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Quantum optical master equations: The use of damping bases
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We present the complete analytical solution of the cavity QED of a two-level atom and a field mode at
zero temperature. It includes both dissipation of the field due to a finite Q value of the cavity and in-
coherent decay mechanisms for the atom. This analytical solution is provided by a powerful method for
treating general master equations that appear in quantum optics. As distinct from the usual approaches
we first deal with that part of the master equation which describes the dissipative coupling of the field
and the atom to their reservoirs. Rather than using number-state or dressed-state bases we expand the
density operator into the eigenstates of the nonunitary parts of the master equation which model the dis-
sipative part of the dynamics. The set of these eigenstates is the damping basis. With the aid of this ex-
pansion we find the eigenvalues and eigenstates of the total Liouville operator. The evolution of an arbi-
trary initial state is then known. We employ these results to give an exact solution of the dynamics of
the photon field in realistic experiments with one-atom masers at very low temperatures. It includes de-

tuning, cavity leakage effects, spontaneous decay mechanisms for the atoms, a Fizeau-type velocity dis-
tribution for the atomic beam, and a statistical parameter for the probability of the excitation of incom-
ing atoms, covering the limits of Poissonian pumping and of regular pumping. On the same grounds one
can treat the one-atom laser, consisting of a single atom which stays in permanent interaction with the
field mode and which is continuously pumped by external heat baths.

PACS number(s): 42.50.—p, 42.55.—f, 32.80.—t

I. INTRODUCTION

A. The problem

The dynamical evolution of a two-level atom interact-
ing with one mode of the quantized photon field in a cavi-
ty or in a laser is well described by a master equation of
the structure

P = [H, P]+L,P+L P1

Bt iA

L,P= — (v+1)[a aP+Pa a 2aPa ]—
v[aa P+Paa —2a Pa],

2
(1.5)

with constants A, v~0, describes the coupling of the field
to a thermal reservoir at a temperature which corre-
sponds to a mean number v of thermal photons in the
cavity or the laser. The second term reads

L P= ——(1—s)[cr+o P+Pcr+cr —2o Pcr+]
B

in which the symbol P denotes the density operator that
specifies the state of the system. The right-hand side con-
sists of two parts, a unitary one and a nonunitary one.
The unitary part involves the commutator with the Her-
mitian Hamilton operator

B
8

——s[o o+P+Po o. + —2cr+Pcr ]

2C —B [P o,Po, ]—, (1.6)

H=ficoa a+ ,'Aflcr, —
—,'Ag—(ato +acr+) (1.2)

for the interaction between the photon mode with fre-
quency co and the atom with level spacing AA. The
dynamical variables are the ladder operators a, a for the
field and

o+=o +icr =(cr —)x —
y + (1.3)

for the atom, where cr„, o. , and also o., are Pauli's spin
operators. The constant g is the Rabi frequency that
measures the coupling strength of this interaction.

The nonunitary part

LP =L,,P+I. P

accounts for losses to and gains from reservoirs. The first
term

with constants 2C~B ~0 and O~s ~1; it models in-
coherent pumping and decay processes of the atom.

When A, B,C=O, (1.1) is the master equation of the
familiar Jaynes-Cummings model [1] whose eigenvalues
are wel1 known.

When g =0, on the other hand, (1.1) describes pure re-
laxation of the oscillating mode and the atomic system,
which then are decoupled. In this situation (and only
then) the constant A gives the decay rate of the mean
number (a "a ) of photons in the cavity or in the laser to-
wards the thermal-state value (a a)„=v. The con-
stants B and C are the corresponding atomic decay rates
for the inversion measure (o, ) and the polarization
(cr+) towards their equilibrium values (cr, ) =2s —1

and ( o+ ) „=0. Note that the third term in (1.6), involv-
ing the constant C, accounts for processes, which are

47 3311 1993 The American Physical Society



3312 HANS-JURGEN BRIEGEL AND BERTHOLD-GEORG ENGLERT

cally (with little effort) for any given set of parameters
~, Q, v, s,g, A, B,C without the need of additional
structural approximations.

B. The method

In order to obtain all dynamical information about the
atom-and-field coupled system described by the master
equation (1.1) it is expedient to solve the corresponding
eigenvalue equation

[H, P ]+I.P =rP,1

iA

where L denotes the total Liouville operator, L is the
nonunitary part (1.4), and I is a, possibly complex, eigen-
value of X. A note on the terminology is in order. In
this paper we will consistently call P the state of the sys-
tern, and L and the commutator with H are linear opera-
tors acting on this state. Of course, P itself is a linear
operator acting on the Hilbert space vectors, and L or X
are therefore called superoperators by some authors. We
hope there will be no confusion.

When the system is closed, L =0, (1.8) refers to the
Jaynes-Cummings model whose solutions are well known.
The eigenstates of the commutator in (1.8) are then given
by dyadic products of eigenvectors of H, popularly called
"dressed" vectors.

When the system is open, L&0, the nonunitary part
that models the system's coupling to external reservoirs
makes things more difficult. Although the master equa-
tion (1.1) does not describe a unitary evolution of the
state P, the solution of the eigenvalue equation (1.8) nev-
ertheless provides us with the solution of the time-
dependent problem (1.1).

Suppose we have solved (1.8) and found all eigenvalues
I and the corresponding eigenstates Pr. Then, if we can
write the expansion

P(0)= gcrPr
r

(1.9)

for the initial state given at time t =0, we know the state
of the system at any later time, namely,

P(t) = g cre"'P„.
r

(1.10)

Here and in the sequel the symbolic sum over I also
properly takes account of the di6'erent eigenstates belong-
ing to a degenerate eigenvalue. Thus, once (1.8) is solved,
the remaining problem is, how does one find the expan-
sion coefficients c„appearing in (1.9)? The answer is

cr =Tr [PrP(0) ],
where Tr, the "total trace, " symbolizes the injunction to
trace over both the photon and the atom variables, and
the states P„satisfy the duality relation

Tr[PrPr'] =~rr' . (1.12)

Accordingly, we call the states Pr dual to the eigenstates
Pr.

In order to find these dual states, consider the time
evolution of the expectation value of an observable 6.

sometimes termed virtual, such as atomic collisions that
lead to a loss of atomic coherence without changing the
level population. The parameter s, ranging from 0 to 1,
further characterizes the atomic reservoir. If s =0, (1.6)
only e6'ects transitions from the upper to the lower level,
modeling processes such as incoherent transitions due to
spontaneous emission of photons into modes other than
the privileged cavity (or laser) mode, or transitions in-
duced by atomic collisions and electric scattering fields in
a cavity. When s )0, there are also transitions from the
lower to the upper level. The resulting equilibrium value
of the inversion measure, (cr, ) =2s —1, grows with in-
creasing s. In particular, when s & —,', the atomic bath
effectively acts like a (incoherent) pumping reservoir un-
der whose action the atomic population becomes inverted
(i.e., the inversion becomes positive). So s can be called a
pumping parameter, which is to be explained in more de-
tail later on.

So far the total system under consideration consists of
a single atom (0) interacting with a single field mode (cv),
both being coupled to their specific reservoir. The
characterizing constants are the system parameters
co, Q, v, s and the coupling constants g, A, B,C. To model
a real laser, whose active medium consists of X two-level
atoms, one could think of employing a well-established
method given by Weidlich, Risken, and Haken [2] and by
Risken [3] who, roughly speaking, replace the operators
of the microscopic inversion, o.„and polarization, o.+, by
the macroscopic sums

N N

s, = y ~~„s (1.7)
j=1 j=1

and discard any correlations ( o ~o "o' . ),
j&k&1% . , between the observables of different
atoms. We shall return to this in a forthcoming paper
with Ginzel and Schenzle [4].

As it stands, the master equation (1.1), together with
(1.2), (1.5), and (1.6), is the basic equation of the quantum
theory of the interaction between atoms and electromag-
netic fields which are part of a thermodynamically open
system. For s =0 it describes the cavity QED of an atom
in a cavity with finite Q value and provides, in particular,
the exact description of the dynamics in a one-atom
maser. There, alternating periods of atomic interaction
with the cavity field and of the pure decay of the latter
obey Eq. (1.1) with g&0 and g =0, respectively.

When s )0, an additional continuously pumping reser-
voir for the atom is included which leads to a positive
atomic inversion when s & —,

' and thus describes a one-
atom laser, which could be generalized to the many-atom
laser by the standard method described in [2] and [3].

In the present paper we present a powerful approach
for solving the master equation (1.1). In contrast to the
standard methods which resort to approximate Fokker-
Planck-type equations we employ an algebraic method
that transforms (1.1) into coupled systems of 4 X 4-matrix
equations. In the important case when v=0 and s =0,
which is realized in the ongoing experiments with the
one-atom maser [5], these can be solved analytically In.
the most general situation, one is eventually led to 4X4-
matrix continued fractions which can be solved numeri-
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An immediate consequence of the master equation (1.1) is

dt dt
(8)= Tr[GP] =Tr 8 P =Tr[6ÃP], (1.13)

at

8= pc„P„
r

is correspondingly computed according to

(1.23)

provided that 6 is not explicitly time dependent itself.
The dual conjugate X to X is the operator that obeys

Tr[ GAP J
=Tr[(XG)P J

=Tr[PXG] (1.14)

for all states P and all observables 8 [6]. Now, X has
eigenstates, too, and these are just the states which we
have denoted by Pr,

LP„=rP, , (1.15)

GX=XG . (1.16)

Then Pz. is simply the left eigenstate (or, more frivolous-
ly, "eigen-bra") to %with eigenvalue I,

P,X=rP, ,

whereas P„ is the corresponding right eigenstate (or
"eigen-ket"),

rP„=P,r .

In this context, the notion of duality is quite familiar.
The right eigenstates will be employed to expand arbi-

trary states P with the aid of the completeness relation

P= QP„Tr[PrPJ .
r

(1.19)

Likewise, the left eigenstates are used to expand arbitrary
observables 6,

8= QPrTr[GPr] .
r

(1.20)

The duality relation (1.12) then supplies the "coordinate
sum"

(6)=Tr[GP] = g Tr[GPr ]Tr[Pr P] (1.21)
r

for the expectation value (8). Of course, for a given X
the completeness of either set of eigenstates has to be es-
tablished.

In summary, the master equation (1.1) is solved in gen-
eral, if together with their eigenvalues all the eigenstates
Pz and Pr of the Liouville operator X and its dual L, re-
spectively, are found. Then, for a given initial state P(0)
the state at a later time t reads

P(t)=e 'P(0)=—QTr[P P(r0)]e"'Pz = gcze 'Pr .
r r

(1.22)

The temporal evolution of the expectation value of an ob-
servable

where the I are identical with the eigenvalues of X. This
can be seen immediately by inserting Pr and Pr, instead
of P and 6, into (1.14), thereby confirming the duality re-
lation (1.12).

One can read (1.14) as if X were acting to the left on 6
according to

(8),=Tr[Ge 'P(0)[—:g cre 'cr .
r

(1.24)

Now let us return to the question of how one, actually,
solves the eigenvalue problem (1.8). As a first step one
would expand the equation into eigenstates of an opera-
tor which is only a part of the total operator X and
whose eigenstates are known. Conventionally this is the
commutator with the free part of H i.e., the atomic in-
version cr, and the photon number a a, which would lead
to a number-state representation of (1.8), or one could use
the total Hamiltonian H, leading to an expansion of (1.8)
into a dressed-state basis. In any case, the resulting sys-
tems of coupled differential equations for the expansion
coefficients become rather involved.

In this paper, we will pursue a difFerent approach,
which consists in systematically using bases provided by
the eigenstates of the nonunitary parts (summarized in L)
of the total Liouville operator X. This is a straightfor-
ward and powerful ansatz. It eventually supplies the
complete analytic solution of the master equation in the
important special case when v, s=0, and substantially
simplifies the numerical treatment of the master equation
(1.1) in its most general form by reducing the problem to
the calculation of 4 X4-matrix continued fractions
without any further structural approximations.

So the strategy is the following. First we investigate
the eigenvalue problem posed by the nonunitary part
(1.4)—(1.6) of the master equation:

LP~ =A.P~, (1.25)

C. Gutline

In Sec. II we investigate the nonunitary parts L, and
L of the master equation in detail. We find that L, and

together possess a complete set of eigenstates into
which any function of the dynamical variables
a, a, o.+,o. can be expanded. These eigenstates and
their eigenvalues are derived explicitly and their proper-
ties discussed. In Sec. III these results are used to attack

where the symbols A, for the eigenvalues and Pz for the
eigenstates are used to distinguish them from the solu-
tions of the total Liouville operator. Similar to (1.12)
there are left eigenstates P& of L, too, the right eigen-
states of the dual conjugate L. We find that both the
eigenstates P& and their duals P& form complete sets into
which any observable of the system, and in particular its
state P(t ), can be expanded. It turns out that such an ex-
pansion is a very natural one, since all essential statistical
information about the field is comprised in its first few
coefficients only. In the language of phase-space func-
tions this method removes, in a certain sense, the terms
involving second-order derivatives in the corresponding
Fokker-Planck-type equations from the very beginning
and leaves one with differential equations of first order
only.
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the actual problem posed by Eq. (1.1). Upon expanding
the state

equation

L Pg =AP~, (2.1)
P =P(a, a, cr+,o, t) (1.26)

into said eigenstates of L =L, +L the master equation
transforms into coupled systems of ordinary differential
equations of first order for the expansion coeKcients.
Conveniently arranged, these equations form groups that
do not mix. Finally one is left with separate systems of
4X4-matrix recurrence relations which can be solved by
continued fractions or even analytically. In the following
sections this general frame is further developed and em-
ployed for a rigorous treatment of cavity quantum elec-
trodynamics and laser physics.

First, in Sec. IV the analytic solutions are presented.
They supply a complete and exact description of the in-
teraction of a two-level atom and a photon mode in a cav-
ity at zero temperature, including leakage effects for the
photons out of the cavity and incoherent transitions for
the atom.

This is of particular interest for an exact description of
the dynamics in the one-atom maser which is the subject
of Sec. V. As the damping constants enter the system's
eigenfrequencies, which are generalized Rabi frequencies,
the trapping-state condition is modified, too. In this ap-
proach both parts of a one-atom-maser cycle are treated
on almost equal footing: the interaction period and the
period of pure decay of the cavity field are both described
by the same equations with values gAO and g =0, respec-
tively, the latter being elementary. In particular, future
experiments with highly regular pumping, where a
second atom enters the cavity immediately after the
preceding one has left it, cannot be described by current
one-atom-maser theories which ignore cavity damping
while the atom is present.

Finally, Sec. VI gives an outlook to the situation at
finite temperature and when the atom is coupled to a heat
bath which serves as a pumping reservoir. This is to be
called the "theory of a one-atom laser. " Even in this situ-
ation, when pumping of the atom is included, the eigen-
values determining the intensity dynamics are found to be
mere solutions of an ordinary continued fraction equa-
tion. The whole spectrum of eigenvalues and the general
dynamical behavior of the system can be found by solving
4X4-matrix continued fractions numerically, the results
of which are reported in a paper with Ginzel, Martini,
and Schenzle [7].

with L defined in (1.6). Apart from the state corre-
sponding to A, =O in (2.1) these are simply the spin vari-
ables themselves. One immediately finds

L oo=0,
L a, = —Bo, ,

L o.+ = —Co.+,
(2.2)

where

o.o= —,
' [1+(2s—1)cr, )] . (2.3)

So the eigenvalues are zero and the negatives of the cou-
pling constants B and C for the atom and its reservoir.
Note that they are independent of s, which is just a pa-
rameter characterizing the equilibrium state of the atom-
ic reservoir. This will be similar for the photon damping
whose eigenvalues are also independent of the mean num-
ber v of thermal photons in the cavity, i.e., of the reser-
voir temperature.

The dual operator L corresponding to (1.6) reads

IP cr,Po, } . — . (2.4)

As discussed in Sec. I A it has the same eigenvalues as L
and its eigenstates are dual to those of L

ociL =L cr0=0,

oL =L o., = —Bo, ,

o.+L =L 0.+ = —Co.+,
(2.5)

where

cro= 1, o, =
—,'[o.,—(2s —1)], o+= ,'cr+ . —(2.6)

One immediately verifies the duality relations (1.12), here

tr[o, o„}=5,„, g, k+[0,z, +} .

If we write symbolically

(2.7)

L P =PL = ——(1—s)Io+cr P+Po+cr 2cr+—Po }
8

B V V'

8
——s [o cr+P+Pcr cr+ 2o —Pcr+ }

II. DAMPING BASKS

In the following we will call L, and L as in (1.5) and
(1.6), respectively, damping operators. Note, however,
that L can also describe incoherent pumping, which is a
mechanism structurally identical with damping. The sets
of eigenstates of these damping operators will conse-
quently be referred to as damping bases.

A. Atomic damping

BP
at

(2.8)

(2.9a)

for that part of the evolution of the state which originates
in the coupling to the atomic reservoir, the eigenstates of
the dual L obey

The eigenstates Pi (o +, cr ) of L depend on the
dynamical variables cr+, o. of the atom and satisfy the

(2.9b)
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L.p~= p~ (2.15)
(2.9c)

Equation (2.9a) simply states that the atomic damping
keeps the normalization of the state constant. In view of
(2.6), (2.9b) and (2.9c) say that the atomic inversion and
polarization decay with mean inverse lifetimes 8 and C,
respectively, which motivates the parametrization of L
in (1.6). The expectation values in the steady state op,
reached in the limit t ~ ~, are

subject to the constraint that

tr tB(a,a )p&(a, a )] & ao (2.16)

(2.17a)

or

holds for any bound observable B(a,a ). Pure damping
does not couple difFerent diagonals of a state in the
number-vector representation, so that the ansatz

pk(a t, a ) =a t"f(a ta)

(o, ) =2s —1 and (o +) =0 . (2.10)
pk(a t, a )=f(a ta )a" (2.17b)

g(Cr+, O ) =Cpo'p+C, O, +C O +C+O+,

where

cp=tr[opgj, c, =trIcr, 8], c~ =tr I o +8] .

Similarly,

8(o+, cr )=cpcrp+c cT +c cr +c+o'+

with

cp=trIGcrp], c, =trIGo, ], c~ =trIGcr+] .

(2.11)

(2.12)

(2.13)

(2.14)

When 8=8(at, a, o+, cr ) depends on the dynamical
variables of the photon, too, then the expansions (2.11)
and (2.13) hold similarly if in (2.12) and (2.14) the trace tr
is taken only over the atomic variables and then the ex-
pansion coefficients c and c are still functions of a and
a.

B. Photon damping

This means that under the influence of the atomic reser-
voir the atomic coherence gets lost, independent of the
bath parameter s=((1+cr, )/2)„, as it should be. The
inversion approaches a steady-state value which is be-
tween —1 and 1, depending on the value of s which
ranges from 0 to 1. If s) —,', then (cr, )„)0and the
atomic population becomes inverted. For these reasons
we call s the pumping parameter for the atom.

Naturally, any state or observable 8=6(o+,cr ) de-
pending solely on the dynamical variables of the atom
can uniquely be expanded into the eigenstates of both L
and L

for k =0, 1,2, .. ., is invited, where f is a function of the
photon number a a. Inserted into (2.15), this ansatz
yields a recursion for f(a a). Considerably more con-
venient is the use of a normally ordered function: f(a a ):
rather than f(a ta ) itself. Then (2.15) implies an ordinary
second-order differential equation for f, viz. ,

(v+1)zf"(z)+
I
z+ (v+ 1)(k+ 1)]f'(z)

+ —+ 1 —A, /3 f(z) =0,k
2

(2.18)

where z =a ~a. Its derivation uses the identities

:f(ata):at=at f(ata )+f'(ata ):,
at f(a a):a =:a af(a a): .

(2.19)

Equation (2.18) turns into Kummer's differential equation
if —z/(v+1) is regarded as the variable. Its analytical
solutions obey the constraint (2.16) only if

k——=n=0, 1,2, . . . (2.20)

f(z) =exp 1+v L (k)
n

z
1+v (2.21)

with the generalized Laguerre polynomials L„' '. So the
result is

for any given k. For these values of A, the solutions of
(2.18) are

The solution of the eigenvalue problem for the photon
damping operator I., in (1.5) is somewhat more involved
than for L but still a straightforward business. The
eigenstates p~ of L, and their eigenvalues are determined
by with

(k) g + I I (k)k
n

n =0, 1,2, . . . , k =0,+1,+2, . . . , (2.22)

atk ( ) .L (k)
)k+1 '

a~a
exp for k ~0,

(k)
Pn

( —1)" ((k~) a a
~k~+) .L„exp a~a

:a~ ~ for k ~0.
(2.23)
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The two possibilities of (2.17) are now distinguished by
the sign of k. Reversing the sign of k is equivalent to tak-
ing the adjoint; the eigenvalues —3 (n+

I
k I/2) involve

the magnitude of k only. The a a-independent factors in
(2.23) provide us with a convenient normalization.

The eigenstates p'„' are linearly independent and com-
plete, as for any given k the L„' ' are polynomials of order
n and thus independent for different values of n; for
di6'erent values of k the corres ponding p'„' involve
difFerent powers of the variables a or a, so they are in-
dependent in the first place.

Note that, although the eigenstates of L, depend on v,
its eigenvalues are independent of this parameter which is
related to the bath temperature. This is similar to the sit-
uation of atomic damping, where the pumping parameter
s only enters the eigenstates of L, but not its eigenval-
ues.

For the dual damping operator L„given by

pL, =L,p= — (v+1) I asap+pa a —2a "pa )

e(a', a)= y a„kp'„"',
n, k

with

(2.30)

~ k =«IP
and similarly

6(a",a) = g a„kp'„"',
n, k

where

(2.31)

(2.32)

(2.33)

In particular, 8 can be the reduced state of the joint
atom-photon system, the state of the electromagnetic
field alone:

p(a, a, t ) =tr P(a, a, o.+,a, t ), (2.34)

Now, any state or observable 6=8(a, a ) depending
only on the photon variables can be expanded uniquely
into the eigenstates of both L, and L, :

vIaa p+paa —2aPa
2

(2.24) where tr traces over the atom variables only. Equation
(2.30) then reads

which is to be compared with (1.5), the derivation of its
eigenstates is done analogously. The result is

p(„")L.=L.p(„")= —3 n+ p(„")

p(t) = g ~„(t)p'„"',
n, k

with the expansion coefficients
n

(2.35)

with

n =0, 1,2, . . . , k=O, +1,+2, . . . , (2.25)
n!

(n+k)!

(k)
Pn

1+v

n

'n

n. (k) a at

(n+k)! " v
:a for k ~0

for k ~0.

(2.26)

flak(.L (]k J) a
(n+IkI)! " v

a aX L(k)
v

(2.36)

for k ~ 0, and the complex conjugates for k ~ 0.
Note that, although the expectation values in (2.36)

might look rather involved on first sight, the expansion
(2.35) is actually a very natural one, as the first few
coefficients already contain the basic statistical informa-
tion about the field. For example,

After some algebra, which is reported in the Appendix,
one can convince oneself that these p'„' are indeed dual to
the p'„"' of (2.23),

&a a ) =v+(I+v)a)o

is the mean number of photons, and

(2.37a)

trIP P ' I 5 '~kk'

for n, n'=0, 1,2, . . . , k, k'=0, +1,+2, .. . . (2.27)

trIP I =~ o~ko . (2.28)

Note that the ground state pp ', which is the steady state
of L„is the thermal state:

The states p'„' are all traceless, except for n =0 and
k=0:

&a)=Do, (2.37b)

is the mean electric field, and similarly for higher powers
of a, a and a a. In contrast to expansions into a
number-vector basis where one needs all diagonal expan-
sion coefficients to calculate just the mean photon num-
ber & a a ), the most essential statistical quantities of the
field are provided by a few coefficients only in (2.35).

We close this section with a comment on the special
case v=O. For v=O, the right eigenstates of L, acquire
the form

(p) 1 a a
pp

= .exp
1 v

1+v 1+v

a a

(2.29)

if we recognize that the number of thermal photons, v, is
related to the temperature T by v/( 1+v)
=exp( —A'a)/k~ T).

(k)
pn

and the dual states are

tk( 1)a a+n n+k
a a+k

( 1)a a+n n+ 1k I !k!
ata+ IkI

(2.38)
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(k)
pn

a a k fn n+k
( +k)! a =at"a"+"/(n+k)! for k +0

at" ! =a "+ "!a"/(n+~k~)! for k ~0 .
. n . (n+(k~)!

(2.39)

The statements (2.22), (2.25) and (2.27) can be verified
easily. The corresponding eigenvalues are, of course, still
the same, as they are independent of v.

In this situation, the coefficients of a corresponding ex-
pansion (2.35) of the state p of the field have an even
more immediate significance, for instance,

a L,—p= —ico[a a,p]

+2ig([a,p ]+[a',p+]),
a —L, +& p, = ice[a—ta, p, ]

(a a ) =ccio

&a) =~oi
(2.40)

+ig([a p I [a-' p—+ I

—(2s —1)[a,p ]
—(2s —1)[a,p+]),

(3.3)
for the mean number of photons and the mean electric
field, and at

—L, +C p = ico[a—ta, p ]+imp

((a a) ) (a a) =2cz2o+aio ccio

(a a) —(a )(a) —~(a ) —(a)
~

(2.41)

+i ([a tp—]+ 2[at,p, ]

+(2s —1)[a,pI ),
=ccio I &oi I 2czo2 cz011 a L, +C p—+ = ico[ata, p—+] i Qp+—

for the variance of (a a ) and the squeezing measure of
the field.

III. EXPANSIONS OF THE MASTER EQUATION

A. Expansion into eigenstates of L

The state P in Eq. (1.1) is a function of the dynamical
variables a, a and, in particular, cr+, o. . We can there-
fore employ the expansion (2.11) and write

P=p~, +p, ~, +p ~ +p+~+. (3.1)

The coefficients appearing in (3.1) are functions of the
photon variables:

p=tr [PI,
p, =tr [cr,P],
p+ = tr I cr+P ] .

(3.2)

When inserted into the master equation (1.1), (3.1) yields
a coupled system of differential equations for the photon
functions p,p„p+ ..

In the following we will apply the results of Sec. II and
successively expand the state P into eigenstates of L and
I, The master equation then transforms into groups of
matrix equations for the expansion coefficients.

+i ([a,p—]—2 I a,p, I

—(2s —1)[a,pJ ),
where I, I denotes the anticommutator and L, is the
operator of (1.5). If one is only interested in the reduced
state of the field then p, and p+ in (3.3) are merely auxili-
ary functions for the calculation of p. This system of
equations could now be treated further by using
"quasiprobability functions" [3] to get a c-number repre-
sentation of (3.3).

In this paper we will, however, stick to our strategy
and first take care of the nonunitary damping operators.

B. Expansions into eigenstates of L,
Since the objects of interest p, p„and p+ are all func-

tions of the photon variables a and a we can expand
them into eigenstates p'„' of the photon damping opera-
tor L, . Employing (2.35) for p(t) and similar expansions
for p, and p+ we write

p(r)= ga„„(r)p~„"~, ~„
n, k

p. r = +13„(r)p'„"', f)„„=p„*,,
n, k

(3.4)

p+ 2 l~, k+1( )Pn ~ 'gn, —k =f„k'
n, k

where the restrictions on the coe%cients are due to the
fact that p and p, are Hermitian whereas p+ and p are
Hermitian conjugates of each other.

Now we use the following commutation and anticom-
mutation relations:
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(k)q (k+1) r (k+1)) r1 (k)

t~, '"'I =2(~+ —')p'"+"+2(v+1)p'"+" Ia p'"+"j =2(n+k+1)p" +2(v+ —') p'"'
(3.5)

for n, k =0, 1,2, . . . , and the adjoint relations for k= —1, —2, . . . , and insert the expansions (3.4) into (3.3). After
conveniently arranging the coe%cients we eventually arrive at a system of differential equations which is equivalent to
the master equation (1.1):

d
dt

an+, k

~., k
1

~ ~n, k

1
In+1, k

k—A n+ —+1 —icok
2

0

g(v+1) s ——1

2

—g(n+k+1) s ——1

2

0

k—A n+ ——B—i cok
2

1
g v+—

2

1 n+1—g v+—
2 v+1

n+1
v+1

—2g(n+ k+ 1)

k 1—A n+ —+——C —i cok —id
2 2

0

2g

2g(v+ 1)

k 1—A n+ —+——C—icok+ih
2 2

an+1 k
'V

1 „
~ ~n, k

1„
~ In+1, k

0 0
an+2 k0 0 0 0
~n +1,k0 0 0 0

0 —g(n+k+1) 0 0
~ In +2, k

0 —2g(v+s) 2g(v+s)v+1
I[1+(2v+ 1)(2s —1)]4

0 0 0

0—+[1+(2v+ 1)(2s —1)] 0n+1
4 v+1

V'

an, k
V'

~n —1,k
1 „
l

~n —1 kr

1 „
l In, k

for n =0, 1,2, 3, . . . , k =1,2, 3, . . . ; (3.6a)

'V

an +1,O
'V

P„,o
1 „
l

~ ~n, o

1 „
l

~ In, o

—A(n+1)

0

g(v+ 1)(s ——')
—g(v+ 1)($——)

0

—An —B
g(v+ —')
—g(v+ —')

n+1'g +1
—2g(n+ 1)

—A(n+ —) —C—ih
2

0

n+1'g +1
2g(n + 1)

0

—A(n+-') —C+la
2

an +1,O
'V

P„o1.
~n, o

1 „
In, o

0 0 0 0

0 0 0 0
0 0 0 0

+ 0 g(v+ 1) 0 0
0 —g(v+ 1) 0 0

an +2,O

~n +1,0
1 „
l

Vn +1,O

1 „
~ ~n +1,0

0
+ I[1+(2v+ 1)(2s —1)] 0

4

—L [1+(2v+ 1)(2s—1)] 0
4

0 —2g(v+s) 2g(v+s)v+1 v+1
an, o

V'

~n —1,0
1 „
l

&n —1Ot

1 „ —1,0

for n =0, 1,2, . . . , k =0; (3.6b)

d
dt

ao, k
1 „

~ Io, k

—A ——i cok
k
2

1 k 1—gk s —— —A
2 2 2

2g

—C —i cok+ ib,

ao, k

1 „
+O, k

—gk 0
~o, k

for n= —1, k=1,2, 3, (3.6c)

d-—a00=0 for n= —1, k=0 .00 (3.6d)
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This is supplemented by the complex conjugate equa-
tions. Note that in the system (3.6) coefficients with
different indices k do not couple. Therefore we obtain
closed groups of equations with respect to the index k.
With respect to the index n, every group has the form of
a three-term recurrence relation.

For the further discussion we write (3.6) compactly in
the form

dt Xnk Mn Xnk +Gn Xn+1, k +FnXn —1, k (3.7)

with n = —1,0, 1,2, . . . and k =0, +1,+2, . . . , where
Xnk denotes a column of four coefficients and M„' ', G„' ',
and F„are the corresponding 4X4 matrices involved [8j.
The system of differential equations is the "coordinate
representation" of the master equation in the damping
bases. An eigenvalue of the master equation is then a
simultaneous eigenvalue of a group of equations with
common index k,

(3.8)

Note that the matrices G„' ' and Fn couple the dynamics
of the nth column Xnk to the columns with neighboring
indices n, Xn+, k and Xn 1k, respectively. Most gen-
erally, the recursion in (3.8) can be solved by matrix con-
tinued fractions, which is further discussed in [7].

For a complete solution of (1.1) we also have to calcu-
late the left eigenstates of X which are the right-
eigenstates of its dual X according to (1.15) as was point-
ed out in Sec. I B. To do this, we proceed as above, ex-
cept that we now employ the expansions into the eigen-
states of the dual damping operators. That is,

+Xn +1,kFn+1 (3.13)

with n = —1,0, 1,2, . . . and k =0,+1,+2, . . . . This is
to be compared with the corresponding equation (3.8).
Now, the Xnk denote rows, containing the coefficients ap-
pearing in (3.11),namely,

Xnk (an+(, k&~nk&(3 nk&( ln+(, k )

for n =0, 1,2, . . . , k =1,2, . . . ,

X.o=(a. +(,0».0 (r.o (n.o)

for n =0, 1,2, ~ . . , k =0

X, k=(a,k, o, o, (q,k)

(3.14)

for n = —1, k=1,2, . . . ,

X, o=(aoo, o, o, o) for n = —1, k=0,
in contrast to the X„k in (3.8) which denote columns,
comprising the coefficients of the expansion (3.4). Note
that the matrices M, G,F appearing in (3.6) or (3.7) are
the same as for the dual coefficients in (3.13).

We can summarize these results compactly by writing
V

'V

Xo, kXk=(X (k, XOk, Xi k, . . . ), Xk —
X1,k

for n, k =0, 1,2, . . . , and the adjoint relations for
k = —1, —2, . . . , we finally arrive at a system of equa-
tions which is equivalent to the eigenvalue equation (1.15)
for the dual Liouville operator:

LP=rP —rx„k =X„kM„' '+X„,kG„' ',

where

p~o+pzoz+p —o —+p+o+ ~ (3 9) and

p=tr IPo. ), p, =tr IP(7, I,
p~=tr IPo.~), (3.10)

F M'' G'' 00 0 0

F M(k) G1 1 1

(3.15)

in analogy to (2.13). Similarly, we apply (2.32) to further
expand the photon functions (3.10):

n, k n, k

(k)
P —g P„k (P„, P+ M )nk+ ipn,

n, k n, k

(3.1 1)

(k+i)I 2( ~ (
)

( )~2( ~1) (k) (3.12)

ta p'"'I =2( +0+1)"'"+"+2( +—')Pn Pn —1

as in (3.4). Using the following commutation relations
for the dual eigenstates p'„':

(k+1)) (k)+ ~Pn j Pn

(k) n (k +1)I:a P. l=, + p. -(

0

a—P=LP~ Xk=AkXk, k=0, +1,+2, . . . ,t
I X' '=A X'"'

k k kzp„=rp,
JPr=I Pr rX' =X'"'A k =0,+1,+2, . . . .

(3.16)

So the eigenvalues and (right) eigenstates of the Liouville
operator L and its dual conjugate X are given by the ei-
genvalues and eigencolumns and eigenrows, respectively,

which comprises all the coefficients of (3.4) and (3.11) for
a fixed k in a (super) column Xk and in a row Xk and all
the matrices in (3.6) or (3.7) in the single tridiagonal
(super) matrix Ak.

In this notation the master equation (1.1) and the cor-
responding eigenvalue equations have a clear coordinate
counterpart
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of the matrices Ak as in (3.15). Please note how naturally
the right eigenstates of X appear as left eigenstates of X
in (3.16).

The subsequent sections are devoted to the solutions of
(3.16).

decoupled. If additionally X„o(t=0)=0 for n )X, which
implies that at time t=0 there are not more than N+1
photons in the cavity, these coefficients remain zero as
well, as their dynamics only depends on coefficients with
higher n, which all vanish initially:

IV. ANALYTICAL SOLUTIONS

2C —B
4

[P o,Po—,], . (4.1)

with H as in (1.2). It describes a two-level atom with lev-
el spacing AQ interacting with a photon mode of frequen-
cy co in a cavity with a vanishing number of thermal pho-
tons; the nonunitary terms account for photon leakage
out of the cavity [9] and incoherent transitions of the
atoms. These can be either real transitions from the
upper to the lower level or virtual transitions [the last
term in (4.1)] that only destroy atomic coherence without
actually changing the inversion [cf. Eq. (2.9c)].

As we have seen in Sec. III, the master equation (4.1) is
equivalent to the system (3.7), or (3.6) for v=O=s. For
these parameters, however, the matrices F„ that couple
the coefficients X„k(t) in (3.7) to the coefficients X„&k(t)
vanish.

Let us first consider initial states P(t =0) whose
coefficients X„k(0) vanish for all k except for k =0; then
they will do so for all times,

In this section we concentrate on the special situation
in which v=O and s=0. The master equation (1.1) then
reads

1P=—. [H, P] — (a aP+Pa a 2aPa—)
Bt i' '

2

B
8

——
I o +oP+ P. o + cr 2' P—o+].

X„o(0)=X„(0)=0, n =%+1,N+2, . . . =X„(t)=0,
n =N+1,N+2, . . . ~ (4.3)

In this situation the master equation corresponds to a
finite number of coupled differential equations in the
form of two-term recursions:

a P=XP
at

X„=M„X„+GX„+(,dt
n=0, 1,2, . . . , N —1,

V 'V

X~ —M~X~ )dt

(4.4)

where we have temporarily omitted the subscript k =0,
for notational simplicity. Accordingly, the correspond-
ing eigenvalue problem in this finite-dimensional situa-
tion reads

rx„=M„x„+Gx„,,
rI =LI— n=0, 1,2, . . . ,

rx =Mx
N —1, (4.5)

Therefore the eigenvalues of the matrix Mz are also ei-
genvalues of the Liouville operator X. The same reason-
ing applies to the groups of equations with k&0, and for
arbitrary N.

So we have the result that the eigenvalues of the master
equation (4.1) are identical with the eigenvalues of the
matrices M„'"' appearing in (3.6) with v=0, s =0:

X„k(0)=0, k =1,2, 3, . . . : X„k(t)=0,
det(M„'"' —I ) =0 . (4.6)

k=1,2, 3, . . . (4.2)

because in (3.7) coefficients with different indices k are
In general, the solutions of (4.6) are the roots of a fourth-
order polynomial in I, namely,

I" +(2C B)I" + 4g —n+ —+1
2

'2 2
2 —B + 2C —B

2 2

2 2 2 2

+(2C B) 4g n+ —+1-k
2

A —B
2

A —B.I"+ kg — i 6
2

2C —B
2

=0 (4.7a)
2

for n =0, 1,2, . . . , k =0, 1,2, . . . , with I"= I + 3 (n +k l2+,' ) +B/2+i cok and, for n = —1, the residual equations

I +icuk+ 3—[I +icok+ A(k —1)/2+C —iA]+kg =0 for n = —1, k=1,2, . . .
k

(4.7b)

I =0 for n= —1, k=0. (4.7c)

The eigenstate to I =0 is, of course, the steady-state solution of (4.1). Equations (4.7b) similarly give the "ground-state
values" for the groups of equations with different indices k. For instance, (4.7b) with k = 1 determines the long-time de-
cay constant for an initial perturbation 5(a ) of the electric field in the cavity [10]:
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c———ice+i—+i g—
4 2 2

C +l
4 2 2

' 2 1/2

(4.8)

The quartic equation (4.7a) cannot be brought into a simpler form and we will not bore the reader by giving solutions
explicitly. For C=8/2, which means a vanishing last term in the master equation (i.e., no dephasing collisions for the
atom), (4.7a), however, simplifies to a biquadratic equation. The roots of (4.6) are then explicitly given by the following
expressions [11]:

I ——= —2 n + —+————I cok+2i 0—++ k 1 B
nk nk

where

1
nk

+k 1
(A 8)—

g n+ —+1
2 16 4

+ ~ g n+ —+1k
2

k 2 . 3 —B—g —iA
2 4

(A 8) —b,

16 4
2 1/2

' 1/2

for n =0, 1,2, . . . , k =0, 1,2, . . . , (4.9a)

k 1 BI — = —A ——————i cok +i—+i kg—
1&k 2 4 4

A —B
4 2

+&—
2 1/2

for n = —1, k=1,2, 3, . . . , (4.9b)

and

I 1 o=0 for n = —1, k=0 (4.9c)

I

~y„—+k &(y„—~. The "ground-state" values in (4.9) reduce

to

Here the signs in the labeling of I „—k
—refer to their order

of appearance on the right-hand side and 6=co —0
denotes the detuning. Together with the complex conju-
gate values, Eqs. (4.9) give the complete set of eigenvalues
for the master equation (4.1) if C =8/2.

To get familiar with these expressions let us first look
at the special case of vanishing damping constants and
detuning, A, B,5=0. Then, on the main diagonal
(k =0) we have

I:& k
= icok+ig—&k for k=1,2, 3, . . . (4.13)

and I 1 o=0, of course, corresponding to products

~yk, &(y ~~
and ~y, &(y, ~, respectively, where

~y, &
= ~(a a )'=o, o,' = —1& obeys

(4.14)

When the damping A, B is switched on, (4.10), for ex-
ample, changes into

0, twofold
o —(1 1)iII +2 + + / +1 (4.10) I ——= —3 n +———+2iQ++ 1 B

nO 2 2

which are the eigenvalues of the Jaynes-Cummings com-
mutator ( I/iA')[H, ] associated with the projector eigen-
states ~y„—+&(y„—~, where the Hilbert space vectors ~y„—&

obey the eigenvalue equation

with n =0, 1,2, . . . , (4.1 1)

coki+ (Q„i++A„), (4.12)

which are eigenvalues corresponding to dyadic products
I

and 0,„ is the Rabi frequency. Similarly, for oA-diagonal
eigenvalues with k )0

I „—k
—= icuk+ig(&n—+k+ I+&n +1)

1+1
n

1/2

)
(A —8)

(4.15)

where 0„+ is the modified Rabi frequency. More general-

ly, for k =0, (4.9) involves two frequencies 0„+ and 0„,
one of which is purely imaginary, thus attenuating or
enhancing the (real) damping part —A(n+ —,') 8/2. —
The second one is positive and real and defines the gen-
eralized Rabi frequencies (which are the imaginary parts
of the eigenvalues).

As an immediate application consider the time depen-
dence of the mean number of photons ( a a & in the cavi-
ty, when an atom is present. The general form of that ex-
pectation value reads (for simplicity we choose co=A,
8 =0)

' 1/2
oo

(a a &, = g e "'"+' " a„+b„cos 2 g (n+1)—
16

1/2

t +c„sin 2 g (n+1)— t (4.16)
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1/2

(a a ), —=e '~ ao+bocos 2 g — t
16

1/2

+cosin 2 g — t (4.17)

where the constants a„,b„,c„are determined by the ini-
tial state of the field. For a large initial photon number
(a a )0, the terms oscillating at different frequencies,
each being damped differently, add up to produce oscilla-
tions around the classical exponential decay
(a a ), —e "', since the atom will now and then absorb
and emit one of the photons. As long as their mean num-
ber is large the modifications are mere fluctuations of the
relative order I/(a a ). After the elapse of a sufficiently
long time, however, the only surviving term in (4.16) is
the one damped by the factor e

as t ~ ~ [13]. Now the presence of the atom
significantly slows the decay of' the remaining photon
which can either be lost irreversibly to the photon reser-
voir or be reversibly absorbed by the atom. Roughly
speaking, the photon spends about half of its time inside
the atom which shields it from the reservoir and so
effectively doubles the photon lifetime in the cavity. This
effect, of course, only occurs when the coupling g is large
compared to the damping rate A. In Figs. 1 and 2 we
discuss the decay of an initial number state of photons in
more detail.

Note also that in the classical limit of a negligibly small
coupling to the atom, g —+0, all oscillating terms in (4.16)
except for the one with the frequency
Qo=(g —2 /16)'~ vanish, and since Qo~iA /4, this
remaining term gives an additional damping factor
e ' which combines with the factor already present to
the correct classical exponential decay:

1/2

a +b cos 2 g (n+1)—
16

1/2

t +c sin 2 g (n+1)—
16

t ~const X 6 oe (4.18)

rXN

x„,=(r M&, ) 'Gx~, —

X„=( I —M„) 'G( I —M„+ ) )

(4.19)

so that (a a), —+(a a )oe ', asg~0.
So far we have been concerned with the eigenvalues of

Eq. (4.1). To determine the corresponding eigenstates let
us return to (4.5) and restrict the discussion, for notation-
al transparence, to k =0 again. Let I be an eigenvalue of
the master equation. Then the coordinate representation
of the associated eigenstate Pz is given by simultaneous
eigencolumns of the coupled system of matrix equations
on the right-hand side of (4.5). These columns X„are
iteratively computed from XN, which is an eigencolumn
of the matrix MN. Thus

After this discussion of right eigenstates of the Liou-
ville operator X of (4.1) let us now turn to the left ones.
For the left eigenstates the equations corresponding to
(4.5) are deduced from (3.13) and read, for k =0,

I X„=X„M,+X„1G,
I P=XP =PE~ n =N+1, TV+2, . . .

I XN —XNMN,
(4.22)

XNMN = I XN,x,=x„G(r—M „)-'

and similarly for k&0. The rows X„corresponding to
the eigenstate Pz- for a given eigenvalue I are again itera-
tively calculated from XN,

x(r —M~ )) 'Gx~ .

X„=X~G(r—M, )-' . G(r —M„)-'
(4.23)

As the matrices M„do have different eigenvalues for
different n the inverse matrices appearing in (4.19) surely
exist. The matrix G has only two nonzero entries, so that
one can actually reduce (4.19) to the form

X„=(I—M„) 'G„~,X~ for n ~X—2, (4.20)

The subdeterminants of I —M can be used to evaluate
the 23 and 24 matrix elements of the inverse matrices
(I —MJ ), and so one can give quite explicit expressions
for the eigencolumns for any given eigenvalue [14].

where G„N 1 is, apart from a multiplicative factor, iden-
tical with G:

N —1G„,=g " 'G + [(r—M,. ),, '+(r+M, );,'] .
j=n+1

(4.21)

=X~G~ „)(I—M„)

where the matrices G& „& are defined in (4.21). Note,
however, that n )X in (4.23) and the iteration does not
terminate as in (4.20). Thus, in contrast to Pr, the coor-

V'

dinate representation of Pz involves infinitely many
columns.

We have thus given the analytical solution of cavity
QED as described by the master equation (4.1). We now
turn to the important and interesting application of this
theory to the one-atom maser [15].

V. THE ONE-ATOM MASER (v=0, s =0)

In the situation of the one-atom maser the losses of the
resonant photon field are balanced by excited atoms
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A,

v

10 which pass through the cavity, depositing a photon in it
with a certain probability that depends on the state of the
field when the atom enters the cavity. Usually the atomic
flux is so small that not more than a single atom is in the
cavity at a time.

The dynamics of the photon Geld is described by cy-
cles, see Fig. 3. A cycle begins, say, when an atom enters
the cavity. The state of the composite system is then
given by

P(0)=p (0)p(0), (5.1)

10

/g = 0.1

where p and p are the reduced states of the atom and the
field, respectively. The atom will then interact for a cer-
tain time ~ with the field. This is described by the master
equation (4.1) or formally by

8A
Vo

a

4
A
Va

P(r)=e 'P(0),

1.0

08

(a) N=1

(5.2)

I
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I I

20 30
gt

I

IO

10

CV

Aa

~a
I

O

Aa

~O

0.2-

20

10 20
gt

30 40

(b) N =2

50

20 40
I I I I I

60 80 100

FIG. 1. Decay of the mean number of photons as a function
of time for an initial number state with %=10 photons. (a)
A /g =1. There is an equal time scale for the exchange of ener-
gy between the atom and the field and for the decay of the field.
The dashed line shows the pure exponential decay (g =0). (b)
A /g =0.1. One can see several oscillations which vanish as the
damping of the system involves more and more lower frequen-
cies of the system. The lower curve shows the squared variance
((a a) ) —(a a) . (c) A/g=0. 01. Here the oscillations are2

more rapid and exhibit beats. In all three plots (a) —(c) one has
6/g=1, B=O, C=O. Note that the oscillations die away
once the damping has mixed states with photon numbers less
than 10. For large t one can write ( a a )++ ++

N —1
1 t gg 10

Og++e " c„-g++e 0
c&~&

—where I o
+—+ are the

smallest nonvanishing eigenvalues in (4.9) and c„——+ are some
coefficients [cf. also (4.16) and (4.17) for b, =0]. Moreover, the
coefficients co which multiply the oscillating terms are negli-++
gibly small compared to co+ . Thus, an initial state with ten
photons shows a very different behavior for large times than an
initial state with one photon, although in both situations the
relevant eigenvalues, I 0++, are the same (cf. Fig. 2). Similar
curves are given in Refs. [12]and [18].

1.0-
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I
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gt
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30
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40 50

FIG. 2. Decay of an initial number state with one or two
photons for A/g=0. 1, 6/g=l, B=O, C=O. (a) N=1. The
coefficients c&~&+ and co+ in the expansion of (a a ) (cf. Fig. 1)
are of the same order of magnitude, so the oscillations are main-
tained. They are damped by a factor that is smaller than half of
the classical exponential decay, which is indicated by the dashed
line [13]. (b) N=2. The coefficients co+ and co++ are of rela-
tive order 1:100, so, compared to (a), only very small residual
oscillations survive. For X= 10, Fig. 1(b) shows how the
different frequencies involved interfere to give a smooth curve.
Its large-time constant of decay is, however, still less than half
of the classical value.
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(a'a&il

0
I

2T 2T+T t

which is Eq. (1.22). The coordinate representation of the
eigenstates Pr is

P p( ) +p( ) +p( ) +p( )

X (~nk ~0+ink ~z + Vnk —l~ —+ ink+1~+ )Pn
-(r) "(r) -(r) (I) (k)

(5.7)

where X is the Liouville operator given by the right-hand
side of Eq. (4.1). At the time t =T the atom leaves the
cavity and the reduced state of the photon field is then

p(T)=tr P(T) . (5.3)

Subsequently, the field is subject to pure decay which is
described by the master equation (4.1) for g =0 (and the
trace taken over the atomic variables) or formally by

FIG. 3. Cyclically pumped one-atom maser. T is the pump-

ing period, ~ the time of interaction between the atom and the

field, and T—~ is the duration of pure decay. To be more realis-

tic we later include a finite probability of excitation for the in-

coming atoms and a fluctuating interaction time ~ owing to a

Fizeau-type velocity distribution for the atomic beam.

where the coefficients a'„"k', /3'nk', 7"'n"k', TI'„k' make up the
columns Xnk associated with an eigencolumn X&k of the
matrix M~"', as in Eq. (4.19). Here we explicitly indicate
the eigenvalue I which also serves as the index of sum-
mation in (5.6). Similarly the coordinates of the dual
eigenstates are given by

Pr p 00+p~ g~+p 0 +p+ 0 +

2 ( nk 0 ~nk z+3 nk l~ —+ ink—+ 1~+ )Pn

(5.8)

where the coefficients a„'k', p„'k', y'„k', TI'„"k' make up the
rows X„'k' associated with an eigenrow X&&' of the matrix
M& '. The values of N and k are fixed by the given value
of I in (5.7) and (5.8).

If we finally write the coordinate representation of the
reduced state of the photon field,

p(T)=e ' p(T),

where

(5.4)
p(t) = g ~„(&)p'„"',

n, k

(5.9)

XpP = i co[a ta, P ]+I.—,P (5.5) the first part (5.2) and (5.3) of the one-atom-maser cycle
reads

and t=T~~ is the time immediately before the next
atom enters the cavity. For the following cycle p(T)
takes on the role of p(0) in (5.1), and so on.

So the dynamics of a cycle is split into two parts, which
are described by (5.2) and (5.4), respectively. The first
part involves the time evolution operator e, whose pre-
cise meaning is given in (1.22) together with the coordi-
nate representations (4.5) and (4.22) for the eigenstates of
X and L. The second part of the cycle follows (5.4). But
this is, in our approach, a trivial special case of the dy-
namics described by the total X, as the damping-basis
states are eigenstates of Xp, too.

Let us now apply the solutions of the eigenvalue prob-
lem (4.5) and (4.22) to the one-atom-maser dynamics.
Equation (5.2) explicitly reads

p(T ) = g e "'p'" 'Tr
I Pr P (0) j

r
= XX ""."'T IP p.(o)p(0)jp.'"'

n r
That is,

ank(T) = y e"'a'nk'Trt Prp~(0)p(0) j

(5.10)

(5.11)

which we proceed to express as a mapping of the
coefficients a„k(0) only. Now,

TrIP&p~(0)p(0) j
= g un k (0)TrIP&p~(0)p'„" 'j

n', k'

(5.12)

P(T) = g e"'Pr TrIPrP(0) j, (5.6) and, using (5.8) and the duality relations (2.27) and (2.7),

TrIPip (0)p'„" 'j =a'„k tr Ip (0)o'pj+~n k'tr~IP~(0)ir, j+y„,k ltr Ip (0)|T—j +On 'k1+trIp (0)o+ j

=COAn k +CzPn'k'+C Vn k —1+C+''9'n k +1(r) - (r) - (r) - (r) (5.13)

pn(0) =Cp0'0+Cz0'z +C CT +C+ CT+

In this context, the coefficient cp always equals unity, of course. After inserting (5.12)—(5.14) into (5.11) we have

&nk(T) 2 e &nk ICO&n'k'+C ~ 'k'+C —7'n'k' —1+C+ 71n k +1 jo! k (0')'
I,n', k'

(5.14)

(5.15)
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The second part of the cycle, following (5.4), simply produces

(T) —[i«+A(n+lkl/2}](T r) —
( )a„k —e &nk ~

where —A (n +
~
k

~
/2) are the eigenvalues of the damping operator I, .

So the state of the field at the end of a complete cycle,

n, k

is given by the mapping [16]

(5.16)

(5.17)

( T)—e [i«+ ~(n+Ikl/&]]T ~ e[r+i«+ A(n +lkl/2)]r (&& ( (I ) + n(r] (I') (I ]
nk e A„k [COD„k +CzP„k +C ) „k I +C+'g„k +i IA~ k (0)

(5.18)

All quantities in (5.18) are known, so it provides us with the analytical solution of the dynamics of the field in a one-
atom maser including damping mechanisms for the atom and cavity leakage during the passage of the atom through the
cavity.

Consider now the special case when all entering atoms are in the upper state,

p (0)=p (T)=p (2T)= =
—,'(1+o., )=oo+o, ,

(5.19)

that is, co =c,= 1, c+ =c =0 in (5.14). In this situation a field that is successively loaded by passing atoms, sta«ing
from the vacuum state, remains diagonal. If we set, for the sake of additional notational simplicity, C=8/2, (5.18)

takes on the form

[
—A(m —n+ 1/2) 8 2+/2i n r]&(—~, +, + I]]~,+,+) ~(~ + +] ~ (0)e (5.20)

with 0+—=Q*o from (4.9), and the coefficients u'„'
a„' **',P„'. *+—' are the components of the eigencolumns

and eigenrows of the matrix M' ', associated with the ei-

genvalues I o given in (4.9). Note that, according to
(2.40) and (2.41), the mean number of photons and its
variance are simply determined by the coefficients ai(T)
and a2(T).

In the cyclically steady state one has
a„(T)=a„(0)=a„ for n =0, 1,2, . . . . So these

coe%cients o;„are mapped onto zero by the matrix with

the elements

AnT I
—A(m —n+ 1/2) —8/2+2. iQ Ir „{~gg)

M„„.=e e &n
'

Ptl

[I +icok+ A{n+ Ikl/2)]~ (5.22)

in (5.18) by

sinh[[I'+icok+ A(n+ ~k ~/2)](5&/2)]
[I +in)k+ /I (n+ ~k ~/2)](5r/2)

take into account a spread in the velocity of the incoming
atoms. This is done by integrating (5.18) over a (narrow)
time interval [7 5r/2, 7+—5r/2] as the Fizeau-type ve-

locity selectors used in these experiments give approxi-
mately equal probabilities for atomic velocities U in a cor-
responding interval [U —5U/2, u+5U/2]. This results in

replacing the factors

(5.21) ~ e tI"+izaak+ A{n+ Ikl/2)]v (5.23)

with n, n'=0, 1,2, . . . . Because cx'„+&* '=0 if n &I and

similarly P'„. '* '=0 and a'„+*, '=0 if n'&m, the rn

summation actually runs only from n —1 to n' in (5.21) or
(5.20) and the coefficients a„(T) depend only on initial

coeflicients a„.(0) with n' ~ n —1.
So far we have assumed that all atoms are excited and

have the same velocity when they enter the cavity. A
more realistic description of the one-atom maser must

Further, one must take into account that the incoming
atoms are only excited with a certain probability p. If
they are excited, the dynamics follows (5.18). If they are
not excited, the cavity Geld will be subject to a whole
period of pure decay, which happens with the probability
1 —p. The inclusion of this pumping statistical parameter

p into the above description modifies (5.18) to

(T) e
—[i«+ A(n lkl/+2)]T

&nk

~ e[I +izaak+ A(n+lkl/2]]r (I )(c ~(I") +c p(r) +c yiI') +c ~(r) )+(1 ~ )g 5 ~ (())nk &0&n'k' &z n'k' C —7 n'k' —
&

C + In'k'+ r nn' kk' .+n'k'
n', k' I

(5.24)
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FIG. 4. (a) Stroboscopic evolution of the field in a one-atom maser towards the trapped state (5,1), given by 05+~=~, for different
t times t-

the cavity so that there are no periods of pure relaxatlon. Both the vacuum and an lnltlal state with five photons evolve towards a
(cyclically) steady state with not more than five photons. The stroboscopic evolution is described by the quantum map (5.20) with
t = T=w/g+. (b) yn the (cyclical]y) steady state, (5.20) maps the coeKcients a„(0) onto themselves. Note that, for this trapping
value for t the map (5.20) involves only the 6)(6 matrix M„„of(5.21) with n, n running from 0 to 5. The probability distribution
p(n) for the final photon number Is plotted for differen values of A corresponding to (a). One can see that the final state depends
very sensitively on the damping constant and only for very small damping can an approximate number state with N —5 photons be
obtained.
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Together with the replacement (5.22) —+(5.23), the map-
ping (5.24) gives the analytical solution of the dynamics
of the photon field in realistic one-atom-maser experi-
ments. It includes detuning, cavity leakage effects, spon-
taneous decay mechanisms for the atoms, a Fizeau-type
velocity distribution for the atomic beam, and a statisti-
cal parameter p for the excitation of the incoming atoms
covering the limits p~0 for Poissonian pumping and
p~1 for regular pumping. Incidentally, pumping with
atomic coherence is also contained in (5.1g) and (5.24)
through the coefficients c+ and c of (5.14).

Numerical results of elementary one-atom-maser cal-
culations are presented in Figs. 4 and 5. More details, in-
cluding computations of the linewidth and the properties
of the steady state with the aid of the quantum map
(5.24), are planned to be reported shortly elsewhere.

18

WU

10

8

6A
v~ 4

VI. OUTLOOK: THE ONE-ATOM LASER

In the one-atom maser the cavity losses are balanced
by excited atoms depositing photons while they pass
through the cavity. If there is no atomic beam carrying
energy into the resonator, but rather a single atom that
stays in permanent interaction with the field, a steady
state can only be achieved if the losses of the field are bal-
anced by a permanent incoherent excitation of that atom.
This is the standard pumping mechanism. In the master
equation (1.1) it is taken into account by the term (1.6)
with s) 0.

In this regime (1.1) describes a "one-atom laser, " that
is, a single permanently pumped atom in interaction with
a field mode in a resonator with losses (mainly owing to
the outgoing laser light). Its dynamics is given by Eqs.
(3.6a) —(3.6d) or (3.7), respectively, where now s )0, so
that we really have to deal with the three-term recurrence
relations (3.8) and (3.13) with matrices F„WO. The same
situation arises at finite temperature (v) 0) of the photon
reservoir.

These three-term recursions can be solved numerically
by using the method of matrix continued fractions [17].
The results of this analysis are reported in [7].
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APPENDIX

Inasmuch as the presence of the factor 6kk. in the dual-
ity relation (2.27) for the p(„"' of (2.23) and the p'„' of
(2.26) is immediately obvious, it suffices to derive this

.statement for k=k'. In addition, we can choose the
common k value non-negative, because the sign of k is
changed by taking the adjoint.

For k ~ 0, consider the generating functions

04 (k)( ) y n (k)

n=0

0.2- 1 1

1+% 1+x a:exp a a
(1+v)(1+x )

I

10 15 20
I

25 (A 1)

FIG. 5. Explicit evolution of the mean number of photons in
a one-atom maser. The initial state is the vacuum and the sys-
tem evolves towards the trapping state (19,1), which is given by
0 f97 ~. Note that there are no periods of pure relaxation of
the field since ~= T, so an atom enters the cavity immediately
after the preceding one has left it. The upper and the lower
curves in (a) show the mean and the squared variance of the
photon number, respectively. The curve in (b) gives the normal-
ized variance. It shows that the field remains sub-Poissonian all
the time while approaching the steady state. The parameters in
(a) and (b) are 2 /g =0.001, D /g = 1, 8 =C =0.

1+%
1+v(1+y )

- k+1
a~a

1+v(1+y )

(A2)

where the summations are performed with the aid of the
identity
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1

1+z

k+1
xz

exp = y ( —z)"L,„(k'(x) .
n=0

(A3) tr Ip'"'(x)p '"'(y)
I
= 1 1

1+x 1+v(1+y)

Two other identities, viz. ,

and

a a:exp(za a):=(1+z)' '

k

(A4)

1 1 1

1+x 1+v(1+y) 1 —A,

k+1

fk aa k a
az

a a
7 (A5)

=kf 1

1 —xy

k+1

(AS)

are used in establishing

(k)( ) (k)( )
1 1

1+x 1+v(1+y )

'k
aX A,

' k+1

(A6)

This implies

„(n'+k )! „,(k~„(k), (n +k )!,
t 0

n'! n

7

(A9)

with
or, equivalently,

{k) (k)I (A10)
1— 1

(1+v)(1+x )

As a consequence we find

1+ 1+v(1+y )
(A7) and thus confirms the duality relation (2.27). In other

words, the normalization factors in (2.23) and (2.26) are
well chosen, indeed.
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