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We study how a strong semi-infinite laser pulse affects an electron confined by a potential whose pa-
rameters mimic an AlAs-GaAs-AlAs double quantum well. Interesting phenomena take place for spe-
cial values of laser frequency, intensity, and pulse rise time. There are values of these parameters for
which the dipole moment of the system has a low-frequency Fourier component whose magnitude is
higher than that of the fundamental (i.e., the component having the same frequency as the laser). For
other parameter values, the low-frequency component disappears and the Fourier transform of the di-
pole moment has a large zero-frequency component and intense even-harmonic components (i.e., with
frequency 2nw, where n is an integer and o is the laser frequency). The presence of the even harmonics
is intriguing: The system has inversion symmetry and even harmonics are forbidden by symmetry rules
valid to all orders in perturbation theory. Finally, a laser pulse with well-chosen parameters can drive
an electron that was initially in a delocalized eigenstate, to a state in which it is almost completely local-
ized in one well. These processes are systematically investigated by numerical calculations and are ra-
tionalized with the help of a simple model which predicts the qualitative behavior observed numerically.
The model suggests that these phenomena occur at those values of the parameters for which two Floquet
states having different generalized parities become degenerate or nearly degenerate. This condition is
rather general and we see no reason why it will not be fulfilled in systems other than double quantum
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wells (e.g., atoms or molecules).

PACS number(s): 42.65.Ky, 42.50.Hz, 03.65.Ge, 33.80.Wz

1. INTRODUCTION

We study the effect of a strong laser on an electron
confined by a potential whose parameters are chosen to
mimic an AlAs-GaAs-AlAs double quantum well [1].
Recent work suggested that such a system may have in-
teresting properties. Grossmann and co-workers
[2(a)—(c)] have examined the behavior of an electron that
is initially localized in one of the wells of a quartic double
well and is then driven by a strong cw laser. In the ab-
sence of radiation, the electron oscillates back and forth
between the wells. A laser with appropriate power and
frequency can prevent this motion [2(a)-(c)] and force
the electron to stay in the initial well. These papers
present numerical results as well as a nonperturbative
analysis. The same phenomena were examined for a
two-level approximation [2d]. If the electron-laser in-
teraction energy is much higher than the energy
difference between the lowest two energy eigenstates of
the bare [3] system, the laser parameters for which this
localization occurs can be obtained from a simple formu-
la [2,4].

The calculations presented here extend the previous
work and document the existence of several other in-
teresting phenomena.

(1) Instead of assuming that the system is initially lo-
calized in a well (a condition that is rather difficult to
achieve in the laboratory), we consider an electron that
starts in a delocalized energy eigenstate of the bare Ham-
iltonian, and show that a pulse with carefully chosen pa-
rameters can localize the electron in one well and keep it
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there. One of the intriguing results of the numerical cal-
culations is that localization is created or is maintained
by the laser only if its frequency w and intensity I take
specific values. For a square laser pulse, these values are
located along a family of lines in the plane {w,/}. A sim-
ple formula [2d,4a,4b] for these lines, based on
perturbation-theory analysis of a two-level system, pre-
dicts fairly well most of the values of {w,I} for which we
observed localization in the numerical work presented
here. If the system is driven by a Gaussian semiinfinite
pulse, the rise time 7 of the pulse is also an important pa-
rameter. To achieve localization {®,I} must be on the
lines mentioned above and, in addition, 7 must have cer-
tain values.

(2) For parameters values along the lines in the {w,]}
space that were mentioned above, the Fourier transform
of the dipole induced by the laser has finite components
at the frequencies 2nw (n is an integer). We call this
phenomenon even-harmonic generation (EHG). The
double well in which the electron moves is symmetric,
and therefore the bare Hamiltonian is invariant with
respect to a sign change in the electron position. Pertur-
bation theory to all orders shows that such a system can-
not produce even harmonics. Because of this, the ex-
istence of EHG is surprising. The violation of the selec-
tion rule takes place at the same points in the parameter
space where electron localization occurs.

(3) The dipole of the structure has low-frequency com-
ponents. This frequency depends on {w,I}, and can be
tuned, by changing these parameters, to be as close to
zero as one wishes. We call this process low-frequency
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generation (LFG).

The EHG, the static dipole and the localization ap-
pear, and LFG disappears, at the same points in the
{w,I} plane. Intense LFG is seen near these points.
These phenomena are documented by solving the time-
dependent Schrodinger equation numerically. By treat-
ing these calculations as experiments, we infer rules of be-
havior for the Fourier components of the induced dipole
(Sec. VI). The same rules are then derived from an
analysis in terms of the Floquet states of the system. This
extends the analysis presented in previous work [2,4],
which showed that localization is related to the acciden-
tal degeneracy of the Floquet quasienergies.

II. MODEL

The Hamiltonian of the system studied here is
H(t)=Hy+V(t)=— [—l sVt Vo). (1)

This describes an electron having an effective mass

=0.067 m (m is the electron mass) trapped in the po-
tential ¥, shown in Fig. 1. The parameters of the poten-
tial are typical of an Al,Ga;_,As double quantum well
[1]. The gap between the ground and the first excited
state of the bare Hamiltonian H, is 16.68 meV (134.5
cm™!); that between the first and the second excited
state is 193.3 eV (1558.9 cm™!). The laser electron in-
teraction is

V(t)=exE (1) . (2)

The electric field of the laser is either
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FIG. 1. Potential energy and the lowest-energy eigenstates.
The energies of the first four states are shown by the horlzontal
lines. The barrier height is 240 meV and its width is 45 A. The
wells have about the same width as the barrier. The potential
energy is  V(R)=1000{[(D +|D|)/2]"*~[(|D|—D)/2]'"*
+1} +exp[30(R /L —1)], where L is the total length of the
structure (=967 A), and D =cos(6.6R /L —1.3m). The broken
and solid lines show the lower two states of the system.
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0, t=0
|

exEycos[wt +8], t=0 3)
or
exEqexp[ —(t —t)*/(27%)]cos[wt +8], t=¢,
V= exEjcos[wt+8], t=¢t, . “)

Equation (3) represents a square pulse, and Eq. (4) a
semi-infinite Gaussian pulse. The parameter E, is
specified by giving the laser intensity I =2ecE (2,. IfE;is
given in statvolt/cm, ¢=3X10" cm/sec, and
€=1/(4m), then I is obtained in ergsec” ' cm ™2

This model provides only a schematic description of an
electron in a double quantum well. We neglect the
motion of the electron parallel to the well and assume
that the effective mass is the same in the wells and under
the barrier. By using infinitely high walls, we prevent the
escape of the electron from the two-well system. In reali-
ty, a laser acting for a sufficiently long time on an elec-
tron in a real well will cause it to “photodissociate.” We
also neglect energy loss and dephasing processes which, if
included, would destroy phase coherence, diminish the
electron localization, and broaden the spectroscopic
features obtained with our simple model.

In a more realistic calculation, the well modifies the
electromagnetic field so the force acting on the electron is
not that of the incoming laser. In principle, we should
solve Maxwell equations with the boundary conditions
appropriate for the double-well system and with a non-
linear susceptibility calculated by solving simultaneously
and self-consistently the time-dependent Schrodinger
equation for the electron. Such calculations are difficult,
and they are avoided as long as there is no compelling
reason for performing them. One hopes that, as long as
the laser does not excite the electromagnetic resonances
of the structure, the simple model describes semiquantita-
tively the behavior of the electron.

III. METHOD OF COMPUTATION

The results reported here are obtained by solving nu-
merically the time-dependent Schrodinger equation. The
evolution of the wave function is calculated by using re-
peatedly the short-time propagator

l(t +81)) =exp[ —iH (£)8t]|Y(t)) , (5)

where the time-dependent Hamiltonian H is given by
Egs. (1)-(4). The exponential operators are evaluated by
a fast-Fourier-transform method proposed by Fleck,
Morris, and Feit [5a], and implemented as described by
Heather and Metiu [6]. The time-dependent wave func-
tion is used to calculate the probability that the electron
is located in the left well:

PL(t)Zf_L/de P*(x,)(x,t) , (6)

and the dipole induced by the action of the laser on the
electron:

pr=e [ 7 dx ¢*(x,x¢(x,1) . @)
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IV. USE OF RADIATION TO MAINTAIN
THE INITIAL LOCALIZATION

We study in this section a system whose state at ¢ =0 is
IL)Y=(]1)—]2))/2'2, where |1) and |2) are the two
lowest-energy eigenstates of the electron in the absence of
the laser. In this state, the electron is localized in the left
well with a probability P, (¢t =0)=0.987. This is not a
two-level calculation. All the results are obtained by
solving numerically the time-dependent Schrodinger
equation for the double well. By numerical experimenta-
tion, we find the laser intensity, frequency, and phase for
which a cw laser will keep the electron in the left well.
This was also done in the previous work [2], but there are
some differences. In our calculation, a square laser pulse
is turned on at ¢ =0. In the previous calculations [2], the
laser was turned on in the infinite past, and the electron
was in the left well at ¢t =0. Furthermore, we study the
role played by the laser phase, and monitor the time evo-
lution of the system continuously rather than stroboscop-
ically.

The frequencies at which the laser maintains localiza-
tion range between £€/5 and 1le, where €=16.68 meV
(134.5 cm ™ !) is the energy difference between the ground
and the first excited state of the bare electron. One would
naively expect that the laser frequencies capable of main-
taining localization should be related in a simple way to
the frequency of the well-to-well oscillation of the elec-
tron in the absence of the laser, which in turn is deter-

TABLE 1. Frequencies for which a laser of intensity 34.722
MW/cm? maintains the initial localization. The third column is
the time-averaged probability of being in the initial well. Our
parameters values given in the fourth column are compared
with ones from Ref. [2(d)], as discussed in the text.

Set No. fio (cm™!) (P.) 2Eu /o Ref. [2(d)]
1 26.280 0.833 62.79 62.05
2 27.679 0.838 59.61 58.91
3 29.236 0.844 56.44 55.77
4 30.979 0.850 53.26 52.62
5 32.944 0.855 50.08 49.48
6 35.174 0.859 46.91 46.34
7 37.728 0.868 43.73 43.20
8 40.684 0.874 40.56 40.06
9 44.142 0.880 37.38 36.92
10 48.244 0.887 34.20 33.78
11 53.187 0.893 31.02 30.63

12 59.261 0.900 27.84 27.49
13 66.903 0.906 24.66 24.35
14 76.813 0.912 21.48 21.21
15 90.176 0.919 18.30 18.07
16 109.11 0.871 15.12 14.93
17 138.50 0.928 11.91 11.79
18 190.28 0.921 8.67 8.65
19 309.78 0.904 5.33 5.52
20 628.73 0.830 2.62 2.40
21 841.42 0.891 1.98
22 1339.3 0.815 1.24
23 1443.8 0.806 1.15
24 1560.8 0.793 0.94
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mined by €. No such relationship is observed. The laser
is sufficiently strong to make &, which characterizes the
bare electron, a physically irrelevant parameter. Table I
lists the frequencies for which a laser of intensity 34.722
MW /cm? maintains the initial electron localization, to-
gether with the time-averaged probability of being in the
initial well. The latter is never less than 70% at any time,
and its time average is above 80%. A similar behavior, at
other frequencies, is observed if the laser intensity is
smaller by a factor of 10 or 100.

A simple formula for the laser frequency and intensity
for which the laser maintains the initial localization has
been derived in Ref. [2d], by a perturbation-theory
analysis of a two-level model. An important prediction
of this analysis is that the parameter controlling the lo-
calization is the ratio 2Eu,/%w; localization takes place
when this parameter is equal to one of the zeros of the
Bessel function J,. At the high laser intensity used here,
one is not sure that the double-well-laser interaction can
be described by using two levels only. In Table I we show
the value of the parameter 2Eu,,/#iw at the localization
points in out numerical calculations and the closest value
given by the formula derived in Ref. [2d]. Most of the
numerical results agree remarkably well with the ones
provided by the simple formulas. However, not all is
well. The equation predicts that no localization will
occur if the parameter 2Eu,/fiw is smaller than 2.4
(which is the first zero of J,). The numerical calculations
found (see Table I) four exceptions to this rule.

The time evolution of the probability P;(z) that the
electron is in the left well is shown in Fig. 2 for a square
pulse with a photon energy of 228.28 cm™ !, an intensity
of 34.722 MW/cm? and the phase §=1.57. We also
show P, (¢) for the same initial state, when the laser is not
on. Figure 3 presents a second example. The conditions
are the same as in Fig. 2, except for the laser frequency.
Photons of energy 841.42 cm ™! localize the electron, but
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FIG. 2. Time evolution of the probability P; (¢) that the elec-
tron is in the left well. At time zero, the electron was located in
the left well, and it is driven with a square laser pulse that is
turned on at ¢t =0 has a frequency of 228.28 cm ™!, an intensity
of 34.722 MW/cm?, and the phase §=1.57 [see Eq. (6)]. The
thin line shows that, in the absence of the field, P; (¢) oscillates
with a period of about 250 fs.
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FIG. 3. Time evolution of the probability P, (¢) that the elec-
tron is in the left well. At time zero, the electron was located in
the left well, and it is driven with a square laser pulse that is
turned on at ¢ =0, has an intensity of 347.22 MW/cm?, and the
phase §=1.57 [see Eq. (6)]. The upper curve corresponds to a
frequency of 841.42 cm™!, and the electron is localized. The
lower curve corresponds to a frequency of 850.0 cm ™!, and the
electron drifts from one well to another with a period of 9.5 ps,

which corresponds to a frequency of 3.5 cm ™!

those of 850.0 cm™! do not. A detuning of only 8.58
cm ™! from the localization frequency causes the electron
to oscillate between the wells with a period of 9.5 ps (3.5
cm ™! in frequency domain). This oscillation is much
slower than that of a bare electron with the same initial
state, which is about 250 fs. Thus, when the laser is un-
able to maintain localization, it is capable of inducing a
low-frequency oscillation between the wells. This causes
a large low-frequency component in the induced dipole.
Next we check how the ability of the laser to maintain
the localization of the electron depends on the phase 6 of
the electric field. The time-dependent Schrodinger equa-
tion is invariant to a change in the origin of time scale,

Average probability of being in the left

0.8] —138.57cm™
] —66.9cm™
f ----228.28 ¢cm’!
0.7 . : :
0 0.5 1 1.5 2

Phase of cw field ( units of t )

FIG. 4. Time-averaged probability of being in the initial well
as a function of the phase 8 [see Eq. (6)] of the laser field. The
electron was at ¢t =0 in the left well. The laser intensity is
347.22 MW/cm?, and the pulse is square and was turned on at
t =0. The three curves correspond to the laser frequencies
shown in the figure.
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and one might think that the phase of the laser should
make no difference. This is not the case. At time zero,
the electron is localized in the left well and, in the ab-
sence of the laser, it would oscillate towards the right
well and back. The magnitude and the direction of the
electric field at time zero, which are both phase depen-
dent, are important: it makes a difference whether the
laser pushes the electron along its spontaneous motion or
opposes it. This dependence is shown in Fig. 4, where the
time-averaged probability of being in the left well is plot-
ted versus the laser phase. Some localization is main-
tained at all phases, but its quality varies; it is best at
8=0.57.

One would naively think that the best way of maintain-
ing localization is to time the oscillations of the electric
field of the laser to oppose the electron motion whenever
it tries to move away from the initial well. The calcula-
tions do not support this classical picture.

V. USE OF A SEMI-INFINITE LASER PULSE
TO PREPARE AND MAINTAIN ELECTRON
LOCALIZATION

It is very difficult to achieve experimentally the situa-
tion studied in Sec. IV. Localized states of the electron
are as hard to prepare as they are hard to maintain. In
this section, we consider the case when the electron is ini-
tially in an eigenstate of the bare system and the laser is a
semi-infinite Gaussian pulse. The question is whether we
can find pulse parameters for which electron localization
is created and maintained. In Fig. 4, we show the depen-
dence of the time-averaged probability P; that the elec-
tron is in the left well, as a function of the rise time ¢ of
the semi-infinite Gaussian pulse defined by Eq. (7). The
electron is initially in the ground state and it is equally
distributed in the two wells. The pulse phase is
8=m—wt,, where t, is the time when the amplitude of
the pulse reaches its constant value. This choice assures
that, at t,, the phase is 7. We see that there are many
values of the rise time ¢ for which the localization is near
90% or 10%. The latter means that the electron is local-
ized in the right well. The dependence of P, on 7 does
not have to be as regular, as seen in Fig. 4(a). A change
in laser frequency and intensity leads to the results shown
in Fig. 4(b). Localization of at least ~90% in one well
was obtained for 7’s as long as ten optical cycles when
frequency of 66.9 cm™! was used. For a laser frequency
of 138.57 cm ™!, localization of at least ~80% was ob-
tained for 7’s as long as 18 optical cycles.

It seems that the ability of the semi-infinite Gaussian
pulse to create and maintain localization is confined to
low frequencies. For laser frequencies larger than 138.57
cm™!, we were unable to find even one value of 7 for
which an electron initially in |1) or |2) ends up being lo-
calized.

Several examples of the detailed evolution of P, (t) are
shown in Fig. 5. In all the graphs, the Gaussian ampli-
tude reaches a maximum at t,=23.57 and then levels off
to a constant value. The value of ¢, for the upper curve
in Fig. 5(a) is 585 fs. In the early times, when the laser
intensity rises, P; (¢) undergoes wild oscillations and the
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FIG. 5. Time-averaged probability P; that the electron

driven by a semi-infinite Gaussian pulse is in the left well, plot-
ted as a function of the pulse rise time 7. The electron is initial-
ly in the bare ground state. The phase of the pulse is
S=m—wty, where t;,=3.5 7 is the time when the laser ampli-
tude becomes constant. (a) The pulse frequency is 138.57 cm™!
and the intensity is 7 =347.22 MW/cm?. (b) The pulse frequen-
cy is 66.9 cm ! and the intensity is 7 =347.22 MW/cm?,

electron moves from one well to another. When the pulse
settles to a constant value, P (¢) oscillates with a small
amplitude around a mean value larger than 0.9. The
second graph in Fig. 5(a) shows that if we change the rise
time from ¢ =585 fs to 7=540 fs, but keep all other pa-
rameters unchanged, the electron will be localized in the
right well. Figure 5(b) shows the results of similar calcu-
lations with a photon energy of 66.9 cm L.

The localization probability depends on the phase § of
the pulse (Fig. 6). A pulse that leads to electron localiza-
tion in the left well for 8= —wt,* 7 will localize the elec-
tron in the right well if the phase is changed to
8=wty+2m; if the phase differs from these two values,
the localization is poor. The reason why a phase change
can shift localization from one well to the other can be
understood from the symmetry of the Hamiltonian.

Unless one works at a very low temperature, the excit-
ed state |2) is also populated in the bare system. For this
reason, we have investigated the effect of a semi-infinite
pulse on an electron that is initially in state [2). We find
that a pulse having a set of parameters that localize an
electron starting in |1) in the left well, will localize an
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FIG. 6. Time dependence of the probability P, (¢) for an elec-
tron driven by a Gaussian semi-infinite pulse. The relevant laser
parameters are indicated in the figures. The phase is
S=m—wt,.

electron starting in [2) in the right well. If the same
pulse acts on an electron in thermal equilibrium, the pop-
ulation in the left well will exceed that in the right well by
a Boltzmann (or a Fermi) factor.

VI. SPECTROSCOPIC PROPERTIES

In this section, we investigate the spectroscopic prop-
erties of an electron in a double well by calculating the
evolution of the dipole moment u(z). We are especially
interested in what happens when the system is driven at
values of {I,w} that are nearly equal or equal to those at
which the laser is capable of maintaining localization.

To identify the frequencies controlling the time evolu-
tion of u(¢), we calculate the Fourier transform [6]

u(Q)= ’fjwdt e UMWt —t"ule)| . (8)

u(t) is obtained from Eq. (7), and the time-dependent
wave function is calculated numerically. The time ¢’ and
the width in the Gaussian window function W (t —t’) are
chosen to include in the transform only those times when
the pulse intensity is constant. u({)) has peaks of Gauss-
ian shape (i.e., the transform of the window function)
centered at the frequencies of the Fourier components of
u(t). In all the figures that follow, we give only the peak
heights and positions.
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To present the numerical results efficiently, we classify
the Fourier components of u(t) according to their fre-
quency ). Four kinds of terms are possible; a static
term (Q=0); pure-harmonic terms (Q=no,
n==1,%2,...); shifted-harmonic terms (Q=nw*A, ;5
n==x1,+2,... and «,=1,2,...); and bandheads
(Q==%A,p5 a,f=12,...). The bandheads are shifted
harmonics with n =0, but we prefer to list them as a
separate category.

The quantities A, ; depend on the laser intensity and
frequency. This can have important consequences. For
example, for certain values of {w,I}, we can have
A, p(@0,I1)=0, for a pair of indices a,B. We call the
values of {w,I} for which this equation is satisfied points
of accidental degeneracy (AD). In general, the equation
defines a family of curves in the {w,I} plane.

In Fig. 7, we show u(€Q) for two laser powers and fre-
quencies. We obtain a pure-harmonic progression, hav-
ing the frequencies 2 =(2n +1)w, and two shifted har-
monics, having the frequencies Q=2nw+ A and 2no—A.
In Fig. 7(a), A=36 cm ™! and in Fig. 7(b), A=29.9 cm .
Note the presence of low-frequency peaks at A=36 cm !
[in Fig. 7(a)] and A=29.9 cm™! [in Fig. 7(b)], which are

1034 peaks at (2n+1)o and 2nw + 36.0 cm’?
~ ho = 288.28 cm™!
8= I=34.722 MW/cm?
= 104
g (a)
g 104
=3
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10%] peaks at (2n+1)w Ho = 153.57 em!
]| and2n0+29.9 cm™. 1= 347.22 MW/cm?
)
£ |
= (b)
~
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FIG. 7. Two examples of Fourier components of the dipole.
The transform is defined by Eq. (12). The vertical lines are lo-
cated at the maximum frequency, and their height is propor-
tional to the peak intensity. The electron is initially in the bare
ground state. The pulse is square and the phase is §=1.57. (a)
and (b) correspond to different laser frequencies and intensities
(see the figure).
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bandheads and provide examples of the low-frequency-
generation process mentioned in the Introduction. Per-
turbation theory suggests, and practice often confirms,
that the intensity of the Rayleigh peak (at 1 /w=1) tends
to be the highest in a spectrum. This is not the case in
Fig. 7. The low-frequency peaks have the highest intensi-
ty (note the logarithmic scale of the plot). Numerous cal-
culations, whose results are not shown here, indicate that
the LFG frequency depends on {I,w} and can be tuned,
by changing these parameters, to be as close to zero as
one wants.

We have found that in all cases when intense LFG is
present, the evolution of P;(¢) is similar to that of the
lower curve in Fig. 3: the electron density drifts slowly
from one well to another. The dipole caused by this os-
cillations is very large, and this explains the high LFG in-
tensity.

The transforms shown in Fig. 7 have a fairly large
number of odd harmonics [i.e., pure harmonics with fre-
quency (2n +1)w] and no even ones. Perturbation
theory indicates that if the bare Hamiltonian does not
change when x is replaced by —x, the dipole has no
even-harmonic components. This widely used rule is val-
id to all orders in perturbation theory. In view of this,
the results shown in Fig. 8 are surprising. In both cases

Y peaks at no  hp = 228.28 cm™!
105 I = 34.722 MW/cm?2
w2
-+
g
= (a)

. 1()_
—8.
&
g a0
E 104
10t
0 1 5
Q/w®
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Peaks at no and nw + 95.5 cm™!
,\ fo = 138.5cm™! I =347.22 MW/cm?
4 10%
§ (b)
§ 104
)
= 109 ‘
101 Illllll\l'lllll

0 2 4 6 8 10 12 14 16 18
Q/w

FIG. 8. Two examples of Fourier components of the dipole
for cases of accidental degeneracy. (a) and (b) are for laser fre-
quencies of 228.28 cm ™! and 138.5 cm ™! and the same intensi-
ties and phases as in Figs. 7(a) and 7(b), correspondingly. Note
that in (b), the peaks at (n@—95)cm.~! are much more intense
than the peaks at (nw0—95)cm ™.
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we see that u(Q) has intense peaks at the frequency
Q=2nw. These are not confined to low values of n, nor
does their intensity decrease with n, as perturbation
theory would suggest; in one case, not shown here, the
intensity of the twenty-second harmonic was close to that
of the fundamental.

By numerical experimentation, we have found a num-
ber of propensity rules. These rules guided us to the
classification and the nomenclature introduced at the be-
ginning of this section. Much of the observed behavior of
the spectrum is controlled by the behavior of the “shift
frequencies” A, 5. As {w,I} approaches a point of ac-
cidental degeneracy (where A, ;—0), the frequency of
the LFG line goes to zero, the doublets corresponding to
the shifted-harmonic terms nw=*A, z coalesce to give
pure harmonics, and () acquires a static dipole moment
[i.e., u(t) equals a constant plus a time-dependent part].
The last effect is an indication of electron localization.
We note that the ability of maintaining localization de-
pends also on the phase of the laser, while the presence of
EHG does not (however, the intensity of EHG does); the
presence of EHG does not always imply that the laser
will maintain a strong localization [i.e., with P, (¢) larger
than 0.9 at all times].

Finally, we have not observed shifted odd harmonics
[i.e., Q=(2n +1)wEtA] at any parameter values, nor
have we seen pure even harmonics for parameters that
were not AD points.

The nomenclature used here is influenced by the laser
parameters used in the calculations. The low-frequency
component is low only because A is much smaller than w;
the phenomena described here may exist if w>>A, in
which case the component of frequency Q=A might be
viewed as a high-frequency component.

~ VIL. INTERPRETATION

In this section, we show that the results presented in
Sec. VI can be understood by using Floquet [7] theory.
The Floquet analysis has been already used successfully
to discuss laser localization in a two-level-system model
[2d] and to analyze numerical results of interaction with
double-well systems [2a—c]. Here we show that the LFG
and EHG phenomena can be treated similarly. The Flo-
quet theory shows [7] that one can write the solution of
the time-depended Schrodinger equation as

W(x,t)= 3 A exp(—ig,t)P,(x,t), 9)

a=1

where the real numbers ¢, are the electron quasienergies,
and the Floquet states ®(x,?) have the same period as
the laser [i.e., @ (x,1)=®y(x,t +27/w)]. If the laser has
a constant amplitude, the coefficients 4, are independent
of time. If the system is driven by a pulse, 4, become
independent of time when the transients excited by turn-
ing on the pulse quiet down.

The periodic function ®, can be expanded in a Fourier
series:
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Wix,t)= 3 A exp(—igyt) | 3 Cln,x;alexplinwt) | ;

a=1 n=-—oo
(10)

the function C(n,x;a) is the nth Fourier coefficient in
the expansion of ®,(x,t). We call C(n,x ;a) the Floquet
modes of ®,.

Equation (10) allows us to write the time evolution of
an operator O (x), which depends on x only, as

O(1)={(V¥,t|0(x)|¥,t)

Ay Agexp[ —i(eg—e,)t]
1

STIMS
TMS 7‘W[‘Aﬁ

1

i exp[i(m —n)ot ]

0 m = — o

S

><foo dx C*(n,x;a)

X0 (x)C(m,x;B) . (11)

We are interested in two operators: O (x)=pu =ex, which
gives the dipole of the structure, and O (x)=P;(x),
which gives the probability that the electron is in the left
well [P, (x) is one when the electron is in the left well,
and zero otherwise].

Equation (11)—which is a standard formula in Floquet
theory—gives the time evolution of an observable as a
sum of exponentials, even though the Hamiltonian is time
dependent. The time scales on which various electron
observable change are given in terms of differences be-
tween the quasienergies €, and of multiples of the laser
frequency. The eigenstates of H, cannot provide a simi-
lar description since the laser is strong. Those of H(t)
are time dependent and have no clear connection with
the time scales on which u(t) evolves.

The qualitative features of the numerical results
presented earlier in this article can be understood from
Eq. (11) and the symmetry of the Hamiltonian. One can
show that the transformation {x,t}—{x,t+(2j
+1)7/w} leaves the Hamiltonian invariant and that
O (x,t +(2j +1)m/0)=2Py(x,t); the states ®, must
have either odd or even generalized parity (GP) [8].

Generalized parity leads to selection rules for the in-
tegrals appearing in Eq. (11). We find that

fjo dx C*(n,x;a)xC(m,x;B)=0 (12)

[if Pg(a)=Pg(B) and n —m is even, or if Pg(a)F*Ps(B)
and n —m is odd]. Moreover,
f:L/2dx C*(n,x;a)C(m,x;3)

= [" dx C*(n,x;a)C(m,x;B) (13)
L/2

(f Pgla)=Pg(B) and n —m is even, or if Pg(a)7#=Ps(B)
and n —m is odd). Here Pg(a) denotes the generalized
parity of the Floquet state ®, whose Fourier coefficients
C(n,x ;a) appear in the integrals.

Equation (11) shows that the shifting frequencies A, g
introduced in Sec. VI are differences between the quasien-
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ergies (i.e., A, g=€g—&,).
generacy (i.e., the {w,I} points for which A, ;=0) turn
out to be the points where two quasienergies become
equal. The connection between the equality of the
quasienergies and localization was established in Ref. [2].
Here we focus mainly on EHG and LFG. We see that
EHG appears and LFG disappears when two quasiener-
gies become degenerate. Moreover, the symmetry rules
(12) and (13) ought to explain whey we see no pure even
harmonics when the parameters are not AD points, and
no shifted odd harmonics regardless of the laser frequen-
cy and intensity.

We examine first the case when the Floquet states con-
tributing to Eq. (11) are not accidentally degenerate. The
static part of the observable O(¢) is obtained from Eq.
(15) when » =m and a=J3, and has the form

The points of accidental de-

0,= 3 |4,*[ 7 dx C*(n,x;0)0(x)C(n,x;a) . (1)
a=1 il

If we replace O with p in Eq. (14), we obtain the static
part p, of the dipole. Because of the symmetry rule Eq.
(12), w, is zero. Symmetry also allows us to make a state-
ment about the static part of the probability that the elec-
tron is localized in a well. According to the symmetry
rule Eq. (13), P, ;=Pg,; this means that the zero-
frequency component of the electron density is equally
distributed among the two wells. This is consistent with
the fact that the zero-frequency component of the dipole
is zero. This has an interesting consequence: in the ab-
sence of AD, the laser cannot localize the electron re-
gardless of the pulse shape, laser phase, or the nature of
the initial conditions. Indeed, localization in a well (the
left one, for example) means that the probability P, (¢) is
substantially larger than 0.5, at all times. This means
that the static part P; ; of P, (¢) must be larger than 0.5.
However, the equality P; ;=P ; and the fact that these
probabilities must add up to 1, precludes this. The fact
that the degeneracy of the quasienergies is related to lo-
calization has been shown previously [2].

The purely harmonic term

0 0

O,(t)= 3 >

n=—o m=—ow®

(1—38,,,)expli(m —n)wt]

X 3 14,2 [7 dx C*(n,x;a)
a=1 *®

XO(x)C(m,x;3)
(15)

originates from Eq. (11) when n*m and a=p. If O (x) is
the dipole operator, the selection rule Eq. (12) indicates
that the integral in Eq. (15) is zero for n —m even. Thus,
in the absence of AD, the induced dipole will have no
even harmonics. There is no symmetry rule preventing
odd harmonics. Obviously, even harmonics can be ob-
served, if at all, only at points of accidental degeneracy.
The shifted-harmonic term
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O;()= 3 3 AsAgexp[—i(eg—e)t)(1—8,p)
a=1p=1
X ¥ > (1—3, ,)expli(m —n)wt ]
n=—com=—cw

X fj dx C*(n,x;a)0(x)
XC(m,x;B) (16)

corresponds to n#m and a7 3 in Eq. (11). The integrals
in Eq. (16) are zero if the states @ and 8 have the same
GP and n —m is even. If a and B have different GP’s,
the integrals are zero if n —m is odd. Thus, we expect
each pair of Floquet states a and f3 to generate a progres-
sion of doublets of the form no*t(e,—ep); if @ and B have
the same parity, » is odd; if they have different parity, » is
even.
The bandhead term

O,0)= 3 3 A;ABexp[—i(eﬁ—ea)t](l—Saﬁ)
a=1pB=1

X 3 [T dxC*nx;a)0x)

n=—o0

XC(n,x;[3) (17)

originates from Eq. (15) when n =m and a7f. Since the
quasienergies depend on {w,I}, the difference (e,—ep)
can be made small; the bandhead term will oscillate at
very low frequency, thus generating LFG. This happens,
for example, when {w,I} approaches a point of acciden-
tal degeneracy. If O is the dipole operator, the integrals
in Eq. (17) are zero unless C*(n,x ;a) and C(n,x ;3) have
different GP’s.

It is difficult to compare in a precise way the height of
the LFG peak to that of the other peaks in u(Q) because
these quantities depend on both the amplitudes 4,,
a=1,2, ... and on the integrals over the Floquet states.
However, the LFG intensity ought to be high if the elec-
tron wave function, written as in Eq. (10), is essentially a
coherent superposition of two nearly degenerate Floquet
states with different GP’s and with nearly equal ampli-
tudes 4,. An electron in such a state drifts slowly from
one well to another, and at some times during its travels
has a high probability of being in one of the wells.

We can now examine the case when two of the Floquet
states describing the electron wave function are acciden-
tally degenerate, that is, when

Ay p=¢eql0,)—eglew,1)=0 . (18)
The condition

ggtno=eg,+mo, (19)

where n and m are integers, affects pu(¢) in the same way
as (18); moreover, it includes (18) as a limiting case.
Therefore, defining accidental degeneracy by (19) is more
general. However, in examining the numerical results re-
ported here, we found condition (18) to be more useful;
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for the parameters used by us, the condition (19) was nev-
er satisfied except when n =m, which leads to (18). For
this reason, we prefer to use the definition (18) and exam-
ine its consequences in what follows. Arguments of a
similar type will determine the properties of () when
(19) is satisfied.

We now study what happens to various terms in pu(¢)
when {w,I} approaches a point of accidental degeneracy.
We have already shown that, for the dipole moment, the
term u, is zero because of the symmetry rules. The time
evolution of the pure-harmonic term does not depend on
£3— &, and it is therefore unaffected as {w,]} approaches
an AD point. The integrals and the amplitudes 4, may
change, but this is likely to be a smooth change with
{w,I}. We have already shown that the pure-harmonic
term has only odd harmonics, and thus we must conclude
that AD is likely to cause only minor changes in the odd
harmonics in u(Q).

As A, g—0 for a pair of states a and B, the contribu-
tion of these states to the shifted-harmonic part O,(¢) be-
comes pure harmonic. The selection rules are as follows;
If the two states about to become accidentally degenerate
have the same GP’s, then the corresponding shifted-
harmonic term evolves into a pure odd harmonic. If the
states have different GP’s they evolve into a pure even
harmonic.

The bandhead term Eq. (17) also changes as {w,I} ap-
proaches a point of accidental degeneracy for two states
a and fB: the oscillation frequency (g5—e¢,)—0 goes to
zero, and the bandhead term gives a static contribution to
O(t). The only nonzero contributions in the bandhead
terms are those involving Floquet states with different
GP’s. Thus LFG is generated by a pair of nearly degen-
erate Floquet states of different generalized parity; the
static dipole is generated when these states become de-
generate.

We can also use this theory to examine the connection
between localization and spectroscopic properties. As we
pointed out, to have localization, P, (¢) [or Pg(¢)] must
have a sizable static component P; ;. Localization is also
associated with a large static dipole. We have shown that
u(t) can have a static dipole only if a pair of Floquet
states with different GP’s—which appear in the electron
wave-function expansion (13)—become accidentally de-
generate. The static parts u, or P, ; can be a large frac-
tion of u(t) or P, (¢) only if the electron wave function is
dominated by these two states. Strong localization means
that the system can be described fairly well by two degen-
erate Floquet states with different GP’s. The same con-
clusion was reached in Ref. [2].

To confirm this interpretation and provide further in-
sights into the manner in which the the Floquet represen-
tation leads to a simple explanation of the numerical cal-
culation, we have calculated the quasienergies of the Flo-
quet states that contribute to the electron wave function
of the four examples presented in Figs. 7 and 8. Using
Eq. (14), we can show that the transform

C(@)=2Re ([ ” dte™™W(t~1')C(0) 20

of the overlap integral
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C(t)=(¥,t=0|V,t)
= ﬁ‘, élexp[i(e‘ﬁ-nw)t]
X [Aaf dx C(n,x;a)¥(x,t =0)
(21)

has peaks at the frequencies €,+nw. Furthermore, if the
peak corresponding to the frequency €,+nw is high, then
the Floquet state ¢ (n,x ;) contributes importantly in the
representation of both the initial electron state and the
time-dependent state created by driving the system with
the laser. Equation (25) is valid only at those times when
the laser amplitude has become constant. For this
reason, we use in (20) a window function W chosen to
confine the integration to that time domain. Since Wis a
Gaussian, the transform has Gaussian peaks centered at
the energies €,+nw. In all figures, we show the peak po-
sition and height.

Figure 9 and 10 show the transforms of the overlap in-
tegrals for a system driven under the conditions used in
Figs. 7 and 8. We examine first the case of the less in-
tense laser [Figs. 9(a) and 10(a)]. In Fig. 9(a), the system
has two Floquet states with the quasienergies €,=125.4
cm™! and g,=161.4 cm™!. Their difference £,—¢,=36

cm ! is—as expected from our analysis—equal to the
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FIG. 9. Fourier transforms of the correlation function [see
Eq. (24)] for the cases shown in Fig. 7. (a) contains two quasien-
ergies and (b) contains four.
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FIG. 10. Fourier transforms of the correlation function for
the cases shown in Fig. 8. (b) contains mainly the two quasien-
ergies £,=99.6 cm ! and £,=3.9 cm~!. Other peaks are much

weaker (note the logarithmic scale).

frequency A,, appearing in the bandhead and in the
shifted frequencies in u(Q) [Fig. 7(a)].

Let us examine now Fig. 10(a). The plot shows that
the electron wave function contains only one quasienergy.
By changing the laser frequency from 288.28 cm ™! [Fig.
9(a)] to 228.28 cm™! [Fig. 10(a)], we have shifted the
quasienergies from g;=161.4 and ¢,=125.4 cm ! [Fig.
9(a)] to £,=95.2 cm ™! and £,=95.2 cm™! [Fig. 10(a)],
and brought them into accidental degeneracy. In Fig.
8(a), which plots u(Q) for the same conditions as in Fig.
10(a), we see that EHG is present, there is no LFG, and
there is large static dipole (not shown in the figure), as
predicted by our analysis.

The situation in Fig. 9(b), which corresponds to a
higher laser intensity, is more complicated. The wave
function has four Floquet components having the ener-
gies £,=36.55 cm™!, £,=37.32 cm ™!, £;=66.50 cm ],
and €,=67.11 cm~!. These could, in principle, pair up
to give a large number of lines in u(Q). However, u(Q)
[in Fig. 7(b)] has fewer lines than expected: one band-
head, one progression of even shifted harmonics, and a
progression of odd pure harmonics. This discrepancy can
be explained as follows. Let us assume that the four
states have the parity indicated in Fig. 11(a). For what
follows, it is only important that the states in one doublet
have the same parity and the states in different doublets

4 - —_—
57 - ST+
|
|
2_ + .
1 + + 1 5 -

FIG. 11. Schematic diagram of the quasienergies.

have different parities. The selection rules allow only a
pair of states with different parities to generate band-
heads and shifted even harmonics. This means that the
only bandhead frequencies are A; 1 =g3—¢g
=(66.50—36.55)cm ™~ '=29.95 cm™!, and A,,=¢,
—&,=(67.11—37.32)cm '=29.79 cm™!. The frequen-
cies of these two bandheads and of the accompanying
shifted even-harmonic progressions are too close to be
resolved in our calculation. To see them in the Fourier
transform of u(€), we would have to use a very broad
window function (in the time domain) and to calculate
u(t) for a very long time.

According to the selection rules, only a pair of Floquet
states with the same parity will generate shifted odd har-
monics. In the case shown in Fig. 11(a), this gives the
shift frequencies A,;=37.22—36.55=0.67 cm™' and
A;3=67.11—66.50=0.61 cm ™!, which are too small to
be resolved when u(() is calculated.

We examine now Fig. 10(b), which corresponds to the
same intensity as Fig. 9(b), but a slightly different fre-
quency. This slight change in frequency causes the
change in number of quasienergies needed to describe the
dynamics of the electron from four to three. These are
£,=3.9cm !, £,=99.6 cm ™!, and e;=115.5 cm ™~ !. The
change in the number of quasienergies suggests that two
states are accidentally degenerate. This is confirmed by
the presence of even harmonics in Fig. 8(b), which shows
u(Q) calculated for the same conditions as in Fig. 10(b).
The major features in Fig. 8(b) are one bandhead at 95.5
cm ™! a shifted even-harmonic progression, and a shifted
odd-harmonic progression, both having the shifting fre-
quency 95.5 cm~!. There are a few other lines in the
spectrum, but they do not form intense progressions with
many lines in them. The dominant features of the spec-
trum can be understood from Fig. 11(b). To give even
harmonics, the degenerate states must have different pari-
ty. If the parity of the state 3 is +, it can pair up with the
degenerate state 1, having the same parity, and give a
shifted odd-harmonic progression with the frequencies
(2n +1w+(99.6—3.9) cm™!; the pair 3 and 2 gives
shifted even harmonics with the frequencies
(2n +1)w*(99.6—3.9)cm ™~ !. These explain the main
features in u(Q). The other pairs of states will generate
other lines in pu((), and they do. However, there are not
enough lines to assign them to specific progressions.

The analysis presented here agrees with and explains
the rules derived empirically in Sec. IV; it also provides
an explanation for the ‘“data” generated by solving nu-
merically the time-dependent Schrodinger equations.
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The conclusions of this analysis are summarized in Sec.
VIII.

VIII. SUMMARY AND DISCUSSION

The numerical results obtained here are best summa-
rized by using as a framework the analysis presented in
Sec. VII. One can describe the time evolution of the di-
pole u(t), in the time interval when the laser amplitude is
constant, by expanding the electron wave function in
terms of the Floquet states of the system. After this is
done, u(t) is a sum of terms having a time dependence of
the form exp{iQ[a,B,(n —m)]t}. Here a and (3 label the
Floquet states ®,(x,?) and ®glx,?) appearing in Eq. (9),
and n (and m) label the corresponding Floquet modes
[see Eq. (10)]. The frequencies in the exponentials have
the general form

QUa,B,n —m)=¢y (0,])—eglw,])+(n —mo . (22)

The real functions €, (w,I) are the quasienergies of the
Floquet states ®,(x,?), and n and m are integers.

For most laser frequencies and intensities, the quasien-
ergies are not degenerate, and we use this to classify the
terms appearing in u(¢). The case when a pair of states is
degenerate is very interesting and will be examined as a
limiting case. When all quasienergies of the Floquet
states needed to describe the electron wave functions
differ from each other, we can write the dipole as the sum
of four terms, each term having a different type of time
dependence.

The static term corresponds to =/ and n =m, and is
independent of time. For the symmetric Hamiltonian
used here (i.e., invariant to x — —x), this term is zero.
Thus, for most values of the parameters {w, I}, for which
quasienergies are not degenerate, the system has no static
dipole. This also means that the electron is not localized.

The pure-harmonic term corresponds to a=f and
nm, and it has Fourier components at the frequencies
Qa,a,n —m)=(n —m)w. For a symmetric well, there
are no terms with even frequencies, hence no even har-
monics in the spectrum.

The shifted-harmonic term corresponds to a¥#f3 and
nm, and every pair of Floquet states a and 8 generates
a progression of doublets at (n—m)otle(w,])
—eglw,I)]. If @ and B have different generalized parity,
the terms with n —m odd are forbidden by symmetry; if
a and 8 have the same GP, then the terms with n —m
even are forbidden.

Finally, the fourth type of term corresponds to a##f3
and n=m. They oscillate with the frequency
Qa,B,n —m =0)=¢,(w,])—¢eglw,]), and we call them
the bandhead terms. Only pairs of states @ and 8 having
different generalized parity can generate bandhead terms.

In our calculations, we have observed that at moderate
laser powers (e.g., 34.722 MW/cm?), the wave function
can be described by two Floquet states of different parity.
In this case, the above rules predict that the spectrum of
u(t) consists of a bandhead, a progression of shifted even
harmonics, a progression of pure odd harmonics, no stat-
ic dipole, and no permanent (i.e., time-independent) local-
ization of the electron. These predictions are confirmed
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in all our calculations.

As the parameters {w,]} are changed to approach a
point at which the quasienergies of two Floquet states a
and 3 having different GP’s become degenerate the spec-
trum of u(¢) changes. The frequency of the bandhead
term becomes smaller and smaller and goes to zero. This
is responsible for the low-frequency generation observed
in the spectrum. When the accidental degeneracy takes
place, the LFG frequency becomes zero and generates a
static dipole. If the electron wave function is dominated
by the two states becoming degenerate and if the ampli-
tudes of these two states are comparable, the accidental
degeneracy leads to localization. Furthermore, the
shifted-harmonic term consisting of a progress of dou-
blets having the frequencies 2nw*[e,(w,I)—¢eglw,1)] col-
lapse, as {w,I} approaches the point of accidental degen-
eracy of two states with different GP’s to a progression of
even harmonics of frequency 2n.

If the Floquet states becoming degenerate have the
same parity (this has not happened in our calculations
and there may be a noncrossing rule preventing such de-
generacy), the behavior of u(t) is different. The bandhead
frequency is not affected, and the progression of odd
shifted harmonics becomes a pure odd harmonic. No
static dipole, even-harmonic generation, or localization
will be observed.

We will now discuss the possibility of observing these
effects experimentally. The fact that our model is only a
schematic representation of a double quantum well
causes some uncertainty. The low-frequency and the
even-harmonic generation are most intense when the
electron wave function is a linear combination of two
floquet states and the laser shifts their quasienergies into
degeneracy. All factors diminishing the coherence of
these two states will diminish the magnitude of EHG and
LFG below that predicted by our model. The effect of
the static imperfections in the structure are the easiest to
understand. The state of electron is a wave packet local-
ized within the coherence length of the electron.
Different electrons in the dilute electron gas in the wells
are localized in different spatial regions, each having a
slightly different Hamiltonian and slightly different Flo-
quet states. Therefore it is not possible to find values of
{w,I} that will be simultaneously the Floquet states of all
these electrons into accidental degeneracy. Some will be
degenerate, some nearly degenerate. The degenerate ones
will produce a static dipole, progression of pure odd and
harmonics, and one of pure even harmonics; the nearly
degenerate ones will produce a very-low-frequency com-
ponent, pure odd harmonics, and doublets with a small
splitting around the even-harmonic frequencies. If the
measurements have low-frequency resolution these lines
will be lumped together, and their intensity will be as
high as if the structure is perfectly homogeneous. Poor
homogeneity does not affect radically the low-resolution
Fourier transform of the dipole.

Another source of dephasing comes from the existence
of phonons. The initial state will consist of the product
of an electron state and a phonon state, and the latter will
be occupied thermally. This uncertainty in the initial en-
ergy will have the same effect as the inhomogeneous
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broadening. Phonon-mediated transitions from one elec-
tron state to another (through the electron-phonon cou-
pling) provide another dephasing mechanism. This will
destroy coherent processes, such as localization, EHG,
and LFG, on a time scale set by the inverse of the transi-
tion rate. This dephasing will broaden the LFG and
EHG peaks in the Fourier transform of u. This, of
course, will diminish the intensity of high-resolution mea-
surements. Both phonon-induced effects can be dimin-
ished by lowering the temperature and by performing
low-resolution (in the frequency domain) measurements.
Even if perfect structures at 0 K can be used, the
effects described here are not easy to detect experimental-
ly. Making the semi-infinite Gaussian pulses with low
frequency and a fast rise time required here is difficult.
For example, if the electron is driven by a semi-infinite
Gaussian pulse, the frequency must be smaller than the
energy difference between the lowest states of the electron

RAANAN BAVLI AND HORIA METIU 47

in the absence of the laser, and the rise time of the pulse
of the order of 20 optical cycles.

The theory explaining these phenomena is fairly gen-
eral, and therefore these effects need not be confined to
quantum wells or to double wells. Other systems—such
as atoms and molecules—in which inhomogeneity and
dephasing are much easier to control, might show even-
harmonic and low-frequency generation at laser frequen-
cies for which better pulse-shaping technology is avail-
able.
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