ —wo)?/7?] . (B6)
The width (FWHM) of the gain coefficient is now
W,=[In2/In(Gy)]" 22y . (B7)

The gain profile therefore narrows with increasing values
of the peak gain, although it should be noted that very
large values of G, are needed to achieve a substantial nar-
rowing; for example, the square-root factor in (B7) is
equal to 0.25 for G, =6.5X10*. The output flux (3.14) is
now

G
F,, =G F,+X1 9

in — (B8)
2 [7In(G,y)]'?

and the intensity fluctuation spectrum (3.20) is

Gy
(1) g 0 2 [Trln(Go)]]/z
+282G3F; exp[ —In(Gy)w? /y?]
2
£ G o2
2 [Zﬂln(Go)]l/Zexp[ n(Gy)w®/2y?] .
(B9)

Figure 4 shows the variation with peak gain of the
noise flux divided by the peak gain. This quantity pro-
vides a primitive noise figure for the performance of the
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FIG. 4. Variation with peak gain G, of the normalized noise
flux fdw[G(m)—l]/Zm/Go obtained from (3.14) for zero

amplifier temperature.

traveling-wave amplifier. The steeply increasing part of
the curve for small G, corresponds to the Lorentzian
profile, while the Gaussian profile becomes a good ap-
proximation for gains much larger than those included in
the figure. The form of the output flux given in (B8)
shows that the slow falloff in noise figure continues to
these larger values of the peak gain, and, for example, it
takes the value 0.125 for G, = 1000.

Now consider a Gaussian variation of the wave vector
given by

g(co)=g0exp[—(w—w0)2/7/2] , (B10)
of width (FWHM)
w,=2V1n2y . (B11)

There are again simple analytic results in two limiting
cases.

(i) g9z << 1. In this case the gain coefficient (3.8) is ap-
proximately

G(w)=1+2gyz exp] —(0—w()*/7?] , (B12)
and the output flux (3.14) is
Y(Gy—1)
Fout:GOFin+ 2‘/'7—7_ (B13)

The measured intensity fluctuation spectrum (3.20) is
S(w)= EGoF,, +[Ev(Gy—1)/2V 7]
+282G o(Gy— 1)F, exp( —w*/y?)

2 JE—
+52—<GO—1)2[y/x/2w]exp(—w2/27/2>. (B14)

(ii) goz >>1. The high-gain limit of the gain coefficient
for the Gaussian variation of the wave vector can be
found by the same procedure as used in the Lorentzian
case, and indeed the result is identical to that given in
(B6). Thus the output flux and intensity fluctuation spec-
trum are given by (B8) and (B9), respectively.
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