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Electron scattering by a potential in the presence of a strong single-mode radiation field
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We describe the collisions of an electron with a target atom in the presence of a strong, linearly polar-
ized, monochromatic, oscillating electric field in the Kramers-Henneberger gauge. We show that the re-
sulting set of coupled-channel equations, originally derived by Gavrila and Kaminski [Phys. Rev. Lett.
52, 613 (1984)], represents electron scattering by a vibrating charge initially in a highly excited state.
This formulation leads to a mechanical model of the atom-field interaction from which we can draw
better insights into the nature of the process. We solve these coupled equations numerically in the
close-coupling approximation by a combination of the linear algebraic and R-matrix propagator ap-
proaches. We specifically treat electron-proton collisions in an intense field and investigate the capture-
escape resonances over a range of intensities and frequencies. We also investigate multiphoton ioniza-
tion of atomic hydrogen in various intensity regimes. We extend our calculations for single-photon ion-
ization into the superintense regime (> 10'® W/cm?) and compare our results with results from time-

dependent solutions of the Schrédinger equation.

PACS number(s): 32.80.Rm

I. INTRODUCTION

With the development of high-power laser systems, the
behavior of atomic systems in strong electromagnetic
fields has become a subject of great interest [1]. Such
lasers rapidly ionize atoms, usually by a multiphoton ab-
sorption process, with the ejected electrons moving in the
combined field of the ions and of the laser. Besides multi-
photon ionization, electron scattering by atoms and ions
in the presence of an intense electromagnetic field has
also attracted considerable scientific interest. Simple ap-
proximations for electron scattering were introduced ear-
ly by Kroll and Watson [2] with subsequent develop-
ments bringing a myriad of approximations, mainly on
the formal level [1]. In a 1984 paper, Gavrila and Kam-
inski [3] shed considerable physical insight on the field by
using the Kramers-Henneberger (KH) transformation [4]
along with a classical representation of the electromag-
netic field. By this transformation, they reduced the
problem to the motion of an electron in a time-dependent
potential. In their approach, the classical motion of the
electron in the electromagnetic fields is first calculated,
then the original potential is described from the “point of
view” of the electron, in an accelerating frame. In this
manner the motion of the electron is transferred to that
of the center of the potential, thus giving rise to a time-
dependent force field. Interestingly, the Schrodinger
equation holds in this accelerating frame in the same
form as in the usual inertial frame [4]. After introducing
the Floquet ansatz [1] and performing a Fourier expan-
sion of the time-dependent wave function of the electron,
they [3] obtained a system of coupled partial differential
equations for the component functions. Gavrila and
Kaminski also showed’ that in the high-frequency and
high-intensity limit, this system essentially reduces to a
single-channel equation for the zeroth Fourier com-
ponent function along with perturbative expressions for
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the other terms in which the coupling potential plays the
role of a transition operator. The potential entering the
zeroth Fourier component function can easily be inter-
preted as the time-averaged potential of the oscillating
center of force. This, of course, physically means that in
the high-frequency limit the scattering electron “sees”
this average field. The Gavrila-Kaminski approach [5]
has yielded considerable physical insight; however, many
aspects of the problem still remained obscure.

The purpose of this paper is to provide an approach to
the complete physical interpretation of the Gavrila-
Kaminski theory of electron scattering by a potential in
the presence of a strong single-mode laser field and give
some numerical results for scattering by a Coulomb po-
tential and for multiphoton ionization of hydrogen. We
shall trace the physical ideas incorporated into the
Gavrila-Kaminski method back to the papers of Bloch
and Nordsieck [6], Nordsieck [7], and Pauli and Fierz [8].
These latter authors discussed the problem of infrared ra-
diation accompanying electron scattering by a potential
and used the quantized description of the electromagnetic
field. Furthermore, they used oscillator wave functions
with spatial coordinates for the description of the quan-
tized states of the electromagnetic field. For further
reference, we shall refer to these quantized states of the
electromagnetic field as quantum-mechanical states of
“ethereal oscillators” [9]. Their approach represented a
mechanical model for the radiation field and the intro-
duction of approximation schemes ‘“‘quite analogous to
what is done in the theory of molecules” [7]. In this arti-
cle, first we shall apply the Bloch-Nordsieck method to
electron scattering by a potential in the presence of a
strong, linearly polarized single-mode laser field. We
shall introduce the “quantized-field” version of the
Kramers-Henneberger transformation, following Pauli
and Fierz [8], which, in turn, was based on an earlier
transformation of Bloch and Nordsieck [6]. Introducing

3240 ©1993 The American Physical Society



47 ELECTRON SCATTERING BY A POTENTIAL IN THE . . . 3241

the close-coupling expansion for the mechanical model
and taking the ‘““quasiclassical” limit, in which the states
of the “‘ethereal oscillators” are described by large ‘“‘vi-
brational” quantum numbers, we obtain the Gavrila-
Kaminski system of equations. This lends itself to a
physical interpretation of the channel functions and cou-
pling potentials of the Gavrila-Kaminski system as well
as opens up possibilities for the introduction of alterna-
tive approximation schemes. The above procedure there-
fore provides a mechanical model for electron scattering
by a potential in the presence of a strong, single-mode
laser field. We conclude with a section on numerical re-
sults for electron scattering by a Coulomb potential in the
presence of a strong, linearly polarized monochromatic
radiation field [10]. As in the case of a circularly polar-
ized radiation field [11], we obtain capture-escape reso-
nances. We also present results of calculations for the
multiphoton ionization (MPI) of atomic hydrogen and
compare them with results obtained by using numerous
other techniques. These techniques include other formu-
lations that employ the Floquet ansatz [12—17] as well as
various numerical techniques for solving the time-
dependent Schrodinger equation [18—-23].

II. FORMALISM

A. Ethereal oscillators

The representation of the electromagnetic field as a sys-
tem of oscillators originates from Lord Rayleigh [24],
who showed that this representation, along with the
equipartition theorem, leads immediately to what is now
called the Rayleigh-Jeans radiation law. The quantiza-
tion of these ethereal oscillators was first suggested by
Ehrenfest [25] and was actually employed by Debye [26]
to obtain Planck’s radiation law. In the present work, we
apply the ethereal-oscillator approach [9] as formulated
by Bloch and Nordsieck [6], Pauli and Fierz [8], and oth-
ers [27]. We shall show that this representation of the ra-
diation field is advantageous in developing approximation
schemes for electron scattering by atoms and ions in the
presence of a laser field. While Rosenberg and collabora-
tors [28] have employed the quantized electromagnetic
field in the photon-number representation of creation and
annihilation operators, we believe that we might gain in
physical insight and practicability if we return to the
original approach of Bloch and Nordsieck [6], who used
the ethereal-oscillator representations of the electromag-
netic field along with the spatial coordinates of these oscil-
lators [27].

We shall adopt the notation of Bloch and Nordsieck,
who introduced the vector-potential operator by the
definition

A=2c(mhi/Q)? T w; /%, P, cos(k,,T)
s, A

+Qqsin(k,,r)], (1)

where () is the quantization volume, #=h /27 with h be-
ing Planck’s constant, ¢ is the speed of light, the summa-
tion index s characterizes the direction and circular fre-
quency @, of the various waves with the propagation vec-

tor k,, A refers to their state of polarization, and €, is a
unit vector in the direction of polarization. The dynami-
cal variables P, and Q;, are related to the photon annihi-
lation and creation operators a (A,k;) and aT(k,ks,) ac-
cording to

27V P, +iQ ) =a(Ak,) , (2a)
272, —iQ,)=a'(A,k,) (2b)
and obey the commutation laws

[Ps}»’ Qs'}d 1=— isss’S)»)\.' ’
(3)

[P Poar 1= [ Qo @2 ] =0 .

We shall use the nonrelativistic approximation, follow-
ing Nordsieck [7], and take for the total Hamiltonian of
the electron plus electromagnetic field (radiation field
plus electrostatic field) the form

2

1

ﬂ:—zm +V(r)+L S fio,[PE+034],
s,A

e
—<A
P c

4)

with m and e referring to the mass and charge of the elec-
tron, respectively. We then write A in the form

% A= 3 a;[P,cos(k,,r)+Q,,sin(k,,r)] , (5)
s,A

with
aSA=Ze(Wﬁ/QwS )I/ZESA . (6)

We assume that within the collision region cos(k,,r)
and sin(k,,r) do not change appreciably [29]. In addi-
tion, we introduce the long wavelength or dipole approxi-
mation by taking r equal to =zero, which gives
cos(k,,r)=1 and sin(k,,r)=0. We note that according
to Gavrila and Kaminski [3] the dipole approximation is
justified even for Coulombic potentials for visible or ul-
traviolet laser fields. In the dipole approximation we
then obtain from Eq. (5)

% A= 2 as}»PsA )]
s,A

and from Eq. (4) we then have

1 - 1
H o ? T, S,Ek(p,ask)PM-i—V(r)
+%2ﬁwsk[Pszx +Q341. (8)
S,A

In the dipole approximation, the term containing A2 can
be ignored [30], giving

1 1
= Epz_—’;{ % (p7as)\.)PS}»+ V(r)
+32 fiw [Ph+0Q4] . 9)
sA

We now introduce a canonical transformation follow-
ing Pauli and Fierz [8],
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__ I__l_ —1
r=r m S%wsh astsA ’
P=p’,
’ Y 1
QSA:QSA ’ Ps?»_ sk+ mﬁwsk(ask’p) . (10)

Using Eq. (10) in Eq. (9), we obtain
ﬂ=—1—p’2+ vir—-L S 0;:'a;0;
m m < sA GsAXsA

+1 3 fiwg[Ph+ Q7]

s, A
1 (ask’p,)z
+
2m? % A, 1y

The last term on the right-hand side of Eq. (11) is propor-
tional to p’?> and therefore signifies an electron-mass re-
normalization term [4,8]. If we assume that this effect is
already included in m, then we can ignore this term. As
a result, we obtain the following form for our Hamiltoni-
an:

1 2 ’ 1 -1 ’
H 'm P r m %wsk asAst
+1 3 fiwg[PE+03] . (12)
s,A

B. Linearly polarized single-mode laser field

Up to this point, we have considered all components of
the radiation field, including the empty modes, to have
been included in the Hamiltonian. In the following, we
shall follow Rosenberg and co-workers [28], who as-
sumed that the electron self-energy effects are already in-
corporated into the mass of the electron and that in Eq.
(12) the s,A indices refer to the external radiation field
(the laser field) only. First we shall consider a single-
mode linearly polarized laser field such that o, — o,
Q. —Q’, and a;; —a in Eq. (12) and omit the summation
sign. We obtain

7{=2~:n—p'2+ y +l0[P?4+Q72] . (13)

1
r'———aQ’
maw

If ¥=0 in Eq. (13), then the nonrelativistic Volkov state
[31] is obtained as a solution of the Schrédinger equation

FyVo(r', Q') =E ¥y (r',Q') , (14)
where
1 ’ ’ ’
7{0=Ep2+%ha)[P2+Q2]. (15)

The ¥, function is obtained immediately in the form
Wo(r,Q")=e/App (Q'), (16)

where £, (Q) is a Hermite function such that
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2
n

— 2 —
10 +Q°h,=2n+1)h, , (17a)
with the normalization
[rEQ@h,(Q1d@=1. (17b)
The energy eigenvalue is obtained in the form
2
Ey=+-—+[n+ 1w, (18)

2m

where p =|p|. Returning to the original coordinates r
and Q by Eq. (10), we obtain

\I/o(r’Q)zei[(a,p)/mﬁw]Qe(i/ﬁ)(p,r)hn(Q) , (19)

an extremely simple form for the Volkov state [31].

Consequently, we plan to treat scattering with the
Hamiltonian given by Eq. (13) and solve the Schrodinger
equation

L 2 r__ 1 ’ 1 ”2 12 —
>m P +Vir ma)aQ + o[ P*+Q'°] | YV=EV¥

(20)
in the energy continuum. We point out immediately that
Eq. (20) has a close similarity to the Schrodinger equation
of a particle scattering by-a vibrator, which has been
studied extensively in conjunction with electron-molecule
scattering [32]. Methods utilized for such collisional stud-
ies are readily applicable to the present case. One of the
most powerful of these methods is the close-coupling ap-
proach [32], in which the wave function is expanded in
terms of “‘target states.” In our case, the ethereal oscilla-
tor plays the role of the target, yielding a close-coupling
expansion,

Y(r,Q')= 3 F,(r')h,(Q). 21
n=0

Substituting Eq. (21) into Eq. (20), we obtain (omitting
the primes from the variables temporarily)

hZ

VOF, (1)+ 3 Vo (DF,(t)+ o[ m +LF,, (c)
2m n=0

=EF,(r), (22)
where

1
mo

V(0= [h3(QV |t1———aQ |h,(Q)dQ (23)

is the coupling potential between channels. The question
of practical importance is how many of these channels
must be included to obtain numerically accurate results.
As a first step, let us assume that the laser field is relative-
ly weak (e.g., assume I <10!! W/cm?) and that the fre-
quency is high to the extent that the average value of
(1/mw)aQ is small compared to the range of the poten-
tial ¥ (r). In this case, we invoke a Taylor-series expan-
sion for the interaction potential in the form [4]

|4

r——aQ |~ V(r)— ——(aQ, V(1)) , (24)
maw maow
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which gives for the coupling potential

Vo (£) = V(£)8,,, — ——(a, V(1))
maw

X [ h%(Q)0h,(Q)dQ

_ 1 m—+1 o

—V(r)snm_;;(aﬁvl(r)) 2 8n,m~|—1
+[m/21'%, .,

(25)

We immediately observe that the mth channel is cou-
pled only to the (m +1)th and (m —1)th channels, and
thus we have three coupled channels only. By including
higher-order terms into the Taylor-series expansion in
Eq. (24), we obtain a coupling potential with nonvanish-
ing matrix elements of Q% Q% ..., which leads the
coupling of the mth channel to the
m—2,m+2,m —3,m +3,. .. channels.

C. Semiclassical limit

In the preceding section, we have shown that the prob-
lem of electron scattering by a potential in the presence
of a single-mode linearly polarized monochromatic laser
field reduces to that of scattering with the Hamiltonian
given by Eq. (13). Our principal task remains the solu-
tion of the time-independent Schrdodinger equation (20)
with the boundary conditions that for r'— oo, ¥ reduces
to linear combinations of solutions of ¥, given by Eq.
(14), that can be written in the form of Eq. (16). As sug-
gested in the preceding section, one possible method is
the expansion of ¥ in terms of harmonic oscillator states,
Eq. (21), which gives rise to a coupled system of partial
differential equations, Eq. (22).

In regimes of interest to us here the laser field will be
strong, and therefore the n,m values that enter Egs. (22)
and (23) also will be large [33]. For these high n,m quan-
tum numbers, we can safely use the quasiclassical (or
WKB) approximation for the 4,(Q) functions [34] in the
form

——— 1 (4] , , T
h,(Q)=~V(2/7) VR lek,,(Q do'—- |, 26

n

with  k,(Q)=[2¢,—Q%]'*=[2n +1—Q?]'/?,
+1, and Q, is one of the classical turning points.
In order to obtain the coupled-channel system given by
Eq. (22) under semiclassical conditions, we must calculate
the coupling potential V,,, (r) under these assumptions.
Migdal [34] showed that a matrix element of the form

U= [~ h(QU(QH, (Q)dQ , @7

where U(Q) is an arbitrary function of Q, 4, (Q) is given
by Eq. (26), and (n —m)/n <<1, can be written as

_2 27(n —m)e
n==[UQ, (@eos T dg . (28)

€,=2n

U

n

where 7 is defined by
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Q2 1
2 k,(Q)
In Eq. (29), Q, and Q, are the classical turning points

and the Q,(¢) function in Eq. (28) is the inverse of the
@,(Q) function, which is defined by the integral

=2 dQ . (29)

_re _do’

Q)= — 30)
¢n Q le kn(Ql) (
Since the number of channels that couple are relatively
small we can safely assume that the condition

(n —m)/n <<1 holds. In our case we have 7=2 and

—arcsin | —2— + T
@,(Q)=arcsin Ve, + 5 (31)
Thus we obtain
Q,(@)=V2e,sin[@p—(7/2)]=V2¢,cosg , (32)

which gives, via Eq. (28),

1 pm ~
=— | U|V —
Ui wfo [ 26,,cos<p]cos[(n m)plde . (33)

Using Eq. (34) for the coupling potential V,,, (r), we ob-
tain, when the WKB approximation holds,

_1pn
V,,,,,(r)zV,,’,V,,"Bm:;fo 14

1
r——aVv2
o aV2€,cosp

Xcos[(n —m)plde . (34)

We further assume that in the semiclassical description
the electromagnetic field is characterized by the vector
potential

A= Agsinot , (35)

with the electric field given by E(z)=E,cos(w?) and the
magnitude or strength by E,=| 4,0 /c|. We employ the

usual relationship between the intensity and field
strength: I (W/cm?)=3.5X10'E3 (a.u.). The time-
averaged energy density has the form

— 1 Cl)2 2

i=2= 7 Aj, (36)
or, in the quantum-field description,

__ nfw

7 q (37

where 7 is the average number of photons in the quanti-
zation volume ().

Equating the two expressions we find that the argu-
ment of Vin Eq. (34) becomes

e
—— A, . 38
T Acos (38)

If we introduce the ¢ =wt notation, then we can write
Eq. (34) as

Vam 2

-

)= % foﬁ/mV(r—~a(t))cos[(n —m)owt ]dt

=V,_n(apr) , (39)

where we define a(t) by the equation
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a()=—2— A coswt =agcosot , (40)
mac
with
e
= A, . 41
a, moc 0 ( )

We readily observe that a(t) is exactly the classical ra-
dius vector of the electron moving in the radiation field.
We now assume that the external field is described classi-
cally by a vector potential given in Eq. (35). Then, ac-

cording to Eq. (37), we can associate a well-defined #

value with the field and write ¥,’XB(r) in the form of Eq.
(39). If we assume that both m and n are close to 7
[(m—n)/fi<<1, (n —f)/7A << 1], then we can ignore in
a, the difference between n, m, and 7. Under these as-
sumptions, the coupled-channel equations given by Eq.
(22) can be written as

#i

2
o —VF, 1)+ 3 V,_,.(ayr)F,(r)
n(=mn)

+1fiw(2m +1)F, (r)=EF, (r) .
with m~#A and n=n . (42)

This system of coupled equations can be related im-
mediately to those obtained by Gavrila and Kaminski
[3,5], which have the form

hZ

_—2_V+Vo(a0, ) (E +nﬁa)) 1,[’,,(1‘)
=— 2 Vy—mlago, (r), (43a)
m(=—o)

with V,(ag,r) defined by the equation
V,,(ao,r)=(w/2h)f V(r—aycoswt )cos(nwt)dt ,  (43b)
where ,(r) describes “‘elastic scattering,” while the
J

,hZ
———V?*F,(r)—[E —#io(i+1)]F,(r)+ Vy(agr)

2m

where E of Eq. (42) becomes E for clarity.
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¥, (r) functions with n70 describe bremsstrahlung and
inverse bremsstrahlung processes. The integration limits
extend from —w/7 to w/m. The following boundary
condition are prescribed for the ¢, (r) functions [3]:

Yo(r) ——exp (p,r)+7/01né[Pr_(P,l')]
fo(©,plexp | — pr—yoan%
+ p , (44a)
fu(@.@exp |+ |pr—y,in 22
P, (r) p , (44b)
where
2
(i 45)
h
P, is defined by the equation
p2
2n”1 =E +ntio (p,>0), (46)

and z refers to the residual nuclear charge of our atom (or
ion), as assumed that

Z€2

Vir) — — . 47)
r— o r
For a short-range potential, of course, z=0.

As mentioned in the Introduction, while the calcula-
tional scheme defined by Egs. (43) and (44) is well defined,
the exact physical meaning of the ¥,(r) functions and
V,(ayr) coupling potentials is not obvious. We can,
however, get some physical insight into these quantities
and into the whole problem if we compare Eq. (43) with
Eq. (42), which we write here in the form

— 3 V,_iapn)F;(r), (48)
Jj (D)

The coupling and channel potentials in Egs. (43) and (48) are defined exactly the same way. We only need the equa-

tion to satisfy
E—#oli+1]=E +nto .

This can be achieved if we choose i and j in the form
i=n—n and j=n—m

Then we obtain, from Eq. (48),

2
H vr (1)~ [E—fo(n

o — +3H)+nfwlF,;

This shows that, if we make the identification
F,_ (r)=,(r) (52)

and

(r)+ Vo(ao,r)F_

(49)
(50)
()= — 2 V, _m(agr nF._ (r). (51)
(#n)
[
E=E—fo[a+1], (53)
then Eq. (51) becomes identical to Eq. (43a). Thus the

close-coupling equations associated with the Hamiltonian
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given by Eq. (13) in the semiclassical limit give the
Gavrila-Kaminski system of equations. We have to
remember that originally Eq. (51) was obtained for large
values and i and j, whereas Eq. (44) is valid for small
values of n and m; thus 7 should be a large number.

Equation (52) gives the physical interpretation of v, (r)
as the channel function associated with the quantum num-
ber i —n of the ethereal oscillator. Since ,(r) describes
elastic scattering, this means that initially the ethereal os-
cillator was in the 7ith excited state (7 >>1) and, after in-
teracting with the incident electron, it gained or lost en-
ergy, with F._ (r) corresponding to the losing of nfiw
energy (the electron gaining nfiw energy). In this con-
text, the the physical significance of the V,(ag,r) poten-
tial becomes clear, since via Eq. (50) we have

Vn_m(ao,r)=l7j_,-(a0,r) ; (54)

obviously V, _,. (aqr) signifies the coupling potential
connecting the i=#n—n and j=#7—m channels for
n>>1, and i <<7, j <<#A. Thus we have achieved a clear
physical interpretation of the i, (r) Fourier component
functions and the ¥, (a,r) potentials.

In order to examine the dynamics of an electron in an
oscillating electric field in the presence of an atomic po-
tential, we must solve Eq. (43) subject to the appropriate
boundary conditions [Eqs. (44)—-(45)]. To make this exer-
cise more tractable, we invoke a single-center expansion
of the spatial function as

G (0=r"" 3 fo (MY, 0 @), (55)
I ,m

with T representing the angular coordinates (6,¢), and ©
the angle between a; and r. Substituting Eq. (55) into
(43), multiplying through by

Y, .(D)*, (56)

In m,

and integrating over the angle, we derive a set of coupled
second-order differential equations

42 LAl.+1)

2 > —k,%l frl(r):zUrlr(r)fr(r) ) (57)
dr r T
where k2=(E +no)/#,
Upr(r== 2 1/zcu M| m,0m,)
rr\r)’= ﬁz < 21n,+1 nMyim,Um,
X C(1,Al,/|000)0 7" (r) , (58)
and
wns oy 2A+1) pm
vy (r)——fr—f0 dv Py (v)
1 Victagu (T, _,(u)
x [_ du T , (59)

with u =cos(wt), v=cos(©), and T, (u) [P,(v)] is the
Chebyshev [Legendre] polynomial of order k. The
Clebsch-Gordan coefficients are given by
C(l,1,1;lm;m,my), and the channels I"=(n,l,) are la-

beled by a Fourier-component quantum number z and its
associated angular momentum quantum number /,. We
extract the scattering information by matching the
asymptotic form of these radial components to the usual
K-matrix conditions, from which we also calculate the S
and T matrices.

The coupled-channel equations (57) have several im-
portant properties: (1) they are block-diagonal in the az-
imuthal quantum number (m, =m,.=m); (2) only chan-
nels of the same parity [(n +1,) even or odd] couple; and
(3) they display a close resemblance to those for electron
scattering from a linear ionic diatomic molecule. The
first property implies that we may solve the coupled
equations independently for each value of m although the
Fourier (n) and partial wave (/,,) components still couple.
The second condition simplifies the form of the structure
of the equations by forcing certain matrix elements to
vanish. Finally, the last observation has allowed us to
draw upon the vast lore of electron-molecule computa-
tions to bring to bear this knowledge upon the intense
field interaction. We may carry this analogy between the
scattering equations in the KH gauge and those for
electron-molecule collisions further. The internuclear
distance R between molecular atoms closely corresponds
to the displacement a that represents the separation of
effective ““charges.” The more extended this separation,
the larger the basis needed to span the region. One fur-
ther point should be delineated: we recall that the dis-
placement depends on the ratio of the field strength to
the square of the frequency. Therefore, for a fixed a,, we
find that the higher the frequency w, the larger the corre-
sponding intensity that can be handled. We have treated
values of a as large as 8.0 bohrs. This constraint would
primarily affect low-frequency, high-intensity cases.

D. Computational procedures

For either scattering or ionization, we must numerical-
ly solve Eq. (57) subject to the appropriate boundary con-
ditions. To effect this solution, we apply the linear alge-
braic (LA) method. Since the intricacies of this approach
have been discussed elsewhere [35], we present only a
brief overview of the technique. We first convert Eq. (57)
to a system of coupled integral equations by the usual
prescriptions. We in turn employ an R-matrix strategy
and divide the radial space into two regions. In the inner
region (r <a), where the coupling may be strong and, for
more complicated species, exchange and correlation
effects could be important, we invoke a pure LA ap-
proach. By placing the integrals and wave functions on a
discrete radial quadrature mesh [0—a], we transform the
coupled equations into a system of algebraic ones. We
solve this system by standard linear systems techniques,
which produce a solution on a discrete mesh in the inner
region. We select this mesh of n, points to reflect the
strength of the potential. For example, the potential in
Eq. (59) has a distinct singularity at r =a,; we therefore
concentrate the preponderance of quadrature points
within a zone around a,. In the outer region (r >a), in
which the coupling becomes weak and usually multipolar
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in form, we employ an R-matrix propagator approach
[36] by which the solution at » =a is extended into the
asymptotic region. We determine the scattering quanti-
ties, such as the T matrix, by matching the propagated
solution to the proper asymptotic forms [Egs. (44a) and
(44b)]. From the scattering matrix, we calculate the cross
section or determine the eigenphases. For resonances, we
fit [37] the eigenphase sum as a function of electron ener-
gy to a Breit-Wigner expression in order to extract the
resonance position and width. In the case of ionization,
we can in many cases relate the width directly to the rate.

In order to construct a solution, we must make the
close-coupling (CC) approximation. We labeled the wave
function and thus the matrix elements by channels (n,/, ),
which are identified by a particular Fourier component n
and a specific partial wave /,. The sum over these chan-
nels in Eq. (57) is infinite; however, in order to obtain a
realistic solution, we truncate this sum at some finite
number of channels n, =n n;. We designate the number
of Fourier components included by n, with the index n
running from —(n,—1)/2 to +(n;—1)/2 in integer
units; similarly, we label the number of partial waves in-
cluded in each Fourier component by n;. The actual max-
imum value of [/, included, of course, depends on the
symmetry studied. We then systematically increase the
number of channels #, until the scattering quantities con-
verge to within a prescribed tolerance. In all cases
presented, we have assiduously checked the convergence
of the CC expansion, determining quantities to within
better than 5%. In the KH gauge, we have found that a
symmetric choice of the Fourier components about n =0
produces the best convergence properties. Other gauges
may require different strategies [17].

The programs have been checked in several ways.
First, for the elastic scattering (n —n'=0), we have
closed all channels and solved for the bound eigenstates
of U,,. For a selection of values of a, we obtain excel-
lent agreement with the results of other investigators [5]
for the ground o, state. Second, we have employed the
e +H," paradigm to examine quantities with earlier
molecular-collision programs [35].

III. RESULTS AND DISCUSSION

A. Electron-proton scattering in a field

We illustrate the scattering of an electron by a target
atom in an electromagnetic field by investigating certain
resonance effects. In the absence of an external field, the
cross section for an electron-proton collision displays no
structure and monotonically declines with increasing en-
ergy. However, when an oscillating electric field is ap-
plied, we immediately observe pronounced resonance
features in the scattering quantities. These resonances,
termed capture-escape, arise from the exchange of virtual
photons with the electron-proton system. For particular
energies of the electron, the emission of a certain number
of photons will place the resulting energy near a bound
state of the compound hydrogen atom system. This par-
ticularly favorable configuration insures that the electron
remains trapped in this state until absorbing an appropri-
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ate number of photons to return to the continuum. Cal-
culations have predicted these resonances for both circu-
larly [11] and linearly [10] polarized light. In Fig. 1, we
display a representative example for e ~+p ™ scattering
for a field of 0.0207 a.u. (1.5X 10'> W/cm?) and frequen-
cy w=0.27 a.u. (7.35 eV) by plotting the magnitude of
the T matrix as a function of the electron energy for the
elastic channel [(0,2)—(0,2)]. We notice the distinct
Fano profiles indicative of such compound resonance
states. The lowest resonance arises from the virtual emis-
sion of two photons into the ground (1s) state of H with
the subsequent absorption of the same number of pho-
tons. The higher-energy features correspond to single-
photon exchanges with the exited states of H (n =2, 3, 4,
and 5). The two-photon resonance has predominantly d-
wave (/ =2) character, while the lowest single-photon ex-
ample displays mainly s-wave qualities, upholding the
basic selection rules of a perturbative treatment. Of
course, since we operate in a coupled-channel mode, oth-
er combinations of photon exchanges can also occur, giv-
ing rise to bremsstrahlung or inverse bremsstrahlung pro-
cesses.

To gain a better insight into this mechanism, we focus
on the lowest-energy resonance in Fig. 1. We examine
the behavior of its width and position as a function of in-
tensity (field strength) and frequency. In Fig. 2(a) we
display the resonance position as a function of field
strength for a fixed frequency of 0.27 a.u. We performed
the calculations for 15 Fourier components (n,=15), 5
partial waves per component (n;=5), and 51 points
(n,=51) on a Gauss-Legendre quadrature mesh in the
LA region (0—a). Since the box radius varies with the
displacement, we usually choose a to lie within 1.0 bohr
of a;. We then propagate the resulting solutions out to
500 bohrs. As the strength increases, the position moves
to lower energies. On the other hand, the width, present-
ed in Fig. 2(b), steadily increases with rising intensity.
The position clearly tends toward a limit at zero energy.
We can better understand this behavior by examining a
simple approximate formula for the resonance energy:

Eres:nw_‘8b|_Ej ’ (60)

where E|, is the field strength, o is the frequency of the

002 006 0.0 0.14 0.18 022 026
E(a.u.)

FIG. 1. Capture-escape resonances for e ~+p ™" collisions at
©=0.27 a.u. and a field strength of E,=0.027 a.u.
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FIG. 2. (a) Position as a function of field strength for the
two-photon capture-escape resonance to H (1s) for ¥=0.27 a.u.
(b) Width as a function of field strength for the two-photon
capture-escape resonance to H (1s) for «=0.27 a.u.

field, and E; =EJ /(4e?), the famous quiver energy. For
fixed n and o, as the intensity increases the resonance po-
sition moves to lower energies. We eventually reach a
point at which the energy descends into a bound regime
and the resonance disappears. To produce a new reso-
nant effect, we must increase the number of photons.
Such compound resonances commonly occur in electron
scattering from molecules, for example, e ~+H," col-
lisions [38], in which the internuclear separation R plays
the analogous role to the displacement @, The reso-
nances correspond to doubly excited states of the H, sys-
tem. As R increases, the width broadens and the energy
decreases, finally crossing the target H2+ curve and
becoming a fully bound system. Since we fixed w, the in-
crease in intensity simply raises «, giving comparable be-
havior. Another interesting effect arises from holding the
intensity fixed (E;,=0.808 a.u.) and varying the frequen-
cy . The behavior of the position and width of the
lowest-energy resonance is given in Figs. 3(a) and 3(b), re-
spectively. With growing frequency, the position in-
creases and the width declines, seemingly opposite to the
effect discussed above. However, our simple formula pre-
dicts the trend adequately. For rising frequency, the
value of the leading term increases and the quiver term
grows smaller, yielding a correspondingly ascending reso-
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FIG. 3. (a) Position as a function of frequency for the two-
photon capture-escape resonance to H (1s) for E,=0.0808 a.u.
(b) Width as a function of frequency for the two-photon
capture-escape resonance to H (1s) for £, =0.0808 a.u.

nant position. These trends seem to hold for a wide
variety of the capture-escape resonances, although
channel-coupling and interference effects can alter this
simple picture. In fact, the play of the resonant poles
over the complex plane forms a complicated process that
must be treated with great care, especially in those in-
stances where the resonance position moves through a
Rydberg series converging on an underlying Fourier
component threshold [39]. As we observe, such reso-
nance phenomena have drastic effects on the scattering
quantities not only in the immediate neighborhood of the
position but also accumulatively along a Rydberg series,
as occurs in standard electron-ion collisions [40].

B. Photoioinization of hydrogen

In the absence of an oscillating electric field, a bound
state of the H atom has zero width and a correspondingly
infinite lifetime. However, once the field has been ap-
plied, the system has the possibility of ionizing, giving the
previously bound level a finite width or lifetime. This
lifetime in turn relates, in many cases, directly to the rate
at which the system ionizes. We can therefore perform a
scattering calculation at quasienergies near the bound
level and produce an eigenphase sum that has a distinct
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resonance character. By fitting this to a Breit-Wigner
form, we extract a width and a shift, and ultimately a
rate. In Table I we compare our results with other calcu-
lations for the three-photon ionization of the 1s state of H
by a field at various intensities and a frequency of 0.2 a.u.
(5.44 eV). We have performed our calculations for a 75-
channel system (n,=15, n;=5, n,=60). The results of
Chu and Cooper [12] and Shakeshaft and Tang [13] both
invoke the Floquet ansatz but employ different gauges
and calculational procedures than ours. The other two
results of Kulander [18] and of Pont, Proulx, and Shake-
shaft [22] (PPS) come from the direct solution of the
time-dependent (TD) Schrodinger equation. At the lower
intensity, we obtain very good agreement with the other
Floquet approaches as well as one of the TD results
(PPS). On the other hand, at the higher field strength we
have better accord with the TD solutions of Kulander.
Still, all the results lie within 20% of each other, which,
given the different procedures, is probably not unreason-
able.

We also examine the case of interaction of H with an
E =5 ¢V (0=0.183 75 a.u.) photon, which again requires
a three-step ionization process. In Fig. 4 we compare our
results as a function of intensity with those of other prac-
titioners. The agreement between the various techniques
is excellent below about 2.0X 10 W/cm?, where we
remain still fairly much in the perturbative realm. The
region between 2.0X 10 and 4.0X 10'* W/cm? has a
complex, intricate structure [21], which we shall not ex-
amine in any detail. We have simply calculated a few
points in the regime and made a smooth transition among
them. At the higher intensities, we obtain less favorable
agreement. Our results lie between the other two Floquet
treatments of Chu and Cooper and of Pindzola and Do6rr
(Sturmian-Floquet results). At a field of 0.143 a.u.
(ay=4.23 bohrs), we differ by about 20% from the latter
authors, who in turn agree well with the R-matrix calcu-
lation [17,41]. We obtain a width of 2.05X107? a.u.
(8.5 10 s~1) and a shift of —0.1655 a.u., while the R-
matrix calculations [17,41] find 1.7X 10" 2 and —0.197
a.u., respectively. The R-matrix width agrees more close-
ly with the Sturmain-Floquet results (1.67X 10~ 2 a.u.) of
Pindzola and Dorr [21]. We have performed numerous
cross checks with the R-matrix calculations, but as yet
have not detected the source of the difference. Many can-
didates suggest themselves. First, numerical problems
seem unlikely as both cases appear to have reached a high
level of convergence in all the relevant parameters. We
have made an extensive convergence check with ng,n,,

TABLE I. Comparison of the photoionization rates for H(1s)
at ©=0.20 a.u. The rates and intensities (I) are in units of 10'*
s~! and 10" W/cm?, respectively. The symbols CC, ST, PPS,
and K refer to Refs. [12], [13], [22], and [18], respectively.

Rates
I CC ST PPS K Present
1.75 2.89 2.73 2.7 4.0 2.86
3.94 5.64 6.0 7.0 6.92
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FIG. 4. Photoionization rate of H (1s) as a function of inten-
sity at @=0.183 75 a.u. Solid line, present results; dashed line,
LaGattuta [20]; circles, Chu and Cooper [12]; dot-dashed line,
Pindzola and Dorr [21].

and n, as large as 19, 6, and 70, respectively, and find
that the resonance parameters change very little once we
include at least 15 states. We selected a standard mesh of
61 points distributed as 10, 15, 10, 20, and 5 in regions
[0,1.0], [1.0,2.75], [2.75,3.8], [3.8,4.8], and [4.8,6.0], re-
spectively. We employed a Gauss-Legendre quadrature
and placed an extra point of zero weight at a =6 to give
the proper matching conditions. In order to examine fur-
ther this point, we employed an entirely independent
computational scheme and computer programs from the
LA. We implemented an integral equations propagation
(IEP) solution to Eq. (57) based on the Sams-Kouri ap-
proach [42]. We performed extensive convergence tests
on the mesh since we use the IEP technique to span the
entire radial region from » =0 to the asymptotic match-
ing radius. For a given number of channels, we find ex-
cellent agreement between the LA and IEP results, rein-
forcing our contention that we have accurately solved the
close-coupling equations in the KH gauge. Second, some
effect from the gauge utilized may be evincing itself. Our
entire calculation remains in the KH gauge from origin
to asymptotic regime; the R-matrix procedure employs a
gauge transformation from the velocity to the KH gauge.
In theory, these two representations should yield the
same results, but in practice subtle differences may arise.
Third, the methods for extracting the resonance parame-
ters differ: we employ a Breit-Wigner fitting to the 7 ma-
trix while the R-matrix calculation operates in terms of
the Siegert states. Again, these two formulations should
yield identical results for well-isolated resonant poles.
From calculations with a fitting program [37] that han-
dles overlapping resonances, we feel confident in treating
this resonance as isolated, although another resonance
lies reasonable close. The final diagnosis may involve a
combination of all three of these conditions. We should
reiterate, however, that our results at higher intensities
are bracketed by the two other Floquet approaches and
that differences remain at the 20% level. At these inten-
sities, we have passed into a very complicated region in
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which the process we investigate has changed from a
three- to a four-photon mechanism and in which the reso-
nance we follow passes through the Rydberg levels un-
derlying the n =4 state.

Another interesting regime to explore involves superin-
tense (I > 10! W/cm?) fields [43]. We enter the realm of
the famous stabilization effects by which the ionization
rate becomes ‘“‘suppressed” as the field strength rises.
The electron in effect becomes trapped by the oscillating
field. As the field increases, the electron becomes
confined in regions away from the charge center, thereby
decreasing the ionization efficiency since the region
around the nucleus is most effective in propelling the
electron into the continuum. This phenomenon was pre-
dicted by TD calculations in both one and three- dimen-
sions [19,44]. We investigate single-photon ionization
(w=1.0 a.u. fiw=27.2 eV) for these very intense fields
and display our calculations in Fig. 5 as a function of in-
tensity. We have excellent agreement over the whole
range with Dorr et al. [15], who also employed a Floquet
approach. We have pushed the calculations to even
larger field strengths. We observe that as the field
strength increases, we reach a maximum in the ionization
rate at around 5X10'® W/cm?. As we further increase
the intensity, the rate begins to fall, and a very interesting
result ensures: the agreement with the TD solutions of
Kulander et al. [19], which is not particularly good at
the maximum, becomes much better. The origin of this
effect may lie in the manner of the TD calculations. For
the more intense case, the ramping prescriptions are
selected specifically to obtain localization, which gives a
closer correspondence to the model we treat in the KH
gauge. Also, around 7 X 10'® W/cm?, an additional pho-
ton is required to ionize the system due to the strength of
the quiver term. We have seen at lower intensities that
this transition region is quite complicated and the agree-
ment among methods becomes poorer. By the very high
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FIG. 5. Photoionization rate of H (1s) as a function of inten-
sity for =1.0 a.u. Solid line, present results, cross Dorr et al.
[15]; circles, Kulander et al. [19].

intensities, we have again reached a cleaner region of the
resonance space. We therefore observe that this
phenomenon does appear to have an analog in the time-
independent results.
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