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Interaction of radiation with matter: Integrable problems
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We construct an extension of the spectral transform theory that allows us to build nonlinear systems
of coupled waves that are integrable for arbitrary boundary values. The related time evolution of the
spectral transform is in general nonlinear. This result has many important applications in physics, and
we apply the procedure to plasma waves (laser-plasma interaction), to quantum electronics [self-induced
transparency (SIT) and laser-pulse amplification], and to nonlinear optics (stimulated Raman scattering).
In the case of laser-plasma interaction, we obtain an exact model for the description of the total
reAexivity due to stimulated Brillouin scattering. For SIT, we show that the presence in the initial state
of the medium of some atoms in an excited state drastically modifies the related time evolution of the
spectral data, possibly making the problem unsolvable. In the case of laser-pulse amplification, we prove
that the presence of background noise in the firing laser pulse drastically modifies the long-distance be-
havior of the solitons. Finally, for the general process of stimulated Raman scattering, we give the
correct evolution of the spectral transform and show that the Stokes wave becomes rapidly totally local-
ized; in other words, the system naturally evolves into a pure soliton state, whatever may be the initial
profile of the acoustic wave. In the same context, another quite interesting example is studied: it is the
first instance of an integrable system which develops a singularity in aconite time (for which the solution
blows up). The physical application is under study.

PACS number(s): 03.40.Kf, 42.65.Dr, 42.65.Es, 42.65.Re

I. INTRODUCTION

The spectral transform method [1] has won physicists'
consideration because the nonlinear evolutions that can
be handled are of universal application. This is the case,
for instance, with the nonlinear Schrodinger and
Korteveg —de Vries equations. For such systems, the
spectral transform actually gives the solution of the Cau-
chy problem, which is the initial-value problem, and this
is relevant when the physical problem is that of the time
evolution of an initial profile or disturbance. For in-
stance, it has been demonstrated that a localized initial
profile eventually becomes a set of well-separated solitons
traveling on a vanishing background, and this is indeed a
fundamental result.

But when the physical problem is that of the interac-
tion of radiation with matter, it is clear that some bound-
ary values will come into play (at least the input radiation
value). Then, in that context the problem to consider is a
nonlinear boundary-value problem for coupled waves and,
up to now, the spectral transform method was not applic-
able.

The main mathematical property of systems of coupled
waves is to have a singular dispersion relation [co(k) is a
nonanalytic function of the complex variable k], and
Lamb, Jr. discovered that some of such systems are in-
tegrable by an extension of the spectral transform theory
[2]. His work on the equations of self-induced tran-
sparency has then been generalized in [3] and set up on a
general basis in [4]. We have developed a systematic ap-
proach of integrable systems of coupled waves [5] by use
of the 0 formulation of the spectral transform and have
applied it to different situations [6—8] for which the

a i =qa2 a2, 2ika2 o.gal (l. lb)

[with o =+,x H I, t )0, and g =g(k, t) an arbitrary func-
tion in L ], is integrable for arbitrary boundary values,
say

a, = I, (k, t),x~+ oo

(l t)e 2!kx

x~+ oo

(1.2a)

(1.2b)

or any other choice (at —~ or mixed + ~ —~ ). Start-
ing with q (x,O) =0, we refer to this problem as a
boundary-value problem and with q(x, O) in L '(R) to an
initial —boundary-value problem. Both cases are physical-
ly interesting and we will discuss important conse-
quences.

The above system has to be understood as a paradigm
model describing the interaction of two high-frequency
waves of envelopes a

&
and a2, with a low-frequency wave

of envelope q. The parameter k measures a frequency
mismatch due to the presence of a broad-line resonance

relevant problem was an initial-value problem.
We shall prove here that the method can be extended

to a more general evolution of the spectral transform,
which will allow us to solve boundary-value problems for
those integrable systems having a singular dispersion re-
lation. Depending on the problem, the time evolution of
the spectral transform can well be nonlinear, but still ex-
plicitly solvable in the physically interesting cases.

Our result can be summarized as follows: the system of
coupled equations for the fields q(x, t), a (k, x, t)

q, =f gdka, a2, (1.1a)
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between these waves, represented by the inhomogeneous
broadening factor g (k).

The method can be straightforwardly extended to the
system made of (1.1b) with

q, =ia( ,'q—„—o ~q~ q)+ I g dk a, a2, (1.3)

but, to avoid formal complications we shall restrict our-
selves here to the case (1.1). The system (1.3) has impor-
tant physical applications [9,7] for it describes the wave
coupling including nonlinearity and dispersion of the
low-frequency wave q.

The method obviously applies to other spectral prob-
lems (we use here the Zakharov-Shabat problem). For in-
stance, starting with the Schrodinger equation, one would
solve the Karpman-Kaup equation [10] for which it has
been recently shown that, for a physical initial
boundary-value problem, the asymptotic state consists of
a number of static solitons and a localized totally
refiective radiative part [11].

In Sec. II we construct the general scheme of the
method and we will recall the minimal basic tools such as
to make the method understandable with no particular
knowledge of the general theory of the spectral trans-
form. This scheme is then applied to solve a generic
boundary-value problem and we obtain in Sec. III the re-
lated general time evolution of the spectral transform.
We will discuss the boundary-value case with, in particu-
lar, the description of the soliton driving by the effect of
the boundaries. In Sec. IV we describe four different
physical situations where Eq. (1.1) applies but with
different boundary values and hence with different spec-
tral transform solutions.

The reader interested only in the application of the
method to physical problems can jump directly to Sec.
IV. In that section we consider first (Sec. IV A) the case
of the interaction of a laser with a two-component plasma
(in the Quid approximation) [8]. We obtain an exact mod-
el to explain the total reAexivity due to the stimulated
Brillouin scattering of the electromagnetic wave with the
acoustic wave.

Then (Sec. IV B) we recover the results of self-induced
transparency [12,2,3], when the physical situation is that
of the interaction of an electromagnetic radiation (laser
pulse) with a two-level system of atoms or molecules ini-
tially at rest. We will find that the system is highly sensi-
tive to the boundary values: if the initial state contains
some atoms in the excited state, then the related evolu-
tion of the spectral transform in dramatically different,
possibly becoming unsolvable.

In the case when the atoms are initially in the excited
state (laser-pulse amplification) [13,14], we prove in Sec.
IV C that the existence of a radiative part in the spectrum
(as small as we want) dramatically modifies the asymptot-
ic state of the system (far in the medium). Since physical-
ly the input pulse can never have a strictly vanishing ra-
diative part, we obtain a generic behavior for the penetra-
tion of a laser pulse in an excited medium. In particular,
we will discover that the positive velocity of the solitons
is compatible only with a nonzero initial radiative part.

In Sec. IVD the general equations of stimulated Ra-
man scattering are considered [15,16] and we obtain the

correct time evolution of the spectral data. As a result,
we prove that the Stokes wave becomes rapidly localized
in space and hence that any initial acoustic profile asymp-
totically evolves into a pure soliton state.

Finally we consider in Sec. IV E a striking example: we
discover the first instance of a system which is integrable
only for finite time. For such a system, we show that it
exists a time t, for which the energy of the low-frequency
wave becomes infinite corresponding to the occurrence of
a singularity (in time) of the spectral transform. For the
moment, this is only a mathematical curiosity but the
physical applications are now under study. Of course,
the problem of the nature of the system for t ) t, is a
quite interesting open question.

Let us first define some convenient notations. For a
complex-valued function f (k)=a (k)+ib (k) of the com-
plex variable k =(+ig, we note

f(k) =a(/+i g) ib(/+i —
2) ),

f*(k)=a(g 1g)——'ib(g ii)) =—f(k) .
(1.4)

We will use also the distributions 5*(2)) given by

I draff ((+ig)5 (g) = f ((+i—0)

and having the property

5 (2))=5 (2)) .

(1.Sa)

(1.5b)

Finally we shall deal with functions in C which go to a
polynomial of k as k ~~. We denote by Pk this polyno-
mial, more precisely defined by

f(k) —Pk(f) -+ 0 .
g~ oo

(1.6)

II. EXTENSION OF THK SPECTRAI.
TRANSFORM METHOD

A. Spectral problem and basic solutions

We brie Ay recall here the basic results on the
Zakharov-Shabat spectral problem which we write for
the 2X2 matrix p, (k, x, t)

p~ +1k [o'3,p] —Qp, Q
( 1)

q(x, t)
0 (2.1)

@1+2(k,x )

@2+2(k,x )

0 I dgq(g) +(k g)
—2ik(x —g)

f "der(r)v12(k 4)

(2.2b)

The two fundamental solutions of (2.1), say p —+, are deter-
mined by (a t dependence is understood everywhere)

p,', (k, x) 1' —J dkq(k)i 21(k 0
p,', (k, x) o f der(g)&+(k, g)e "k'
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p, ,(k, x)

p2, (k,x)

p, 2(k, x)

p,22(k, x)

0

0
] +

l

f dgq(g)p21(k, g)

f der(g)p, , (k, g)e '"'"
X

f
—f dg r(g)p12(k, g)

X

(2.3a)

(2.3b)

The integral equations (2.2) and (2.3) give the following
behaviors at large x:

p+ —2i kx —/p—

0 I /P+
(2.8a)

1 0
+X~+ oo

1 0
P 2ikx +/p+ p—

The first column vector p,+ of the matrix p+ is mero-
morphic in Im(k) )0 where it has a finite number N+ of
poles k„+ (assumed to be simple). The second vector p2+

is holomorphic in Im(k))0. The vector p, is holo-
morphic in Im(k) &0, while the second one p2 is mero-
morphic in Im(k) &0 where it has a finite number N of
pole k„(simple). One can check directly on (2.2) and
(2.3) that we have the relations

Res p,+(k)=iC„+p2+(k„+),
k =k+

n

Res p2 (k)= iC„p,—(k„),
k =k„

(2.4a)

(2.4b)

which define the normalization coe+cients C„+—.
The function p(k) defined as p+ in the upper half

plane and p in the lower is then discontinuous on the
real k axis. Its discontinuity can be expressed simply in
terms of p itself as

p 0

—2ikxe a
(2.8b)

where we have used that from (2.1), det(p) is x indepen-
dent. Consequently we have also the unitarity relation

a+a +P+P =1 . (2.9)

4= Ia +—(k), k ER;k„+—, C„,n =1, . . . , N*I . (2.10)

B. 8 problem and spectral transform

To obtain the asymptotic behaviors —e ""a /P of
p,+2 and e '""a+/p+ of p2, as x goes to —oo, one must
use the relations (2.5) repeatedly in (2.2b) and (2.3a), re-
spectively.

Solving the direct-scattering problem consists of solv-
ing for given Q(x) the integral equations (2.2) and (2.3),
and then calculating the spectral data 4,

++ +
—

e 2lkx++++

which define the reflection coe+cients a (k),

a+(k) = f der(g)p, +,(k, g)e,
a (k)= f dgq(g)p22(k, g)e '"~ .

(2.5a)

(2.5b)

(2.6a)

(2.6b)

Since the work of Heals and Coiffman [17j, we know
that the solution of the inverse problem, i.e., the recon-
struction of Q from 4, is given by a Cauchy-Green in-
tegral equation which solves a 8 problem for the function
p, (k) previously defined. Actually the 8 problem is simply
the formula which summarizes the analytical properties
of p(k); it reads

f dkq(s)p2+1(k k»

p (k)=l —f der(g)p12(k, g) .

(2.7a)

(2.7b)

For future use we define also the transmission coefficients
a p(k)=p(k)R (k),

ak
(2.11)

where the distribution R (k) is the spectral transform and
is given from the spectral data 4 by

0
1

a+(k)5+(kt )

—a (k)5 (kt ) „ iv+ 0"' "+2
0 ~, C„+5(k —k„+ )

C„5(k —k„)
e0 (2.12)

This formula can be demonstrated simply by noting that

p(k) =—p(k)[5+(kt) —5 (kt ) j, k &R
Bk 2 (2.13)

Res p»(k) 0
~+ k„+

p(k)= —2i~ g 5(k —k„+) +,Im(k))0
13k „1 " Res p2+, (k) 0

k„

0 Res p, 2(k)
k„

p(k)=2i~ g 5(k —k„),Imk &0 .
ak „=1

" 0 Resp22 k
k„

The above 3 problem is completed by the asymptotic be-
havior of p at large k, which is obtained from (2.2) and
(2.3) by integration by parts and reads



INTERACTION OF RADIATION WITH MATTER: 3267

1
k ~ ~ —p(k) = I+0

k
(2.14)

Finally the solution of Eq. (2.1) obeying the above behav-
ior is obtained by solving the following Cauchy-Green in-
tegral equation: [R Q )+M =0, (2.25)

on their diagonal (D) and antidiagonal ( A) parts. Then
we remark in (2.38) that only Q and M contribute to
the t dependence of R. Moreover, the diagonal part of
(2.23), namely

(k) + 1 f f dA, Xdl,
(~)R (~) (2.15)

inserted in the diagonal part of (2.24) gives for the A di-
agonal

By comparison of the different powers of 1/k in Eq.
(2.1), we readily obtain

(2.16)

[R, [Q",A]) =0 .

Hence we take

Q =0=-M =0,

(2.26)

(2.27)

where we have defined p" ' through

(2.17)

and we will prove that this choice is not restrictive for
the resulting integrable system. It follows that the con-
straint (2.24) will be realized as soon as

On a very general level, we want to link a given para-
metric dependence of the spectral transform R (k) on the
real variables (x, t) to the corresponding dependence of
the field Q(x, t) Clear. ly, this will be done by means of
the inverse problem, hence by using mainly the results of
Sec. II B.

The x dependence of R (k) has already been chosen, let
us write it

R„=[R,A], A=iko3 (2.18)

and mention that it can be generalized to nonanalytic
functions A(k) [5]. The above x evolution implies that p, ,
solution of (2.11), does obey the differential equation (2.1),
which is proved as follows. First we check that

(2.19)

Therefore the inverse problem is solved by the integral
equation (2.15).

C. General evolution of the spectral transform

M —[M, A]=[Q,R] (2.28)

and we see that Q WO would lead to possible further gen-
eralizations. We leave this case to future investigations
and take here

Q =0 -Q=Q(k, t),
(2.29)

M =[M, A] —M=MD(k, t)e

In the previous works [5] was only considered the case
M =0, which actually corresponds to an implicit a priori
choice of the boundary values. Indeed we shall see here
that the freedom in the boundary values requires that M
be nonzero.

Apart from the restrictions (2.29) and (2.27), Q and Mo
are quite general functions of k and t, which can be non-
analytic in the variable k and will appear to be function-
als of R (k, t) and, of course, of the boundary values
I, (k, t) and I,(k, t).

Let us make now a further restriction by taking Q with
no polynomial part, that is

and hence the function (p, —p,A)p is analytic in k, let
us call it U, that is

Q(k, t) =0 1

k
(2.30)

p —pA= Up . (2.20)

The function U(k) can then be calculated from the Liou-
ville theorem and we get [note that p p '=0(1/k)]

Adding a polynomial part is trivial but makes the formal-
ism heavier. For instance, the model (1.3) is obtained for
PkQ=2iak o.

3 [5].
The problem is now to compute p, in terms of p once

given (2.23). As for the x dependence, we first check that
U= Pk(pAp ') . —

It is then trivial to check (2.1) which is

A =iko3= U= —iko. 3+.Q, .

(2.21)

(2.22) The general solution of the above equation reads

(2.31)

where Q is given by (2.16).
For the t dependence, we proceed in the same way but

seek a more general structure, namely

p, —pQ= Vp, (2.32)

(2.33)
R, =[R,Q]+M . (2.23)

First of all, this equation has to be compatible with (2.18),
which is guaranteed by

[R,A, —Q +[Q,A]]=M —[M, A] . (2.24)

To solve this it is convenient to expand the 2 X 2 matrices

(Here BQ=BQ/BX. ) The polynomial part of V(k) van-
ishes due to (2.30).

Here ends the first step: to obtain the Lax pair (2.20)
and (2.32) associated with the given evolution (2.23) of
the spectral transform. The following step is now to
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derive the resulting evolution equation for the field

Q (x, t).
D. General integrable system

The compatibility (p„,=p,„)between the two members
of the Lax pair furnishes the usual ( U, V) system

~p o~o2 —R =o2Ro2

and consequently from the definitions (2.6) and (2.7)

=ocr, k ER,
k„=k „, C„+=o.c „

(2.42)

(2.43)

(2.44)

U, —V +[U, V]=0

because we have chosen A and Q verifying

A, —0„+[A,A]=0 .

(2.34)

(2.35)

Equation (2.34) furnishes an evolution equation for
Q(x, t) if and only if the k dependence in (2.34) cancels
identically. This is indeed the case since we have, in the
computation of V,

It follows that the three scalar functions co and m*
must obey some reduction constraints coming from the
above relations together with some structural constraints
coming from the nature of the support of R (k, t) given in
(2.12) and from the structure of the evolution (2.39).

The first structural constraint can be read on (2.23); it
1s

m —(k, t) =ma (k, t)5—(kt)+g m„—(t)5(k —k„—) . (2.45)

[@[M—BQ]P, '] = [ U(A, ),l2IM —an]Z-'] . (2 36) The reduction constraints read (for k EE )

Then, noting that U(k) —U(A, )=io3(A, —k), (2.34) be-
comes

Q, = f f dA, XdX[o3,pIM —BQ]p '] .2' (2.37)

Q, =co(k, t)o 3,
0

m+(k, t)

m (kt)
0

(2.38)

This is the general integrable evolution related to the evo-
lution (2.23) of the spectral transform with the restric-
tions [(2.29), (2.27), and (2.30)] on the arbitrary matrices
Q and M.

With the notations

co(k, t) Ei E, co(k„+, t) = —co(k„,t),
ma+(k, t)=om 0 (k, t), m„+(t)=om „(t) .

(2.46)

(2.47)

The resulting evolution (2.16) of the spectral transform
then reads

nt =2coa 2im o

for the continuum (k E E), and

k„+, =0, C„+,=2'(k„+ )C„++ m„+
1

rr

(2.48)

(2.49)

for the discrete spectrum.
There is now a supplementary structural constraint on

co if we are interested on evolutions (2.39) where the in-
tegral on the right-hand side runs on the real axis only.
In that case we obviously have to set

the evolution (2.37) becomes m„+—(t)=0 . (2.50)

q, = f—f—dXXdX(2p„l „a~.+m p'„e

+ 2 2&Ax)Pl Pi2e g

(2.39)
r, = ——f f dAXdX(21M, 21p228co+m p21e

7T

+ 2 21Ax)Pl Pppe g

This integrable system has to be understood coupled to
the difFerential equations (2.1) for p; . Its novelty lies in
the presence of the distributions m —,and we note that
even for a regular dispersion relation (i.e., Bra=0), we get
a system of coupled waves.

K. Structural constraints and reductions

Then we will need that Bco be proportional to the distri-
butions 5—.Considering (2.40) in the evolution (2.39) and
remembering the property (1.5b), we require

co(k, t) =ip (k, t) [6+(kt )+5 (kt )], p(k, t) HE .
ak

(2.51)

Consequently, in the reduction (2.40), the evolution
which we are interested in reads

2l +~™~d~[»S(l »1 12+P11P12)

—
(

—
)2

—2iix+
(

+. )2 2ik.x]

It is essential for the physical applications to consider
reductions from the two-field Q to a one-field equation.
%'e are interested in the case

This equation is coupled to (2.1) which is

(2.52a)

r (x, t) =crq(x, t), o =+ (2.40)
(2.52b)

p =o ipo i:-R =cT)Ro i (2.41)

for which it is easy to prove [directly on (2.1) and (2.11)]
that we have [remember the definition (1.4)] Finally, since the relevant datum for the evolution is the

function p (k, t), we need to compute co(k, t) out of (2.51),
we get
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co(k, t)= ——Pf p(A. , t) .21 +~
A,
—k

(2.53)

Here above, P denotes the Cauchy principal value of the
integral.

Pl lp12 ( 1+~ + )(P11P12+P11P12)

+ 1 i2+( 1 12+i2
—)(p+ )2e2ikx

+ 1 cx ( 1 it+ex )(p
—

)2e
—2ikx (3.8)

III. GENERIC INTEGRABLE BOUNDARY-VALUE
PROBLEM

P11P12 2(P11P12+P11P12)
1 +( + )2 2ikx

P&2

A. Method and formulas

We prove here that the equation

q, =j'"
gdka, a, ,

=qa2, a2 —2ika2 =o.qa, ,

with the boundary values

a, ~ I (k t),
X~+ QQ

( I t) 2ikx

Q~+ QO

(3.1a)

(3.1b)

(3.2a)

(3.2b)

1 ~—
(

—
)2

—2ikx

1 (~+ )2(p+ )2e 2ikx

+ ( 1 1 ~+~ —
)(p

—
)2 2ikx-

+ ( 1 —1 a+a —)(P+ )2e 2ikx

1 (~
—

)2(p
—

)2e 2ikx—

(3.9)

(3.10)

(3.1 1)

and given g (k, t), can be obtained from the integrable sys-
tem (2.52) for a convenient choice of 0 and M, which is

of co and mo.
Although any other boundary-value problems can be

obtained from (3.2) by a convenient choice of I, it will be
useful to consider also the following two cases:

+ ( 1 ~+~ —
)(p

—
)2

—2ikx

+ ( 1 ~+12—
)(p+ )2e 2ikx

(3.12)

(3.13)

a& :E, (k, t), (3.3a)
B. Evolution of the spectral transform

a2 — E2(k, t)e '" (3.3b)

and

a, :J, (k, t),
+ —++ QO

a2 — J2(k, t)e '"" .

(3.4a)

(3.4b)

—+I +e 2lkx (3.5)
a2

In the same way the other boundary values give

The proof that these problems are integrable is per-
formed essentially by means of the asymptotic behaviors
(2.8) of p —,and by the relation (2.5) between p and p
on the real axis (the Riemann-Hilbert problem).

Comparing (3.2) with (2.8), we deduce that

a&

g(o II1 I'+ II I'),

mo+(k, t)= g[oI, I2 —
—,'a+(o. ~I, ~

+ ~I2~ )], (3.14)

mo (k, t)= — g[I1I2 —,'a (cr~I1 ~
+—~I2~ )] .

(ii) In the case (3.3)

The values of co(k, t) and mz (k, t) corresponding to
each case of boundary values are obtained simply by in-
spection. Starting with the development of a, a2 from
(3.5)—(3.7), written uniquely in terms of the three quanti-
ties (p„p, ,+2+p, ,p, 2), (p») e '", and (p,+2) e ' ", we
compare it to the rhs of the integrable equation (2.52).
We obtain the following values.

(i) In the case (3.2)

a&

++p+g +e2ikx
a2

E) E2p+ + p e2lkxn+' n
a,

(3.6)

(3.7)

~(k, t)= 'P J „g (o—[E,/'+fE, /')

CX o.a+E)E2 +E(E2
(p+ ) (p )'

Now the game consists in expressing a, a2 in terms of
the only three quantities appearing in (2.52):

indeed possible by repeatedly using the Riemann-Hilbert
problem (2.5), which proves the integrability of the sys-
tem (3.1) with arbitrary boundary values. We give here-
after the formulas for each possible combination of p,j. ,

+
mo (k, t)= g oE,E2 + ,'a (o ~E, ~

+ ~E—2~ )

(3.15)

mo (k, t)= — g E,E2 + + —,'a (o(E, ) +(E2) )
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(iii) In the case (3.4)

co(k, t)= —P f g[o lJ, l
(1+a+a )+lJ2l p+p

k+k„
P (k) =exp[ f—(k —iO)] + k —k„

(3.20b)

+J,J,a+P-+ J,J,aa P+-],

+-,'a+ p+p-(al J, I' —IJ, I'}], (3.16)

mo (k, t)= — g J,J2P (1—
—,'a a )

mo (k, t)= g[crJ,J2P+(I —
—,'a+a ) ——,'P (a+) J,J2

It is clear on the above set of equations that the evolu-
tion of the spectral data is quite complicated and essen-
tially nonlinear. However, we shall see in the applica-
tions that, in physical situations, these evolutions are ex-
plicitly solvable. Note that the simplest case is (3.2) and
it is explicitly integrable for external I& and I2. A partic-
ular case will be considered in Sec. IV A.

Finally, it wi11 be useful for the following to have the
evolution of the rejected energy:

——p+(a ) J,J2 E (k, t) = la+(k, t) l2 =o a+(k, t)a (k, t),
which from (3.17a)

E, =2io(mo a —mo+a ) .

(3.21)

(3.22)

The corresponding evolutions of the spectral transform
are given by Eqs. (2.48) and (2.49), namely

a,+ =2cocz+ —2im 0, u, = —2coa +2irn 0

C„+,=2'(k„+)C„+, C„,= —2'(k„)C„
(3.17a)

(3.17b)

k —k„—+

b (k) =P~(k) + k +k„*
(3.18)

which are holomorphic in +Im(k)) 0 and go to 1 as k
goes to ~. Then we introduce the function

together with k„,=0. This gives the complete solution
of the problem. The input data are the boundary values
(in either case) and the initial spectral data
[a—(k, O), C„*(0)],which can be taken to be zero for the
boundary-value case or nonzero for the initial boundary-
value case.

In the physically interesting cases, the boundary values
are such that the functions p* can be eliminated. How-
ever, in general, to close the above systems of equations,
we need to express p~ in terms of a—.This can be done
by solving (2.9) as a Riemann-Hilbert problem for p(k) as
follows (see, e.g., [1]). Let us define the functions

C. Boundary values and soliton driving

We briefly consider here the cases when the boundary
values are used to pump the solution q(x, t) out of the
vacuum q(x, O) =0 and to drive a soliton. Hence we as-
sume here that there is no continuous part in the spec-
trum [no background radiation in q (x, O)], namely

a+(k, O) =0, (3.23)

m 0 ( k, 0 }= g oI,I2, . (3.24)

m 0 ( k, 0)= — gI, I2 .
2

The evolution (3.17a) then shows that the boundary
values I&(k, t) and I2(k, t) pump the continuum: a+(k, t)
is no longer zero for t&0, due to the presence of m 0 .

Indeed, we have from (3.17)

and we check that, at t =0, any set of Eqs. (3.14), (3.15)
or (3.16) is equivalent and reads

co(k, O)= Pf— g(o. lI, l
+lI l ),

f (k) =lnb+(k), Im(k) )0,

f (k) = —lnb (k), Im(k) (0
which is analytic everywhere except on the real axis
where it stands a discontinuity. By computing f f-
we obtain a Riemann-Hilbert problem for f which solu-
tion is

t=0
=mgaI, (k, O)I2(h, O), (3.25)

Ba (h, t)
Bt

gI, (k, O)I~(k, O. ) . (3.26)

Hence the system builds up radiation from the vacuum
and it does it in a regular way as from (3.22) we have

1 +oo X—k„+
f(k)= f ln(1 —a+a )+g ln +2im —~ A, —k X+k„+

aE(k, t)
at t=0

(3.27)

and the solution to our problem is

k+k„+
P (k)=exp[f (k+iO)] + k —k„+

(3.19)

(3.20a)

Suppose now that the initial profile contains a pure N-
soliton solution and also that the boundary values are
given by (3.2). Then we get from (3.17b)

C„(t}=C„(0)exp 2f dt'co(k„+, t'), (3.28)
0

where co(k„,t) is given in (3.14). The arbitrariness of the
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I is a tool to build arbitrary C„, which produces solitons
with arbitrarily varying velocities [see, for instance, the
one-soliton formula (4.30)]. There is, however, a price to
pay: the value of a —(k, t) is nonzero for any t )0. Hence
the soliton driving always goes with a pumping of the
background radiation, that is with an energy loss. As a
consequence, although we have an explicit expression of
the reAection coefficient at all time, we cannot in general
write down an explicit solution, except maybe for some
particular choices of the set [g,I„I2I.

D. Comments

—m„+(p„~) exp[2ik„+x], (3.29)

where the functions p„— are the bound-states eigenfunc-
tions of (2.1). In that case the boundary values of a, and

a2 are simply zero. The interesting feature of this system
is to possess a pure ¹oliton arbitrarily driven. Indeed
the evolution (2.49) reads here

2' (3.30)

where the m„—(t) are arbitrary. In particular, each time
one of the m„vanishes, the corresponding soliton disap-
pears.

(1) In our approach we take the evolution of the spec-
tral transform as a starting point and then we construct
the related Lax pair. One may ask if the standard ap-
proach would allow for a similar extension of the spectral
transform method.

To follow a standard approach would mean to start
with the Lax pair (2.20) and (2.32) and try to compute the
time evolution of R (k). The method consists here in ex-
pressing the auxiliary spectral problem (2.32) as x goes to
+oo. The problem is that the function V(k) defined by
(2.33) has ill-defined limits as x~+(x if we insert the
structures (2.45) and (2.51) of the distributions ()co and
m —.

(2) There exists a simple interesting case that we do not
study here and which consists in taking

co=0, m0 =0, m„—WO .

The integrable Eq. (2.39) then becomes
N

q, = ——g m„(p„, ) exp[ 2ik„x—]
n =1

laboratory coordinates)

8(z, T) =ea, (x, t)exp[i ((o,T +k, z ) ]

+ca@(x,t)exp[i((o2T+kzz)]+0( e ) (4.1)

(4.2)

in the slow variables x =e(z +c, T) and t =E T, we have
proved in [8] that the hydrodynamic and Maxwell equa-
tions for the plasma become

qt =pa)Q2

a] =qa2, a2 =qa )

under the selection rules

(4.3)

co) =co2+0, , k, =k2+K (4.4)

(the values of the various constants will be found in [8]).
The physical asymptotic values for this model are

(4.5)

and, for q vanishing at both ends, Eq. (4.3) implies that
we have also a2~0 at + ~. Hence an initial datum

q (x,0), to be consistent, has to have a vanishing
reAection coefficient at k =Q. The resulting behavior of
the solution is somehow singular and has been described
in [8].

If, however, we consider the fact that there is a broad-
line response of the IAW to the input EMW, then (4.3) is
the sharp-line limit [i.e., as y(k) goes to 5(k)] of the sys-
tem

q, = f dk y(k)a, a2,

a] =qa2, a2 „—2ika2 =qa],
(4.6)

where k measures the frequency mismatch due to the
spreading of the resonance. This system is consistent
with the boundary values (4.5) with no more constraint,
and it is integrable with the dispersion relation (3.16)
where we set

and the electronic density n(z, T) defining the IAW q
through

n(z, T)
2

—1 =@ q(x, t)exp[i(AT+A)]+O(e ),2

na l COi

IV. APPLICATIONS J, =1, J2=0, o =+, g(k)=y(k) . (4.7)

A. Interaction of electromagnetic waves
with the ion-acoustic wave in plasmas

In a long, two-component, fIuid-type plasma irradiated
by laser light, the electromagnetic wave (EMW) interact-
ing with the ion-acoustic wave (IAW) induces a refiected
EM& which drastically reduces the penetration of the
laser. This process of stimulated emission of radiation is
the Brillouin (back) scattering (SBS) and results from the
low-frequency effect of the high-frequency EMW by
means of the ponderomotive force on the electrons which
acts as a source for the IAW [18].

Starting with the complex electric field (z and T are the

The resulting evolution (3.22) of E =~a+~ is easily
solved and we have

E(k )
E(k, O)

E (k, O)+ [1 E(k, O) ]exp[ ny—t]—(4.8)

(4.9)

The function y(k) being positive for all k (it is typically a
Gaussian centered in k =0), we have the limit

Remember that E measures the reflected energy; indeed,
we have from (3.7) and (2.8)
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E(k,t):1, (4.10) x =r, t =g, o.= —, q= —,'6',

which shows that indeed SBS causes total reflexivity of
the EMW. As far as we know, this model provides the
first analytical proof of SBS reflexivity in a purely non-
linear context.

The formula (4.8) shows, moreover, that the rapidity
with which the wave becomes totally reflected depends on
the value of the mismatch wave number k through the
distribution y(k). As this distribution is centered in
k =0 (resonance), and rapidly decreasing around this
value, it is clear that the first wave to be reflected is the
one which resonantly interacts with the sound wave, as
expected. Moreover, far from the resonance (i.e., k far
from zero), y(k) vanishes and no reflection occurs. This
behavior is qualitatively the one observed in experiments
of laser-plasma interaction [18],but, however, a quantita-
tive comparison with experiments is more questionable
due to the fact that our model runs on the infinite line.

N=/a, /' —/a, f', 1=2a,a, .
(4.13)

Ki=l, K2=0. (4.14)

For these particular values, the evolution (3.17) of the
spectral transform is easily solved and we get

E(k, t) =E(k, O)exp[ mg—(k)t], (4.15)

a+(k, t) =a (k, O)exp i 8—(k, t) —g—(k)t (4.16)

k —k '
vr 1+E(k 0)

Hence the boundary values (4.12) lead us to choose the
case (3.3) (boundary values given at —~) with, from the
above definitions,

C+(t)=C„(0)exp[ i8(k„+—, t)] . (4.18)
B. Self-induced transparency

The general context is that of the propagation of a
laser pulse in a dielectric medium. When the input elec-
tromagnetic wave has a frequency close to one transition
frequency, then the dielectric is well modeled as a two-
leve1 medium, and the incident light should be strongly
absorbed. However, McCall and Hahn [12] discovered
that, above some intensity threshold, a laser pulse of
duration much shorter than the relaxation time of the
two-level medium can propagate with a surprisingly low-
energy loss, the medium becoming (self) transparent.
This is typically a nonlinear process due to wave cou-
pling.

The theoretical approach is based on the following
slowly varying envelope-approximation limit of the gen-
eral Maxwell-Bloch system (in dimensionless form):

@»=f dkgA, ,

A, +2ikA, =AX,

N, = —
—,'(@A,+8k) .

(4.11)

The notations here are those of Lamb [2] who proved
that this system is integrable. In short, in the rotating
frame, 6 is the complex electric-field envelope, A, is the
polarization [Re(A, ) is the in-phase component, Im(A, ) is
the in-quadrature component], and N is the population
inversion. The parameter k measures the frequency
di6'erence between the applied field 8 and the resonant
frequency gap.

The boundary values associated with (4.11) are

N(k, (,r) . —1, A(k, g, r) (4.12)

and, launching a short duration laser pulse in /=0 means
that 6 (0,r) is an exponentially localized function of r of
short width. The asymptotic value of N means that, long
before the launching of the laser pulse, all atoms are in
the lower level.

The relation between this system of equations and our
system (1.1) is given by [2,3]

These formulas only apparently dier from those of [3].
Indeed, the reflection coefficient considered there is actu-
ally the quantity —a P /P in which the presence of
P+/P cancels the ln term in the pase of a [see (3.19)
with E= —a+a ).

The main feature of SIT revealed by (4.15) is that, as t
grows, that is as the pulse penetrates in the medium
(gazoo), the background radiation exponentially van-
ishes, the initial firing pulse becoming a set of solitons.

Our method allows us to go beyond these known re-
sults. Indeed we can treat, for instance, the interesting
case where, long before the pulse launching, some of the
atoms are in an excited state. In other words,

N(k, g, r) =
—1+26,(k, g), (4.19)

A(k, g,r):Ao(k, g)e '"' (4.20)

The initial average population inversion N(k, g, —co ) is
given by the real arbitrary function b, (k, g) which then
takes values between 1 (excited state) and 0 (fundamen-
tal).

The solution of such a problem is given by the evolu-
tions (3.17) in the case (3.3) with

K, (k, t) = 1, K~(k, t) =—,'Ao(k, g) ~» (4.22)

By inspection of (3.15) we see that this case is much more
complicated than the standard one and requires in partic-
ular the computation of P~ out of (3.20). Still, we can ob-
tain interesting qualitative information, starting for in-
stance with an initial profile consisting of a pure soliton,
i.e.,

a*(k,O) =0, P—(k, O)=1, (4.23)

then we can readily discover on (3.15) the presence of an
impurity at the laser input in the initial state of the sys-

To be consistent with (4.13), the functions 6 and A, have
to verify

(4.21)
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tern induces the creation of a background radiation (the
time derivative of a+—is nonzero at t =0).

C. Laser-pulse ampli6cation

argC„+(t) = ——f g(A, )t
A,

—k„+

in the SIT case, and from (4.28)

(4.32)

The physical context is the same as that in the preced-
ing text, except that the pulse is fired in a medium where
all atoms are in the upper level. Hence, the boundary
values for the Maxwell-Bloch system (4.11) are to be re-
placed with the following ones:

N(k, g, r) = 1, A(k, g, r) :0. (4.24)

%1=0, %2=1. (4.25)

The corresponding evolution (3.17) is solved and we
obtain

Consequently, by looking at (4.13), we deduce that we
still have to select the case (3.3) (boundary values at —~)
with the following values:

argC„+(t) =—f + g(A, )t-- X—k+
n

(4.33)

argC„+(t):—i f + —,'g(&)tt~+ oo A, —k+
n

——ln[1+E(k, O)]
1

in the amplifier case. Hence the corresponding solitons
would propagate at opposite Ueloci ties.

Such is not the case if we consider also the presence in
the spectrum of the radiative part (continuum). In that
case the corresponding asymptotic behaviors of the above
argC„+(t) give, respectively,

E(k, t) =E(k, O)exp[erg(k)t], (4.26) (4.34)

a (k, t)=a+(k, O)exp[i'(k, t)+ —g (k)t], (4.27)
+ o

argC„+(t) = i- —,'g(A, )t
g~+ oo -- X—k+

n

y(k, t)=P f ,'g(A—)t——. ln ', (4.28)
dA, , 1 1+E(k t)

t + —ln[1+E(k, O)]
1

C„+(t) =C„(0)exp[ip(k„+, t ) ] . (4.29) (4.35)

Of course, in this case too, the inhomogeneous factor
g (k) is the same as before, that is strictly positive for all
k. Therefore the time evolution (the long-distance g be-
havior) of the solution is quite different from the preced-
ing one: E(k, t) grows exponentially. The asymptotic be-
havior of the solution, in the absence of discrete spectrum
(no solitons in the initial pulse), has been given in [14].

We only wish to point out here that the presence of a
bit of continuous spectrum (or background radiation) is
not only always physically realized, but also necessary to
be able to propagate solitons in the right direction.

To do that we first need to write down the one-soliton
solution which is obtained by solving the integral equa-
tion (2.15) in the reduction (2.41) with cr = —,where
R (k) is given by (2.12) with a—=0 and C (0)WO for
j =n. The resulting q(x, t) is then obtained from (2.16)
and reads

—8(Imk„+) C „+(0)e~
q(x, t)=

4(Imk„+ ) +
~
C„(0)~

e ~+~
(4.30)

$=2ik„+x+argC„+(t) . (4.31)

Then the behavior of this soliton is essentially determined
by argC„+(t)=iy(k„+, t) in the amplifier case and

argC„(t) = —i8(k„,t) in the SIT case.
Now, the initial datum q(x, O) completely determines

the values of the spectral parameters C„+(0) and k„+ and
hence, the same initial datum in both cases produces
different soliton dynamics. If we take a—(k, O) to be
strictly vanishing, we have from (4.17)

Hence, apart from the fixed phase shift
+(1/m. )1 n[1 +E(,k 0)], the solitons have asymptotically
the same velocities. This is an example where the
mathematically ideal situation of a pure soliton initial
condition would 1ead to wrong conclusions about the
pulse dynamics.

D. Stimulated Raman scattering (SRS)

= —iA Ye' '~
1,$ 2 7

= —iA, Ye2, g 1

(4.36)

Here, A1 is the scaled slowly varying amplitude of the in-
cident (pump) electromagnetic wave, Az is the scaled
scattered (Stokes) electromagnetic wave, and Y is the
scaled amplitude of the scattering (acoustic) wave. The
variables denote the rest frame of the electromagnetic
waves (which propagate in the same direction) and b,x is
the mismatched wave number.

These equations model the same type of nonlinear cou-
pling that was described in Sec. IV A, but in a plasma this
process in generally masked by SBS which has a much
higher probability. En other domains like the light-pulse
propagation in a fiber, this process becomes dominant
and is at the origin of lossless pulse propagation.

Again here we consider the above equations as being

Since the works of Chu and Scott [15],considerable in-
terest has been devoted to the so-called SRS equations
[16]which read in the notations of [15]

Y,—i6Y= —i A, A2e
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the sharp-line limit y(Air)~5(hie) of the following sys-
tem:

Y, i—5Y= i—f d(bir)y(Air) A, A~e

A = —i A Ye'
1,$ 2

A = —sA Fe2, g' 1

(4.37)

—i6taI = e, a2:0.~~+ oo oo
(4.39)

The solution of (1.1) with the above boundary values will
then be obtained by choosing, for instance, the case (3.4)
with

J =e '' J=O. (4.40)

The corresponding evolution of the spectral transform
can be solved exactly and we have [remember E= ~a+ ~,
see (3.21)]

E(k, O)

[1+E (k, O)]exp[irgt] E(k,O)—(4.41)

At this point it is essential to note that g(k) is strictly
positive [g (k) =2y(Air) ]. Hence

This system is now mapped in our system (1.1) through
the following transformation:

0.= —, k = —
—,'ba, g (k) =2@(ha),

(4.38)

q=i e, a] — ]
~ Y

—i5~ a A e
—)5~ a A eih~g

The natural boundary values to associate with this sys-
tem consist of a normalized pump wave in the input zone

and no Stokes wave coming from the output
zone g= + &x . Hence (remember x = —g)

E. An integrable system which blows up in finite time

If we consider the system

Y, i5Y=i—f d(hi~)y(ha. )A, A2e

A = —sA Ye' "
l, g 2 (4.45)

initial datum. In that case the time evolution of the spec-
tral data given in [15] is correct. Moreover, this case is
not physically relevant as the spreading y(b, a) of the res-
onant band frequency can be as sharp as we want but
never a true Dirac 5 function.

(2) Our initial —boundary-value problem [more
specifically Y(g, r) given at all g and v=0] is not the one
relevant in nonlinear optics where the laboratory coordi-
nates Z, T are given by [16] g=Z, r=T —Zlc. Conse-
quently, a datum at ~=0 has no physical meaning. In
order to study in our formalism an initial —boundary-
value problem with datum at T =0 would require a com-
pletely renewed approach of the spectral problem as pro-
posed in [20] and bypasses the purpose of this paper.
However, as the boundary values have been shown to
play the central role, we think that the singular behavior
described here is representative of SRS. Moreover, there
are a number of physical situations (such as laser-plasma
interaction with a laser-frequency tune at the plasma fre-
quency, or as the nonlinear absorption of radiation in dia-
tomic chains of coupled oscillators) where the present re-
sults apply and we plan to report such studies in future
work.

(3) A very interesting approach of the system (4.36)
with damping has been recently proposed in [21]. It is
based on the group-theoretical methods for nonlinear
evolution equations which allows the authors to derive
explicit particular solutions and their time asymptotic be-
havior.

E(k t) =0,
t —++ oo

(4.42) A = —iA Ye2, g 1

which means that the radiatiue part of the spectrum
asymptotically vanishes in time. In other words, for an
arbitrary initial profile Y($,0) of the acoustic wave, the
time-asymptotic state consists of a pure soliton state. It
means in particular that the Stokes wave becomes local-
ized. Indeed, the formulas (4.38), (3.7), and (2.8) imply

~ A2(ha, g', r)~ ~~a+~ =E(ba., r) as g~ —ao, (4.43)

A2~0 as g'~ —~ . (4 44)

In other words, from (4.43) we would have to impose that
the initial acoustic-wave profile Y($,0) be such that
E(bi~, 0)=0 and hence E(Air, r)=0 from (4.41). Hence
the sharp-line case is only compatible with a pure soliton

and, as r~ ~,
~ A, (Air, —~,r)l'

We must stress now the following important points.
(1) In the sharp-line limit case (4.36), which is the case

originally studied in [15] and later in all the studies of
SRS in the spectral transform scheme [16,19], the bound-
ary values (4.39) would automatically imply for constiten-
cy of (4.36) as g~+~,

then its solution is given by the evolution (4.41) with

g (k) = —2y(b, k) . (4.46)

It is clear on (4.41) that the above condition implies that
the solution is valid up to the time when E becomes
singular, that is for t & t, with

t, = ln 1+l 1

2iry E(k 0)
(4.47)

~ Y(g, &)~ = fd(b~)y(b~)~ A2(hx, g, r)~, (4.48)

This singularity corresponds to a scattered wave A2
which blo~s up (in finite time) due to an acoustic wave Y
where energy goes to infinity. Indeed from (4.43)
E(b,ir, r) measures the amplitude of the scattered wave in
the input zone and hence, as t approaches t„ the ampli-
tude of the envelope of the scattered wave blows up.
Correspondingly, the behavior of the acoustic wave can
be evaluated by using the first conservation law related to
the system (4.45)
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which gives by means (4.43) r~r, —:f
dylan'(g,

r)I'~~ (4.51)

f dg'IY(f, r)I = f d(I)tc)y(btr)E(Ate, r) . (4.49)

Thanks to the explicit expression ($.41) of the time
dependence of E, the above quantity can be integrated
with respect to the variable v. and we obtain

f d(Ate)ln[1+E(btr, O)(1 e—r')] .
2 IT

(4.50)

For v. & 0, this expression is always positive and

and hence the energy of the acoustic wave blows up as ~
reaches the critical value.

An integrable system is shown here to develop a singu-
larity in a finite time. Such a behavior had been
discovered in nonintegrable systems like the Zakharov
equation [22] describing the interaction of Langmuir
waves with acoustic waves in plasmas, and had been in-
terpreted as being at the origin of plasma turbulence.
Consequently, we may wonder if the system (4.45) will
show a turbulent behavior for ~ & ~, where it is longer in-
tegrable.

However, the first important question is the applicabil-
ity of such a system in a real physical situation, where a
priori the medium should behave like an amplificator.
This question is now under study.
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