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By using a direct method for obtaining exact solutions of the nonlinear Schrodinger equation that de-

scribes the evolution of spatial or temporal optical solitons, a two-parameter family of solutions is given.
These exact solutions describe the periodic wave patterns that are generated by the spatial or temporal
modulational instability, the periodic evolution of the bright solitons superimposed onto a continuous-
wave background, and the breakup of a single pulse into two dark waves which move apart with equal
and opposite transverse components of the velocities.

PACS number(s): 42.50.Rh

Temporal or spatial optical solitons have been the sub-
ject of much interest in the past few years because of both
their scientific and their practical importance [1—17] (for
a recent review, see [18]). Potential applications in the
field of optical switching devices and high-rate fiber-optic
communication links can be easily anticipated. Temporal
solitons in optical fibers are pulses which propagate
without changing their form (or a change which is at
most periodic) as a result of a balance between nonlinear-
ly induced self-phase-modulation and group-velocity
dispersion [1—10]. It is well known that three-
dimensional propagation of intense laser beams leads to
catastrophic breakdown owing to the self-focusing insta-
bility, i.e., at high powers, self-focusing overcomes
diff'raction and the beam collapses [19]. Nevertheless, it
is possible to observe a stable equilibrium between
diffraction and the nonlinear Kerr effect when the light is
propagating in the form of spatial-optical-soliton beams
[11—14].

The propagation of both temporal and spatial optical
solitons can be described by the nonlinear Schrodinger
equation (NLSE)

+. +2lql'q=0,
t)r'

(1)

which is written in dimensionless form.
Here, P represent a normalized complex amplitude of

the optical field, g is a normalized longitudinal coordi-
nate, and ~ is a normalized retarded time measured in a
frame of reference moving along the fiber at the group ve-
locity in the case of temporal optical solitons and a nor-
malized transverse coordinate in the case of spatial opti-
cal solitons.

For temporal solitons, c= 1 corresponds to the anoma-
lous dispersion regime where bright solitons can exist [3]
and c= —1 corresponds to the normal dispersion regime
where dark solitons occur [9—10]. In the spatial domain,
bright or dark solitons occur for self-focusing (a= 1) or

self-defocusing (E= —1) nonlinear media, respectively
[11—14].

The NLSE (1) is one of the completely integrable non-
linear partial-differential equations and its solutions may
be obtained by different methods, e.g. , by using the
inverse-scattering technique [2,20 —23], the Lie-group
theory [24], or the Darboux-transformation method [25].
We mention also the work on the inverse-scattering-
transform perturbation theory for soliton propagation
and on the extended first- and second-order perturbation
expansion for temporal-soliton propagation in optical
fibers [26].

Recently, a direct method for obtaining exact solutions
of the NLSE for both E= 1 and —1 was given [27,28].
The method is based on the construction of a certain
completely integrable finite-dimensional dynamical sys-
tem whose solutions determine the exact solutions of the
NLSE (1). This method comes from the observation that
the one-soliton solutions and the periodic solutions which
describe the development of the self-phase-modulation in-
stability [29,30] belong to a large class of complex solu-
tions

u (g, ~) —ao(g)U(g, r) —bo(g) =0 (2)

holds between the real part u(g, r) and the imaginary
part v(g, ~) of the complex function g(g, ~), where the
coefficients ao and bo depend only on the spatial variable

We note that the two-soliton or, more generally, the
n-soliton solution (n ~ 2) and the periodic solutions with
more than one period in the ~ variable do not belong to
this set of solutions of the NLSE (1) for which the linear
relationship (2) holds.

In the general case, the exact solutions obtained in [27]

g(g, ~) =u(g, ~)+iu(g, r),
the so-called first-order solutions of the NLSE (1) for
which a linear relationship

47 3285 1993 The American Physical Society



3286 D. MIHALACHE, F. LEDERER, AND D.-M. BABOIU

@(g,r)= A/'(A g, Ar) (3)

is also a solution of this equation, where 3 is an arbitrary
scaling factor. We can choose A =2+3)0 and therefore
the solution g(g, r) corresponds to the parameters a;
(i =1,2, 3) and, respectively the solution 1''(g, r) corre-
sponds to the parameters a, =o., /2o. 3, az=o.'z/2a3, and
a =

—,'.3 2'

for c, = 1 and in [28] for c, = —1 form a three-parameter
family of solutions of the NLSE (1) which are expressed
in terms of Jacobi elliptic functions and the incomplete
elliptic integral of the third kind. Let f(g, r) be the solu-
tion of the NLSE (1) corresponding to the real parame-
ters a; (i =1,2, 3). It was shown in [27,28] that at least
one of the parameters n; is positive and in the following
we suppose that cx3) 0. An important scaling holds for
the nonlinear partial-differential equation (1). If g (g, r)
is a solution of this equation, then

By using the method developed in [27,28], we obtain in
this paper several particular exact solutions of the NLSE
(1) which are very important from physical point of view.
These exact solutions form a two-parameter family of
solutions of the NLSE (1) and describe the evolution of
the modulational instability, the bright solitons on a
continuous-wave background (the periodic evolution of
the bright-soliton amplitude), and the formation of a
diverging pair of dark waves. For simplicity we will
write down only the explicit form of g'(g, r) and then, by
using the scaling relation (3), it is easy to obtain the gen-
eral solution g(g, r).

Consider first the case c.=1. For the particular choice
a, =a&=a and O~a ~a~= —,

' (i.e., two parameters are
equal to a positive number a which may take any value
between 0 and —,'), we obtain the following one-parameter
family of solutions g (g, r) which describe the periodic
wave patterns that are generated by the self-phase-
modulation instability:

[(1—4a) cosh(pg)+(2a)' cos(pr) —ipsinh(iMg)]
7 r e'

&2[ cosh(pg)+(2a)' cos(pr)]
(4)

where

p= [8a(1—2a)]'~

P= [2(1—2a) ]'~ (Sb)

In the particular case a =—', the solution (4) becomes
[27]

( cosr+i&2 sinhg)
g, r e'

+2(V2 cosh/+ cosr)
The solutions with different signs in (4) correspond to a

shift in the variable v. equal to the semiperiod of the
modulation: r~r+~/P.

The temporal modulational instability in the nonlinear
fiber-optic context [29,30] occurs through the interplay
between self-phase-modulation and anomalous group-
velocity dispersion and manifests itself as the breakup of
a continuous-wave radiation into a train of ultrashort op-
tical pulses. Its spatial analog corresponds to the devel-
opment of a ring pattern on the transverse intensity
profile of a continuous beam in a nonlinear self-focusing
medium. In the case of spatial modulational instability,
the diff'raction takes the role played by the anomalous
group-velocity dispersion in the case of temporal modula-
tional instability.

If we write P'(g, r) =w(g, r)e'~, then from (6) we obtain

w(g, r)~ —(I/&2)e +—' ~'

as g —++ oo . Thus in the process of evolution from
g'= —oo to g=+ oo, we observe the phenomenon of the
return to the initial amplitude I /&2 but the phase is re-
versed (b,y= m. ).

In Figs. 1 —3 we show the periodic wave patterns that
are generated by the self-phase-modulational instability
for a =0.12S, 0.25, and 0.375.

For the particular choice a =a
&

~ a z
=a 3

=
—,', we find

the following one-parameter family of solutions with
finite boundary conditions at ~~+~:

[2(1—a) cos(pg)+(2a)' cosh(Pr)+ip sin(pg)]r
[ —2a '~ cos(pg') + 2' cosh(Pr) ]

(7)

where

p=2(1 —2a )'"
and P is given by Eq. (5b).

We see from (7) that
1/2 2ia g

as ~r~ ~ oo, i.e., for ~r~ &&1, this wave form approaches a
continuous wave with amplitude a ' . The solutions with
different signs in (7) correspond to a shift in the variable g
equal to the semiperiod of the modulation: g~g+vr/p
We note that the soliton solution (7) was first obtained we
believe in [31] by using the inverse-scattering technique
for finite boundary conditions at r=+ oo and then in [32]
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where p and P are given by Eqs. (Sa) and (5b), respective-
ly. Note that the solution corresponding to the upper
signs in (11) is singular and the solution corresponding to
the lower signs in (11) is regular. The dark optical soli-
tons can be created without a threshold, i.e., by an
infinitely small driving pulse, as opposed to the process of
generation of bright optical solitons which can be created
from a localized pulse if the area under its envelope is
more than a certain threshold value. The inverse-
scattering transform predicts that the dark solitons can
be created in pairs [2,5,34]. We note that in [5] the
initial-value problem for Eq. (1) was solved numerically
with c= —1. For initially symmetric data of the form

g(0, ~)=[1+2 sech(P~)]

it was shown numerically that this single pulse breaks up
into two dark solitons which move apart with equal and
opposite transverse components of the velocities, as pre-
dicted by the inverse-scattering theory. Recent experi-
ments clearly demonstrate the formation of two counter-
propagating nonfundamental dark spatial solitons (gray
solitons) in bulk self-defocusing media such as ZnSe [13]
or thermally defocusing liquids [17].

In the particular case a =—', the regular solution (11)
becomes

FIG. 11. The splitting of a single dark pulse input in two
dark waves for a =0.125.

( cosh' —i~2 sinhg')
r e'

(~2 cosh/+ cosh')

If we write P'(g, ~)=w(g, r)e'&, we thus have

(12)

as g~k~; therefore, in the process of evolution from
to g=+ ~, the amplitude 1/V 2 is recovered

but the phase is reversed (b,qr =n.).
Figures 8—10 show the evolution of the intensity

profile for the solutions (11) and (12) for a =0.125, 0.25,
and 0.375. In addition, we illustrate in Figs. 11—13 the
splitting of an input (/=0} single dark pulse into two
dark waves of equal amplitudes and opposite transverse
velocities for the same values of the parameter a.

We note that the parameter a is related to the contrast
of the solitons, which is defined in photometry as

FIG. 12. Same as Fig. 11,but for a =0.25.

C =(I,„I;„)/(I~, „+I—~;„)

and gives the visibility of the solitons. In the origin
(/=0), the contrast is given by the expression

4a [-1+(2a}' —2a]
(2a)'~ +4a+(1 —4a)[1+(2a)' —2a]

(13)

and for the separated pulses by the simple expression

aC=
1 —a

(14)

For the particular choice a =a& ~a2=a3= —,', we find
the following singular solution (double periodic in the
variable g' and periodic in the variable v}: FIG. 13. Same as Fig. 11,but for a =0.375.
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[2(1—a) cos(pg)+(2a)' cos(P~)+ip sin(pg)]
7

[
—2a'~ cos(pg)+2' cos(13~)]

(15)

where P and p are given by Eqs. (5b) and (8), respectively.
In the particular case a=a, =a2=a3= —,', we obtain

from (15) the singular rational (algebraic) dark-soliton
solution:

[(—', —2$ +2)+4i g]'(, r)=&2 e'~ .
( I+4/ —2r )

(16)

In conclusion, the direct method developed recently in
[27,28] allows us to obtain a two-parameter family of ex-
act solutions of the NLSE describing the propagation of
temporal or spatial optical solitons. This class of exact

solutions contains the rational (algebraic) bright soliton,
the solution which describes the superposition of a bright
soliton on a continuous-wave background, the solution
corresponding to the periodic wave patterns generated by
the modulation instability, and the solution which shows
the splitting of an even dark pulse into a pair of shallow
grey pulses.
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