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Perfect correlations of three-particle entangled states in cavity QED
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Compared to two-particle states, entangled states of three or four particles can lead to a much
stronger test of local realism than is possible with Bell inequalities. It is the purpose of this paper to
mention an exactly soluble quantum model in which entanglement of atomic states with cavity photon
states leads to a perfectly correlated three-particle state. We demonstrate how to realize this model
atom-field system and to create and observe such states, in the context of cavity quantum electrodynam-
1cs.
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The high-efFiciency detection of optical photohs has al-
lowed in the past decade various experiments in which
photon coherence functions of higher order have been
carefully measured. In these experiments photon anti-
bunching [1],the violation of Bell s inequalities [2], inten-
sity interference eff'ects [3], and the nonlocal character of
correlations of parametrically pumped photons in optical
down conversion have been observed [4].

Laboratory studies of atoms in cavities have provided
additional fundamental insights into the properties of the
electromagnetic interaction with atoms. Cavity quantum
electrodynamics (CQED) provides a modern context in
which to explore (both theoretically and experimentally)
many purely quantum properties of the electromagnetic
field [5] involving only a very low number of quanta.
Due to the relatively loss-free character of high-Q optical
and microwave cavities the atom-photon interactions can
have anomalously large coupling strengths and time
scales compared to standard QED phenomena occurring
in "free" space [6].

Various quantum correlations can be tested experimen-
tally by probing the atomic states of the atoms leaving
the cavity, or by a measurement of the cavity photons.
Correlations of the cavity photons with an atom in the
cavity can reveal fundamental quantum-mechanical
correlations typical for entangled systems. The entangle-
ment of states, so fundamental in the Einstein-Podolsky-
Rosen (EPR) correlations [7], has been tested experimen-
tally in various optical experiments. Violations of Bell' s
inequalities have been reported in different cases. It has
been shown that the local reality assumption implicit in
Bell's inequalities is violated in experiments involving
atomic photon cascades [2], or in measurements of polar-
ization in down-conversion processes [4]. These tests of
Bell's inequalities required measurements of photon
correlations for several orientations (four orientations
usually) of the polarizers.

Recently it has been shown [8] by Greenberger, Horne,
and Zeilinger (GHZ) that special entangled states involv-
in0 three or four particles lead to a much stronger refuta-
tion of local realism. In such many-particle correlations
only a single set of observations is required in order to
demolish the local-reality assumption. One particularly

simple entangled GHZ state of three spin- —,
' particles, as

discussed by Mermin [9],has the following form:

H;„,=k(a, a, +abad )o +H. c. (2)

where ~+ ) or
~

—) specifies spin up or down along the
appropriate z axis. This entangled state provides an "al-
ways" versus "never" test of local realism. A realistic ex-
perimental arrangement permitting a three-particle test
would be desirable, but straightforward generalizations of
two-particle atomic interferometry or photon pairs emit-
ted in a cascade suffer fairly obvious drawbacks. For ex-
ample, a three-photon J =0—+J =0 cascade cannot satis-
fy dipole selection rules. Only a few specific schemes for
the generation of GHZ states have been proposed so far
[8—10].

It is the purpose of this paper to mention an exactly
soluble model of CQED in which entanglement of atomic
states with cavity photon states leads to the state given by
Eq. (1). In the framework of this CQED model a concep-
tually straightforward test can be designed to measure
three-particle GHZ correlations.

The model we are considering consists of one atom and
four radiation modes [11]. The radiation modes are asso-
ciated with the two transverse-polarization states of each
of two longitudinal modes of a cavity, as sketched in Fig.
1(a). The modes are pairwise degenerate in frequency:
co, =co, and cob =cod. The atom has a J =1 ground state
and the photons in the cavity modes can induce transi-
tions between the M= —1 and +1 sublevels of the
ground state, via circularly polarized virtual transitions
to a far-off-resonant upper M =0 level. This is shown in
Fig. 1(b). If the M =0 ground sublevel is initially unoc-
cupied it will not be active at any later time because only
fields polarized along z could cause M =0 to M =0 tran-
sitions. Thus even though there are three sublevels in the
J =1 state, only two of them are participants in the in-
teraction.

The effective interaction Hamiltonian of such transi-
tions has the following form (A'= 1):
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(a)

where l, =(n, +n, )/2 and lz=(nz+nd)/2. The L, and
L2 systems are spin- —,

' "particles" if n, +n, = 1 and
nb + nd = 1. The third angular momentum involved in
our CQED interaction arises naturally from the atomic
transition operators. It is well known that this angular
momentum is equivalent to a spin —,':

S+ —o. , S —o. , S,——,'o, .

The CQED Hamiltonian (2) expressed in angular-
momentum variables describes the interaction of a ficti-
tious spin —,

' (the atom) and a system with the total angu-
lar momentum L=L, +Lz (combinations of field modes),
and has the form

M= —1 M =+1

(b)

FIG. 1. (a) The cavity and coordinate system. (b) Transition
diagram of our CQED model.

where we have assumed that the coupling constant k is
the same for the two channels involved in the photon
transitions [12]. As usual we have denoted by o and cr

the atomic lowering and raising operators and by a; and

a; (i =a, b, c,d) the four boson annihilation and creation
operators of the cavity modes.

The free Hamiltonian of the model is

Ho= ger);a; a;+E o +E+o.++ . (3)

We adopt the simplest situation and take E+ =E, in
which case the last two terms of Ho are the unit operator
times E and can be ignored. The unperturbed states of
the free Hamiltonian shall be denoted by
~n„nb, n„nd, +&, where the n; denote photon numbers
and + are the atomic indices. We also have assumed that
the cavity modes support the resonant-frequency rela-
tions cod —cob =a), —co, =E+ —E =0.

In order to make contact with the spin- —,
' EPR or GHZ

correlations we shall reformulate the boson interactions
in terms of spin variables [13]. The four independent cav-
ity modes can be used as independent boson components,
in Schwinger's representation [14], to give the angular-
momentum operators L, and L2 as follows:

agay

Lq+ =adab

L) =a, a, , L), = —,'(n, —n, ), (4a)

Lz =abad, Lz, =
—,'(nd —

nq) . (4b)

Note that L, involves the right-polarized ~, photons and
the left-polarized co, photons, while L2 involves the left-
polarized cob photons and the right-polarized cod photons.
Because all these modes are independent of each other
the angular-momentum operators L, and L2 commute:

[L„Lz]=0 .

The eigenvalues of L) and Lz are l)(l) +1) and lz(lz+1)

H;„,=k(L o +L+o ) .

Now we demonstrate how to apply this atom-field sys-
tem to create and observe spin- —,

' GHZ states. Consider
spin correlations involving, for example, three indepen-
dent z components. We will be most interested in the ex-
pectation value (L„Lz,S, &. This expectation value can
be understood as a combination of four correlated mea-
surements of two photon-number operators with the
atomic inversion operator. From the definitions (4) we
obtain that

(L„Lz,S, &=—,'(n, ndo. , n, nbo, —n, ndo—, +n, nbo, & .

In CQED the photon-number operators can exhibit
strong correlations with the atomic state due to the en-
tanglement of the photons with the atom in the cavity.
We shall discuss the generation of such highly correlated
states in the framework of our CQED model.

The Hamiltonian of our model is fully soluble, i.e., all
energy eigenvectors and eigenvalues can be obtained ex-
actly [15]. But for the purpose of this presentation we
shall confine our attention only to the lowest nontrivial
"sector" of the Hilbert space of the system. This is be-
cause we are interested in the realization of the GHZ
state in the framework of this CQED model. From the
definitions (4) it is clear that the L, space that corre-
sponds to l&

=
—,
' is spanned by states which involve only

(1„0,) and (0„1,) co, and co, photons. For the same
reasons the L2 space that corresponds to l2 =

—,
' is spanned

only by (lz„Od) and (Ob, ld) cob and cod photons. These
CQED states can be denoted by ~

m „m z, m, &, where the
magnetic numbers correspond to spin up or spin down of
the angular momenta L&, L2, and S. The relation to the
bare field-atom states is straightforward; for example,
i+, +, + &

=
i

1„0,,0„1,;+ &.

It is not enough to say that three spin- —,
' particles exist.

The dificult task is to show how the three particles in-
teract in a physically realizable way and in a way that
permits GHZ "always-never" correlations to be ob-
served. This is what we do next, as indicated by Fig. 2.

First we prepare an initial cavity state by depositing
one photon in the co, mode and one photon in the cod

mode. This can be achieved, for example, by passing an
atom which can undergo a two-photon cascade spontane-
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PREPARER
ATOMS

the atomic transit time through the cavity. After the
atom leaves the cavity, the cavity field in (10) cannot
evolve further. Note that the state of the emerging atom
can be monitored to verify the field state. A second atom
is prepared (e.g. , by passage through a Ramsey zone) in a
dipole coherent state:

ACTIVE
ATOM

CTION

1„lb, o„od, —)~IO„ li„ l„od,'+ )

+-+ O„ob, 1„ld, —) (12a)

Iatom) = (I+ ) —
I

—) )v'2

and then this atom passes through the cavity. As a result
of the interaction of the second atom with the prepared
state of the field, the chain given by Eq. (9) is supplement-
ed by an additional chain of states given by

FIG. 2. Atoms used in the preparation of the GHZ state.
First, an atom deposits two photons in the cavity with a two-
photon cascade spontaneous emission. A preparer atom in-
teracts with the field to give the state described by Eq. (10). Fi-
nally, the active atom in a dipole coherent state is passed
through the cavity and we have the desired entangled state.

ous emission through the cavity. We can monitor the
state of the atom coming out of the cavity to make sure
we have the desired two-photon state [16]. Then, an ac-
tive atom prepared initially in the state I atom ) =

I

—) is
injected into the cavity. As a result of the injected atom,
the initial state in the cavity is no longer stable and will
evolve in time. As a result of the interaction given by the
Hamiltonian (2) the only states atom)S Ifield) that are
dynamically accessible in the cavity form the following
chain:

I l. , l, , o„o„;+)~ l. ,o, ,o„1„;—)
~ O„ob, 1„ld,'+ ), (9a)

which, in our spin- —, notation, is the same as

I+, —,+& I+, +, —
& I

—,+, +& . (9b)

This chain of states spans a closed sector in the Hilbert
space. It is easy to diagonalize the interaction Hamiltoni-
an in this sector and as a result we obtain the following
eigenvalues: v 2A, , 0, and —v 2A, . Due to the interaction
only states from the chain (9) will occur in the cavity.
These states will oscillate with this "vacuum" Rabi fre-
quency. One can show that after a time v'2At=m. /2 th. e
initial state

I +, +, —) in the chain will become

and this is equivalent to

I+, —,—& I
—,—,+&

I

—,+, —
& . (12b)

The state of the field in the cavity evolves during the pas-
sage of the second atom. The atomic state evolves as
well, and after the atomic transition time the combined
I atom )

I
fiel ) state has become

Ifinal& = (I+, +, —
&
—

I
—,—,+ &) .

1
(13)

E(x,y,y):—(L, L2 S ),
E(y, x,y)—= (L, L2„S ),
E(y,y, x)—= (L, L2 S ),

(14a)

(14b)

(14c)

and

The I final ) state is therefore an entangled state and is in
fact just the desired GHZ state (1), with a change of the
atomic label from I+) to

I

—). We see that in this
CQED scheme we can achieve a fully dynamical genera-
tion of perfect GHZ states.

We can perform photon-number measurements involv-
ing the following correlations: [a,d, A], [a, b, A],
[c,d, A], and [c,b, A], where A refers to the atom. These
photon-number measurements correlated with the state
of the atom in the cavity provide a three-particle spin
measurement of the z components in the GHZ state.
However, this is not the full story because to detect GHZ
correlations we are supposed to measure correlations of
the spin components which correspond to the following
expectation values:

I fiel & I+ &
= — '-

( I+, —&+
I
—,+ & ) I+ &v'2

(I l. , l„,o„o,)
2

E(x,x,x)—= (Li L2„S )

The perfect correlations of the 6HZ state lead to

E (x,y, y) =E (y, x,y) =E(y,y, x)= + 1,

(15)

(16)
+ Io. , o, , 1„1, ) ) e I+ & . (10)

Thus, as a result of the atomic pumping, the field in the
cavity is in a superposition state of one photon in each of
the co, and cub modes and one photon in each of the co,
and cod modes.

We suppose that the evolution time t =rr/2v 2A. is also

while perfect correlations involving only the x axes lead
to

E(x,x,x)= —1 .

These multidirectional correlation functions can be ob-
tained from the original correlation function (8) by a
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,'(n, +—n,+a, a, e '+a, a, e '),—i')I t i/I (19)

i.e., an interference of the co, photons with the co, pho-
tons takes place [17].

Using the angular-momentum definitions we can
rewrite this formula in the following form:

definite procedure.
In this second stage of our experiment (see Fig. 3) we

first separate the co, and m, photons from the cob and co&

photons emerging from the cavity by a proper set of
filters and polarizes, as sketched in Fig. 3. We then start
the measurement of the angular-momentum components
L& n(P, ) and L2 n($2) for arbitrary unit vectors (orienta-
tion angles) P, and Pz. These orientation angles can be
defined in an abstract x-y plane in the following way. We
let the co, and the co, photons fall on a detector. At the
detector the positive-frequency part of the electric field
can be expressed by the following formula:

a(p&)= —(a, +a, e '),1 —i/I
2

where the device denoted P& in Fig. 3 is designed to sup-

ply a path delay and the proper rotation of polarization
to permit the interference of the co, and co, modes. The
prefactor has been selected in order to preserve the com-
mutation relation [a (P&), at(P&)]=1. At the first detec-
tor D, the field-intensity operator is given by the follow-
ing formula:

I(P, )=a (P, )a(P, )

1 —i/2a (y~) = —(a~+abc ')
2

(21)

and at detector Dz the field-intensity operator is related
to the L2 projection through the similar formula

I($2)=
—,'(nq+ nb ) +L2 n($2) . (22)

These results show that by interference of the outgoing
photons from the cavity modes, it is possible to achieve a
measurement of the fictitious angular momenta Li and L2
which is completely analogous to a standard spin projec-
tion measurement using two analyzers with correspond-
ing directions n(P, ) and n($2).

We are left with the problem of the "rotation" of the
atomic spin S„and this can be achieved by a rotation of
the atomic state on its Bloch sphere. The beam is sub-
jected to a m/2 pulse, and to a rotation by an angle p3 in
the abstract x-y plane (abstract Bloch sphere of the atom-
ic two-level system). As a result of this rotation the excit-
ed state of the atom becomes ~+ )& =(1/&2)(~+ )

3

+e '~ —) ) and the ground state becomes
~

—
)&

=(1/&2)( —e '~+ ) +
~

—) ). A procedure that leads
to the generation of such states is known in the frame-
work of two-level coherent transients [18].

These rotations of the atomic states on the Bloch
sphere are of course equivalent to rotations of the S,
operator by the spherical angles (8=~/2, P3) and as a re-
sult of this procedure we obtain the following atomic ob-
servable:

I(P, ) = ,'(n, +—n,)+L, n(P, ) . (20)
S($3)=S„cosg3+S sin/3=S n($3) . (23)

This formula relates the intensity at detector D, (see Fig.
3) with the angular momentum L, projected on a unit
direction n(P, )=(cosg„sing„O) in the x-y plane. The
measurement of the angular momentum Lz can be
achieved in the same way. The corresponding electric-
field operator is

FILTER AND
POLARIZE R

COd

Mb

D2

INTERACTION
CA VITY

FIG. 3. Schematic description of the three-particle correla-
tions involving detectors D I, D2, and D3. With filter and polar-
izer, the co, and co, modes are mixed with an angle P, and
detected by the detector D, . The cob and the co& modes are
mixed with an angle P2 and detected by the detector D2. The
atomic state is rotated through angle P, and detected by detec-
tor D3. Joint clicks at the detectors D I, D2, and D3 reveal the
perfect correlations of the GHZ states.

Combining this and the previous results we obtain the
CQED photon-atom correlations in the following form:

E($„$2,$3)= (L, (p, )L~(p )2S(p )3), (24)

where the expectation value is calculated in the GHZ
state. In this correlation function the angles P, and Pz
are related to the interference pattern of the cavity pho-
tons while the angle P3 corresponds to the rotation of the
atomic population on the Bloch sphere.

Expression (24) is the central result of this paper, be-
cause it shows that it is possible to obtain a one-to-one
correspondence between the three-particle spin- —,

' CsHZ
correlations and the CQED dynamics. The GHZ state of
the CQED system is an entangled state of the cavity pho-
tons and the atom. Spin correlations given by Eq. (24)
correspond to measurements of the photon interference
pattern correlated with the state of the atom in the cavi-
ty.

As the last issue of this paper we shall address the
problem of what actually has to be observed and mea-
sured in order to claim a complete refutation of local
realism in the GHZ correlations. Let us notice that the
chain states (9) have n, +n, =nb+nz =1 and as a result
the intensity operators given by Eqs. (20) and (22) are
equivalent to spin- —, projection operators, i.e, we have
I (P, ) =I (P, ), i = 1,2. The measurements of atomic pop-
ulations are related to measurements of the spin- —,

' projec-
tor P (P3)= —,

' [1+o"n($3) ]. As a result of this
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identification the correlation function

Jx (pt, p2, p3) = (l(4'i )l(4'2)P($3) )

gives the joint probability for a detection involving two
interference patterns characterized by P, and Pz and the
atomic spin orientation characterized by P3. Perfect
GHZ correlations lead for P, +/&+$3=rr to p =

—,', while
for P, +/&+$3=0 the joint probability is equal to zero.
This means that for this particular orientation in the x-y
plane no joint detection of photons in the interference
patterns correlated with the atomic state is possible. This
is the essence of the "never" versus "always" refutation
of local realities in the GHZ argument.

In summary, we have proposed an experiment in which
to observe particularly interesting entangled three-
particle (GHZ) states. We used an atom-cavity interac-
tion process that makes use of a two-channel combina-
tion of lambda transitions between degenerate sublevels
of the ground state of the atom and it involves only con-

ventional dipole-allowed two-photon physics. Proper at-
tention to cavity symmetry and dipole selection rules is
sufhcient to eliminate, in principle, interfering transitions.
By detecting appropriately selected mode pairs, making
use of the known cavity-atom dynamical evolution, and
choosing conveniently the atomic transition time through
the cavity, we have obtained exactly the desired GHZ
spin- —,

' correlations. We note that our proposed experi-
ment not only suggests a method for realization of these
so-far unobserved states, but does so in a distinctly
unusual way within the framework of previous tests of
the violation of local realism, i.e., by combining five com-
pletely distinct physical systems (atom and four field
modes) to make the three "spins. "
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