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Quantum limits in interferometric detection of gravitational radiation
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A spectral analysis is given of the quantum fluctuations in an optical interferometer to detect gravita-
tional radiation. Two different methods of beating the standard quantum limit are examined: directing
a squeezed state into the nonlaser input port of the interferometer and placing a Kerr medium into both
arms of the interferometer. For both the Kerr medium and large squeezing cases the interferometer sys-

tem is limited ultimately by the damping noise in the mirrors, not by noise in the light.

PACS number(s): 42.50.Wm, 03.65.8z, 42.50.Lc, 42.50.Dv

I. INTRODUCTION

The determination of the fundamental quantum limits
in interferometric detection of gravitational waves has
been a topic of considerable debate and controversy. It
has been argued that the resolution of these measure-
ments is limited by the standard quantum limit (SQL)
[1—6]. Yuen [7] has shown that the SQL may be im-
proved using contractive states. A possible realization of
such measurements has been suggested [8—10]. Caves
[5—11] suggested injecting squeezed light into the empty
port of the interferometer. His scheme, however, only al-
lowed the SQL to be achieved at lower laser powers and
not to be beaten. It was later shown that the SQL may be
beaten by using squeezed states with an arbitrary squeez-
ing phase [12—15). An alternative scheme involving the
insertion of a Kerr medium [16] in each arm of the inter-
ferometer was also shown to better the SQL.

In this paper we present a spectral analysis of quantum
noise in an interferometer consisting of two Fabry-Perot
cavities as shown in Fig. 1. The end mirrors of each cavi-
ty are freely suspended. It is generally assumed that the
mirror is practically free for frequencies that are large
compared to the characteristic mirror frequency and
therefore the SQL is applicable. But although at these
high frequencies the mass is free from the effects of the
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harmonic potential well at the characteristic frequency, it
is not free from the high-frequency noise terms driving
the mirror, nor from the forced harmonic motion caused
by the gravitational wave. Therefore we treat the mirror
as a quantized harmonic oscillator. Coupling between
the mirror position and the light field is introduced via
radiation pressure.

We begin with the Hamiltonian for a single arm of the
interferometer and derive the linearized quantum
Langevin equations for the output fields. This gives us
the flexibility of choosing arbitrary input fields to the in-
terferometer. The output fields from each arm of the in-
terferometer are combined and a spectral analysis of the
fluctuations in the intensity difference is given. Since
both the light field and the mirror, together with their
damping, are treated quantum mechanically, we are able
to derive the fundamental quantum limits to the detec-
tion of a gravitational wave.

In Sec. III we demonstrate how the injection of a
squeezed state into the empty port of the interferometer
can be used to beat the SQL. This confirms the results of
previous analyses by Unruh [12], Bondurant and Shapiro
[13], Jaekel and Reynaud [14], and Luis and Sanchez-
Soto [15], but from a self-consistent Hamiltonian ap-
proach. In Sec. IV we show that by inserting a Kerr
medium inside both cavities the SQL may be beaten.
This confirms the result of Bondurant [16], again from a
self-consistent Hamiltonian approach.
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A. The system and its solution

We will begin by looking at the dynamics of a single
arm of the interferometer (see Fig. 1). The cavity can be
described by a Hamiltonian of the form

(2.1)

FIG. 1. The operator notation used for the interferometer
system.

where H, , is a function of internal mode operators only,
Hb is the free Hamiltonian of the baths (i.e., the external
world), and H;„, describes the interaction between the
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baths and internal mode operators. For the light the bath
is just the external field.

In our analysis, not only is the optical cavity field
quantized, but the mirror farthest away from the beam
splitter, mirror Mz (see Fig. 1), is also quantized. This
means that Hgyg is a function both of the cavity field
mode operators and of the mirror operators. It also
means that there are two baths. Both baths are assumed
to consist of a continuum, in frequency, of harmonic os-
cillators, with each having a flat density of modes. We
will assume that the coupling between each bath and its
corresponding internal mode is linear.

Although the full Hamiltonian is of the form given by
Eq. (2.1), in order to deduce the equations of motion for
the system using a quantum Langevin equation approach
[17,18], we need to consider only H,„,. The cavity mode,
having annihilation operator a, will be treated in an in-
teraction picture rotating at the (laser) driving field fre-
quency, coL. This is related to coo, the resonance frequen-
cy of the cavity in the absence of a driving field, by
coo=coL+6, where 6 is the detuning. The role of the de-
tuning is to cancel the detuning produced by the mean in-
tensity of the laser light moving the cavity mirror. The
mirror is described by the mode operator b, so that
(b +b ) is the mirror displacement. We use

(2.3)

and

= —i [ha+~a(b+b )]— a+@,' a'"Xa

b = — [b—,H,„,]— b+yb b'"

i[—Qb+xata+ks(t)] — b+yb b'",~b
2

(2.4)

(2.5)

(2.6)

(2.7)

where y, is the cavity field mode damping constant (see
Appendix C for an expression for y, in terms of the cavi-
ty parameters) and yb is the mirror damping constant.
Owing to the approximations made in deriving Eq. (2.5),
Eq. (2.6) is only valid in the low damping regime in which
rb&n

%"e are working in the regime where the quantum fluc-
tuations of the operators in Eqs. (2.4) and (2.6) are small
compared to their semiclassical or deterministic part,
therefore we can linearize these two equations about their
semiclassical solutions. By setting all operators and pa-
rameters equal to their respective steady-state mean
values and choosing the detuning 5 to be

b, = —
i~ (p+ p' ),

H,„,=fib, a a+fiQ, b b+A'va a(b+b )

+A'k (st)(b+b ) . (2.2)

the following semiclassical solutions may be obtained:

1/2
Xa

(2.8)

The first term is the cavity detuning. The second term is
the free energy of the mirror, where Q is the characteris-
tic angular frequency of the mirror. The third term gives
the radiation pressure, where K is the coupling constant
between the cavity and mirror modes. The final term is
the gravity wave, where k is the coupling constant be-
tween the classical gravity wave and the mirror mode and
s(t) is a function describing the time dependence of the
classical gravity wave. The gravitational wave amplitude
h is included in the constant k. Derivations of the cou-
pling terms together with expressions for K and k in terms
of the parameters of the system are found in Appendices
A and B, respectively.

Using the input-output theory for quantum damping
[17,18], a quantum Langevin equation for each internal
operator can be written as

and
—« ~

I g I'/y.
ybl2+iQ

(2.9)

where ( a ) =a, ( b ) =P, ( b'" ) =0, and ( a '" ) =g, where

g is the coherent amplitude of the driving field. The
gravity wave term has been treated as another small fluc-
tuation term since ks(t) has mean zero in the time
domain and is of the order of the quantum fluctuations.

Linearizing Eqs. (2.4) and (2.6) for small fiuctuations,

a =a+5a, b =P+5b,
(2.10)

ain g+5ain bin 5bin

we obtain the following equations of motion, which in
matrix form are

5a
5at

dt 5b
5b~

Va

2

iKO, *

0

Ya

2

l K(X
Vb

2

lKQ

l K(X

lKQ

I K(X
5a
5at

+
5b~

1/25 in
Va

1/25a i f
Ya

Xb1/25b in

1/25b in)
Vb

0
0iks(t)—

+iks (t)

(2.1 1)

l KO! l KO.'

d 5a(t)= —A5a(t)+F(t)+g(t) .dt (2.12)
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X(co)= x(t)e'"'dt .
3/2n.

Solving we get

(2.13)

The requirement for the stability of these equations is
that the eigenvalues of the matrix A in Eq. (2.12) all have
a positive real part. For all the graphs drawn in this pa-
per the system was found to be stable.

The differental equation (2.12) is solved by transform-
ing it into the frequency domain using the symmetric
complex Fourier transform:

y 1/25a in(

y 1/25a int( ~ )

y 1/25b in( ~ )

y 1/25b in'(

g(co = iks(co)

and

5a(co) =( A —icoI) '[F(co)+g(co)],

where

0
0

(2.14)

(2.15)

( A —icoI) '=( A —icoI)1 '

A, A, A, +2i Aic'~cc~'

A1A3A4

2~e2

A1A3A4

—i Ka*

A1A3

I KCX

A1A4

2l QK2~2

A1A3A4

A, A A —21'Aic ictus

A1A3A4

lKA

A1A3

I KCX

A1A4

L KO! —iKa

iKe
A1A3

1

A3

iKa
A1A4

1

A4

A1A3 A1A4

(2.16)

(2.17)

where

A,:—A, ( co ) =y, /2 i co, —

A3 A3( c)o= &y/2 +i( Q —co )

A4: A4(co)—=yb/2 i(Q+—co) .

(2. 18)

(2.19)

s, (t)= —s, (t), (2.23)

phase of s(t) in order to simplify the mathematics, the re-
sults can be extended to include the eFect of an arbitrary
phase for s(t). The two arms of the interferometer are
90' apart, so the form of the gravity wave in the second
cavity is

i2; (co)=[( A icoI)1 '];—. . (2.21)

The notational convention that a single digit subscript
signifies which cavity the operator or result is for is used
in this paper, for example in Eq. (2.16). Please note that
this does not apply to the A;. We will also now introduce
the notation

since the gravity wave is a quadrupole interaction.
There is a factor of i difference between the coherent

driving fields for the two cavities, which is due to the
beam splitter. As the phase of g affects the phase of a
through Eq. (2.8), the result given in Eq. (2.17) must be
modified for cavity number 2. Using b; as defined in Eq.
(2.21) we get

B. Recombining the two arms

s(t) =si(t) =cos(cost ) . (2.22)

Although we have made an assumption here about the

Now that we have the solution for the internal cavity
mode operators for a single arm of the interferometer
(2.14), the next step is to recombine the output from the
two arms assuming that the two arms have identical cavi-
ty parameters.

First, the form of the gravity wave assumed in this pa-
per is a constant amplitude, single-frequency, sinusoidal
wave propagating in a direction perpendicular to the
plane of the interferometer (see Fig. 1) and hence is de-
scribed mathematically by

( A —icoI)2 '=

b11
—b 21

—ib 31

—ib 41

ib32

I'b42

ib

—ib 23

ib14
—ib 24

(2.24)
34

The next step is to get an expression for the cavity out-
put light fields in terms of the input fields of the system.
The mirror boundary condition is [17,18]

5a'"'(co) =y,' 5a(co) —5a'"(co) . (2.25)

Therefore, using the notation in Fig. 1, the output fields
of interest are (in matrix form)
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5aout( )

5a out t
( ~ )

j. /2
5aout( )

Ya
2

5a outt
( )

5a, (co)

5a, (co)

5a2(co)

5az(co)

5a',"(co)

5a int(

5a 2" (co)

int
(

(2.26)

5a "(co)

int(

5ai (~} 5bin(

5b int(

(2.28)

~5a;z'(co) =y,'/ 5a, z(co) —5a',"z(co), (2.27}

where we have used the subscript 12 to indicate that the
vector contains operators from both cavities.

Let

where i = 1 or 2. Then Eq. (2.27) can be written as

5a;z'(co) =M, o(co)5a',"(co)+Moz(co)5a~z"(co)+g(co), (2.29)

where

Mio(co) =

y, b„(co)—1

0
0

y, b»(co) (y, yb)' 'b»(co) (y.yb)' 'b, 4(co)

yabzz(~) 1 ( Ya Yb } b23(~) ( Ya Yb } b24(~)

0 0 0
0 0 0

(2.30)

Moz(co) =
y, bii(co) —1 Y, b—iz(co)

—y. bzl(~) Y bzz(~)

0 0
i (y, yb)' b13(co) 1'(y, yt, )' b, 4(co)

1(y.y—b)'' 'b23(co) (ty—,yb)' 'b24(co)

(2.31)

and
' i[b,4(co) —b»(co)]
i [b24(co) —bz3(co)]

s( ) [b { } b ( }]
—[b24(co) —b23(co)]

(2.32)

a out(t) (Iout )1/2 '1 I
1

a out
( t} (Iout )1/2 '4'2

2

and taking advantage of the beam splitter, we get

I, (t) Iz(t) =dtid—, dzdz—
2(IoutIout )1/2s1

=2I sin(p, —$2),

(2.35)

(2.36)

(2.37)

C. The performance of the system

Our aim is to determine the minimum possible gravita-
tional wave amplitude h that this particular interferome-
ter system can detect. In order to do this we need first to
determine the signal and its variance.

In Fig. 1 we have two ideal photodetectors at the out-
put which count the number of photons incident on
them. Let the intensity of light (measured in photons per
second) reaching photodetector 1 be I, and that reaching
photodetector 2, I2. Then the signal and variance are, in
the frequency domain,

(2.33)

and

V=(I, (co) I (co),I, (co') I (—co')) . —(2.34)

As the variance when expressed directly in terms of bo-
son annihilation and creation operators is a linear com-
bination of fourth-order moments, a large intensity ap-
proximation will be made. This reduces the moments to
second order. Making a substitution of variables for a;"'
and az"' (see Fig. 1),

where I
~

and I2 have each been replaced by their
mean value:

(Iout ) (Iout ) ~g~z (2.38}

which is valid for large I.
Now a phase shift P is introduced between cavity num-

ber 1 and the beam splitter such that

(2.39)

which balances the outputs I& and I2. This means that
both of the interferometer outputs are sitting halfway be-
tween a dark fringe and a bright fringe. Therefore we get

Ii(t) —Iz(t) =2I sin(pi+/ —$2)

=2I sin(5$, —5/2)

=2I(5t)t, —5/2), (2.40)

where the last line follows from the fact that 5/1 —5/2 is
small for I )& 1.

As a result of the beam splitter, ($2) =(pi)+sr/2
We have arbitrarily set (p, ) =0 which is equivalent to
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assuming that g is real and hence also a [see Eq. (2.8)].
Choosing an arbitrary phase for g does not change the
final results but only makes the intermediate results more
complicated. We have

X2
41 &g )

I, ( t) I—2(t) =&I I i [5a't"'t(t) —5a i"'(t) ]

+[5a2"' (t)+5a2"'(t)]j . (2.43)

(2.44)

Transforming Eq. (2.43) into the frequency domain yields

I, ( oc) I2—(co)=&I ti[5a', "' (co)—5a;"'(co)]

+ [5az"'t(co)+5a&"'(co)] J .

(5aoutt 5aout )2&r

—X1

&x, ) '

—1
( 5a outt +5a out

)2 2

which gives

(2.41)

(2.42)

Therefore, using Eq. (2.29) the signal is

z= &r, (~)—r, (~) )

=2(ry, )' ks(co)[b, 4(co) —bt3(co)+b23(co) —b24(co)]

(2.45)

(2.46)

(2.47)
32hco coos(co)I

A, (co)A3(co)A4(co)

where the A;(co) are defined in Eqs. (2.18)—(2.20), and
Eqs. (2.8), (2.38), (A13), and (B10)have been used.

A useful quantity in calculating the variance is the out-
put field correlation matrix C(co), defined by

C( co ) = & 5a'"'(co ), 5a'"' (co' ) )
=M tp( co ) & 5a',"(co )5a't" ( cd' ) )M to( co' ) +MO2(co ) & 5a2"( co )5a't" ( ct~' ) )M to(co' )

+Mto(co) & 5a't"(co)5az" (co') )MO2(co')+ M02(co) & 5az"(co)5a2" (co') )MO2(co') .

The variance can be written as

v= &r, (~)—r, (~),r, (~') —r, (~') )

I[C33 C it +C44 C22+Ci2+C34+C2i+C43 l(cti+C3t ) l(ct4 C32)+l(C23 C4i )+l(C24+C42)]

(2.48)

(2.49)

(2.50)

(2.51)

Now that we have expressions for the signal and vari-
ance, the next step is to optimize the detectability of the
gravitational wave amplitude h with respect to laser
power.

The signal and variance can be written in the form

As f, (co) and f, (co) will be expressed in terms of I and
not P, it is easier to do the minimization with respect to I
and then to use Eq. (2.56) to find the optimum power. It
is also easier mathematically to minimize h rather than
h, where

&(co)=f, (co)hs(co) (2.52) 2f, (co )
h

rlf, (~, ) I'
(2.57)

V(co)=f, (co)5(co+co'), (2.53) D. Application to a vacuum input

where f„(co) is commonly called the power spectral densi

ty. Signal processing theory [19] tells us that for a mea-
surement of a signal at a frequency co the uncertainty in
the measurement of h, b h, is given by

[f. , ]'"
If, (~s)l &rn '

where it is assumed that the measurement time ~ is much
greater than the period of the gravity wave. Ah is as-
sumed to define the lower limit on the size of the detect-
able gravitational wave amplitude h, so we have

(2.54)

h =h;„=Ah .

Now I is related to the laser power P by

P =2k'coor .

(2.55)
&5a't"(co)5a2" (co') ) = &5a2"(co)5a't" (co') ) =0, (2.58)

(2.56) and the other correlations are

In order to calculate the variance, the input field corre-
lations in Eq. (2.49) need to be determined. Up until now
the input fields to the interferometer have been kept arbi-
trary. We now assume that our input light fields, c& and
c2 (see Fig. 1), are a coherent state (laser input) and an
unsqueezed vacuum, respectively. The input mirror
modes, 5b'," and 6b 2", will also be assumed to be
unsqueezed vacuum states. The input light fields are as-
sumed to be independent of the input mirror modes. As
before, the thermal fiuctuations in all the input field
correlations will be neglected. With these assumptions,
5a'," and 6az" are independent of each other:
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(5a',"(co)5a'," (co') ) = (5a'"(co)5a'" (co') )

0 1 0 0
0 0 0 0
0 0 0 1

5(co+ co') . (2.59)

0 0 0 0

ci2 ——c3,= [[r.b, i(~)—1][r.b22(~') —1]

+r.rbb13(co)b24(co )]5(co+co )

c» =c43 = [r'.b»(~»»(~')

+y, y b b2, (co )b,4(co') ]5(co+co'),

(2.62)

(2.63)

Using Eqs. (2.58) and (2.59) and letting

c;, = [C(co)];, , (2.60)

= [ [y, b „(co)—1]r,b,2(~')

+r rgb ]3(co)b &4(co' ) ] 5(co+co' ), (2.61)

the following results are obtained for the components of
C(co):

22 44 [r.b21(~)[r.b22(~ )

+r.rbb23(~)b24(~ )]5(~+~ ) (2 64)

C )3 C]4 CQ3 C24 C3] C32 C4& C42 0 (2.65)

So expanding out the variance in Eq. (2.51) and simpli-
fying, we get

161c2rb [(r b 12 ) +0 + co ]I (16Qa ) I1+ + 5(co+co ),
l&((~ &I'I&3(~) I'I&4(~& I' l&)(~ & I'IA3(~) 'I &4(~)I'

(2.66)

where the A, (co) are defined in Eqs. (2.18)—(2.20).
The variance can also be expressed in units in which the vacuum noise level is 1. This particular variance, which will

be denoted by a subscript Unl, is defined by

V=2IV,„i5(co+co') .

Therefore Eq. (2.66) becomes

16' y b [(y b /2 ) +0 + co ]I (16Qlc ) I
I &)(~)I'I &3(~)I'I A4(~) I'

(2.67)

(2.68)

Let us now examine the different noise terms in Eq.
(2.66). The first term is the photon counting noise which
is produced by the intrinsic phase fluctuations of the light
field mode inside the cavity. It is apparent from Eq.
(2.40) that the phase fiuctuations will appear in the out-
put signal. The second term is the mirror noise. It is a
direct consequence of treating the mirror as a quantum
harmonic oscillator damped to a white-noise bath. This
white-noise bath produces frequency-independent fluc-
tuations in the mirror s momentum which in turn pro-
duce small phase changes in the cavity light field and
hence fluctuations in the output signal. The third term is
the radiation pressure noise, which is produced by the in-
trinsic intensity fluctuations of the light field mode inside
the cavity. The mirror is driven by these fluctuations in
exactly the same way as a mass on a spring is driven by
an external driving force. These fluctuations in the mir-
ror displacement produce small phase changes in the cav-
ity light field which, in turn, are detected at the output.

Figure 2 shows a graph of the spectrum of the variance
expressed in units in which the vacuum noise level is 1.
The graph shows not only the total variance (solid line),
but the contribution of each term in Eq. (2.68) to the to-
tal. The values chosen for the experimental parameters
are shown in Table I; they are estimates for a small-scale
or prototype interferometer. For the particular laser
power chosen, the variance is dominated by the radiation

10
'I 0

10

10

) 10

10

10

10

10

10
'1 0

0
I I I I IIII I I I I I I IIII

10

I I f I I I~I I ~ I

C

I I I I I I%II I I

100 1000

FIG. 2. (Curve a) The total noise, V,„& (solid line). Contribu-
tions to V,„l. (curve b) photon counting noise (dashed line);
(curve c) mirror noise (dash-dotted line); (curve d) radiation
pressure noise (dotted line).

pressure noise for frequencies small compared with the
mirror resonance frequency. In this frequency regime the
mirror fluctuations are dominated by the radiation pres-
sure noise. At frequencies much higher than the mirror
resonance frequency the variance is dominated by the
photon counting noise. In this frequency regime the mir-
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TABLE I. The values of the experimental parameters used in

the graphs.

100 I I I IIIII I I I I IIIII I I I I I IIII I I I I IIIII I I I I IIIJ-'

Quantity Symbol Value

Mass of mirror
Mirror characteristic angular frequency
Mirror damping
Length of cavity
Reflectivity of mirror M&

Laser power
Laser angular frequency
Gravity wave angular frequency

M 10 kg
0 20m rads
yb 2m rads
L 4 m
R 0.98
P 10 W

No 3.66 X 10' rad s
2000m. rad s

and

32co&cuoI
f, (cu) =

AI(co)A3(co)A4(ci) )
(2.69)

16!c yb[(yb/2) +Q +co ]I
f, ( o)c=2I 1+

ror is less responsive to the radiation pressure driving
field and is also almost out of phase with it. Both the ra-
diation pressure noise and the mirror noise depend
directly on the frequency response of the mirror to a driv-
ing field and hence both have the characteristic response
spectrum for forced harmonic motion superimposed on
them.

Now the signal and variance can be written in the form
of Eqs. (2.52) and (2.53), where

0
10 10 10 10 10 10 10

Power (w)

FIG. 3. (Curve a) The minimum possible gravitational wave

amplitude h detectable as a function of power. (Curve b) The
contribution of the mirror noise to h.

(2.78)

so that Eq. (3.37) reduces to

where a measurement time of ~=1 s has been assumed
and the values in Table I have been used. The contribu-
tion of the mirror noise to h has been included for com-
parative purposes.

In the frequency regime in which we are interested,
2

Xb))
2

+0,

+ (16Q!c ) I
(2.70) h;„= [2Q+yb] .

8Mco L wQ
(2.79)

h =f(a) )[1/I+f, (co )+f2(cog)I],

where

IA (~)l'IA (~)l'IA (~)l'
(cu) =

7 [ 16CI7&COO]

(2.71)

(2.72)

16!C y&[(yb/2) +Q +Co ]
fI(CO)= (2.73)

Substituting f, (co) and f, (cu) back into Eq. (2.57) yields The first term in the square brackets can be traced back
to the quantum-mechanical uncertainties in the light and
the second term comes directly from treating the mirror
as a quantum harmonic oscillator damped to a white-
noise bath.

Now most analyses obtain the standard quantum limit
by considering only the eA'ect of noise sources due to the
light field. So if we are to compare our expression for the
SQL with that of others, we should focus on the term due
to the quantum-mechanical uncertainties in the light.
From the first term in Eq. (2.79) we get

(16Q!c )

IA (~)l'IA (~)l'IA (~)l'
(2.74) 1

hs L=-
We2~

1/2

(2.80)

I 1

If2(~, )]'"
and hence the optimum laser power is

P, , =2A'Cop, „=Pa .

Substituting I, , back into Eq. (2.71) gives

h;„=f(co )[2[f2(cos)]' +fI(cog)] .

(2.75)

(2.76)

(2.77)

Figure 3 shows a graph of the square root of Eq. (2.71)

The minimum value of h occurs for an optimum intensi-

ty The functional form of this result agrees with that of
Edelstein et al. [4].

III. SQUEEZING

In this section we consider the specific case of a
squeezed state entering the empty port of the interferom-
eter. The results in the first three subsections of Sec. II
are valid for arbitrary input fields. In order to calculate
the variance, the input field correlations in Eq. (2.49)
need to be determined for this particular case.
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A. Input fieM correlations

From Fig. 1 we have the beam-splitter relation

Ci

ative to the phase of gL.
So we have

e 1
=D'(4 )c lD(4 )

a 111

2 . C2
(3.1) =el+EL (3.4)

where ci is a coherent state (laser input) and c2 is a
squeezed state. In order to describe these states we will
use the unitary displacement operator [20] and the uni-
tary squeeze operator [21,22], defined, respectively, by

D(kl. ) =exp(CL, e i kl. ei ) (3.2)

and

c2=S (e)czS(e)

=czcoshr —cz e' sinhr .

Now defining 5a'," and 5a 2" as

(3.5)

and

S(e)=exp[ —,'(e*c2 —
eclat )], (3.3)

5ain ain (ain ) ain (3.6)

where gL is the mean amplitude of the laser and e=re'
is a complex number which indicates both the magnitude
and phase of the squeezing, the latter being measured rel-

5ain a in (a in ) ain (3.7)

where g=(1/&2)gl, and transferring them from the
time domain into the frequency domain, we get

5a',"(co)
in't

(

5a 2" (co)

int
(

0 1

i 0

0 —i

ie ' sinhr

coshr
—e 'sinhr

1 0 i coshr —ie "sinhr
—i coshr
—e' sinhr

coshr

c, (co)

c, (co)

c2(co )

c2(co)

(3.8)

5a',"2(co)=M(co)c(co), (3.9)

where the 1/3/2 factor is included in the matrix M(co).
Neglecting thermal Auctuations in the input light field

correlations, we get

The mirror inputs are, of course, independent of the in-
put light fields. And we will neglect thermal Auctuations
in the mirror inputs so that the only nonzero correlations
between them are

0 1 0 0
0 0 0 0

(c(~)c(~') ) =
0 0 0 1

5(~+~ ) .

0 0 0 0

The input field correlation matrix is

(5a'1"2(co)5a'1"2 (co') ) =M(c(co)c(co') )M

=C'"5(co+ co' ),
where

(3.10)

(3.1 1)

(3.12)

( 5bin5bint ) ( 5b in5b in)' ) (3.14)

Thermal fluctuations in the mirror are, at present, one of
the dominant experimental noise sources. It is possible to
extend our results to include them, but here we are only
interested in investigating the fundamental quantum lim-
its of the problem.

Having determined the input field correlations in Eq.
(2.49) we can now find the output field correlation matrix
C(co). Letting

1C'"=—
2 —iM

iN

—iN
iM*

M N+2
M*

—iM
—iN

iN
iM*

—M N+2 (3.13) and

c, =[C(co)];

&in [Cin]

(3.15)

(3.16)

and where N=sinh r and M= —,
'e' sinh2r. the components of C(co) are

» = 33= I [ 11(rnb»(~) )+ 2»n»(~)][rnb»(~ )

+
I e12( V 511(~) 1)+e22 r b12(~)]r.b12(~')+ r.rbb13(~)b14(~ )]5(~+~

e22 = —
e44 =

I [e 12r.b21(~)+e'22(r. b22(~) —1)]I r.b22(~') —1]

+ [e'ii r.»i(~)+e21 (r.b22(~) —1)]r.b21(~ )+r.rbb23(~»24(~ )]5(~+~ »

(3.17)

(3.18)
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]2 34 [ [ 12('Y, 11(co)— )+czzy, b12(co)][Y, bzz(co ) 1 ]

+ [e 1"1(y.b11(~)—I)+~2"1 Y biz(~)]y. b»(~')+y. ybb»(~»24(~ ) j5(~+~
C21 C43 [ [c 11 Y bzl(~) c 21( Y bzz(CL1) 1)][y bll(~ )

+
I
e 12y.bzl(~)+ezz(y. bzz(~) —» ]y. biz (~' )+y. ybb23(~»14(~') j 5(~+~'»

13=&31=[[ '1"3(ya 11(~)—)+ 2"3yab12(~))[yab»(~') —l l

—[c'14( yab 11(co)—I ) +c'24 yab 12(m)] yab 12( co) j5(co+co ),
e24 ~42 [ I ~13ya 21(~) 23( Ya 22(~) )]yab2](~ )

+I ~14 yab24 (~ )+~22 (Yabzz(~) 1)]I1 abzz(~ ) 1)j5(~+~ )

14 32 I [c'P3(y, b11(co)—1)+cz3y, b1z(co)]yabz1(co )

+ [c'14(y.b11(~)—I )+c24y b 12(co)][y.bzz(co') —I ] j 5(~+~'»
c23 c4] [ [c13y, bz1(co)+c23(y, bzz(co) —1 )][y,b»(co') —1 ]

[c 14Y bzl(co)+c24(yabzz(co) 1)]y b12(cL1 ) j5(co+ci) )

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

B. Evaluating the performance of the system

The variance in Eq. (2.51) can now be expanded and simplified to give

16m yb[(yb/2) +0 +co ]I sinh2rzsin83201c [(yb/2) +0 co ]I-
V =2I (cosh2rz —cos8 sinh2rz )+ +

( cosh2rz+cos8sinh2rz)(1601C ) I
+ 5(co+co')

1 &1(~)I'I &3(~)I'I &4(~) I'

=2I[sin8g1(co)+ cos8gz(co)+g3(co) ]5(co+co'),

where

(3.25)

(3.26)

sinh2r320~ [(yb/2) +0 co ]I—
(3.27)

( }601cz)2I2
gz(co) =sinh2r —1

I &1(~)I'I &3(~)I'I &4(~)I'

16ic yb[(yb/2) +0 +co ]I (1601C ) Ig3(co)=
2 z z

+cosh2r 1+
I& (~)l'I& (~)l'I& (~) I'

(3.28)

(3.29)

Optimizing Eq. (3.26) with respect to 8 yields

&' '(~)=2I[ —[g', (~)+gz(~)]'~'+g3(~) j5(co+co'), (3.30)

where

g1(~)
8'1"(co)= tan

gz(~)
(3.31)

if gz(co)%0, or n. /2 or 3~/2 if gz(co) =0.
The first, second, and fourth terms in Eq. (3.25) are the

photon counting, mirror, and radiation pressure noise
terms, respectively. Whereas the photon counting and
radiation pressure noise terms are affected by the squeez-
ing, the mirror noise is totally independent of the squeez-
ing, which is in accord with the discussion in the preced-
ing section on the physical origin of these terms. The

third term in Eq. (3.25) is a correlation term which, un-
like the other noise terms, can be either positive or nega-
tive. It corresponds to the S correlation term appear-
ing in Jaekel and Reynaud's paper [14]. The squeezed
state with arbitrary squeezing phase [12] is a contractive
state (as discussed by Yuen [7)) if this correlation term is
negative.

From Eq. (3.25) it follows that amplitude squeezed
light, and not phase squeezed, reduces the photon count-
ing noise. This may seem counterintuitive in light of the
preceding discussion, in which the photon counting noise
was attributed to phase Auctuations of the light 6eld in-
side the cavity. Figure 4 resolves this puzzle by showing
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These results for 0=0 agree qualitatively with the re-
sults of Caves [5]. Namely, the squeezing reduces the op-
timum laser power according to Eq. (3.36), but it does not
change the detectability of h. Figure 5 displays these re-
sults using the same numerical data as for Fig. 3.

We now consider using squeezed light where the phase
of the squeezing is given by 0,„,~ The problem as it
stands is analytically intractable, so the variance found in
Eq. (3.30) must be simplified. Using the approximation

2 2

2 2

+0 —
CO +CO Pb (3.38)

FIG. 4. Amplitude squeezed light on the outside looks like
phase squeezed light inside the cavities.

why amplitude squeezed light entering the nonlaser input
of the interferometer looks like phase squeezed light
entering each cavity, relative to the phase of the coherent
laser amplitude.

At this stage it is instructive to optimize h with respect
to power keeping 0=0 and to compare the results with
those of Caves [11].

Writing the signal and variance in the form of Eqs.
(2.52) and (2.53) for 8=0, we get

= IA3(co)l IA4(co)l (3.39)

= lsinh2r
I

1+
IAI(~} 'IA3(~}l'IA4(~) I'

(3.40)

Hence the variance can be written in the form of Eq.
(2.53), where

16ic y I, [(y b /2 ) +0 +co ]If, (co)=2I e "+

which is valid in the high-frequency regime in which we
are working, we get

[g I (~}+g2(~)l'"

32co& cooI
f, (co)=

A, (co)A3(co)A4(co)
(3.32) e "(160~ ) I+ (3.41)

and

16lc yb[(yb/2) +f1, +co ]If, (co)=2I e "+
So using Eq. (2.57) we get

h f(co )[e f
—I/I+f~(co—)+f2(co )e

—
I I) ~ (3.42)

e "(160~ ) I+ (3.33)
where f(cos), f, (cd), and f2(co ) are defined in Eqs.
(2.72), (2.73), and (2.74}. We obtain a minimum in h for
an optimum intensity given by

from which it is clear that for 0=0 there is no contribu-
tion from the correlation noise term. Substituting f, (co)
and f, (co) back into Eq. (2.57) yields 1 00 I I I I I lllf I I I I I I ill I I I I I lllf I I I I I lllf I I I I I IIII

h ~ =f( co )[e "/I +f I ( co& ) +f2 ( co& )e "I], (3.34)

where f(co), f, (co), and fz(co) are defined in Eqs. (2.72),
(2.73), and (2.74). The minimum value of h occurs for
an optimum intensity

10

(3.35)

and hence the optimum laser power is

(3.36} 0 1
I I I I I IIII I I I I I IIII I I I I IIIII I I I I IIIII I I I I IIIII I I I I I III

'IO 'lO 10 IO 10 10 10
where Po is the optimum laser power for the system with
no squeezing. Substituting I, back into Eq. (3.34) gives

h;„=f(co )I2[f2(co ))'i +f, (co )j, (3.37)

which is independent of the squeezing parameter r.

Power (w)

FIG. 5. The minimum possible gravitational wave amplitude
h detectable as a function of power using 0=0, for three
diff'erent values of the squeezing parameter r: (curve a) r =0,
(curve b) r = 1, (curve c) r =2.
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IO t= 1
oPI [f (~ ) ]

I /2

P,p-l =2fiCOOIopI =Po .

(3.43)

(3.44)

1 00 I I I I I Ill( I I I I I Ill( I I I I I Ill) I I I I I I Ill I I I I I I Ill I I I I I [[I.

So the optimum laser power does not change with squeez-
ing when 0=8, , is used. Inserting I, , back into Eq.
(3.42) gives

10

h =f(co ) [ 2e '" [f2 (e )]
' +f, (co ) ]

8M L 0

(3.45)

(3.46)

where in the last line the approximation in Eq. (2.78) has
been used.

Equation (3.42) gives us one way of viewing the corre-
lation term. Its basic effect is to reduce the photon
counting and radiation pressure noise terms by a factor of
e ", thus clearly beating the SQL. This viewpoint,
which is valid for all laser powers, gives us insight into
several things, as follows.

(i) The correlation term can never completely cancel
out the effect of the light noise.

(ii) Since the light noise is efFectively scaled by e
with increased squeezing it can be reduced to such a level
that the mirror noise is dominant. So for highly squeezed
states the interferometer is limited by the damping noise
in the mirror. It is not possible for this particular experi-
mental setup to get below the mirror noise.

(iii) The optimum power is independent of squeezing as
the correlation term causes both the photon counting and
radiation pressure noise terms to scale in exactly the
same way.

(iv) The optimum phase at the optimum power is m. /2.
This corresponds to an error ellipse tilted at an angle of
n/4 for the squeezed vacuum mode, c2. This shows that
because of the correlation term we desire an equal mix of
the photon counting and radiation pressure noise terms
in order to minimize h.

Figure 6 shows some of these points. It was obtained

00 I I I llllll I I I IIIII[ I I ! Illlll I I I lllil[ I I I I IIII( I I I Illlg

10

Q 'l I I I IIIIII I ! I IIIIII I I I I IIIII I I I IIIIII I I I IIIIII I I I IIIIII

10 10 10 10 10 10 10
Power (W)

FIG. 7. A comparison between using (curve a} 0=0 and
(curve b) 9'"', in the calculation for the minimum possible value
of h detectable using r =1. The corresponding curve for no
squeezing (r =0) is also shown (see curve c).

numerically from the exact expression for h [i.e., not us-

ing the approximation in Eq. (2.78)].
Figure 7 compares our results using 8=0 with those

using 8=8' ', for r =1. 8' ' clearly beats the SQL while
8=0 just reaches the SQL. The results using O'I" are al-
ways better than those for 8=0, but for low powers there
is practically no difference between the two because in
that regime 6I' '=0.

Our results agree with Unruh's work [12] which says
that the light noise can be reduced by an arbitrary
amount by using a squeezed state as input into the vacu-
urn input port of the interferometer. Furthermore Unruh
did not think that the damping fluctuations of the mirror
were important except if the light was "strongly
squeezed, " which agrees qualitatively with our work.
Jaekel and Reynaud [14] and Luis and Sanchez-Soto [15],
while using different formalisms from Unruh, also ob-
tained results which were significantly below the SQL and
were limited by the mirror damping and not the light
noise. These results also show that Yuen's work on con-
tractive states [7] is applicable to gravitational wave in-
terferometry and that these contractive states can be used
to beat the SQL.

Extensions to include the use of squeezed light in the
presence of phase modulation [23] and for nonideal inter-
ferometers [24] have been discussed.

IV. KERR MEDIUM

Q 1
I I I I I I I ll I I I I I I I II I I I I I I I II I I I I I I I II I I I I I I I II I I I I I I I I

10 'lO lO 10 'lO 10 l0
Power (W)

FIG. 6. The minimum possible value of h detectable as a
function of power using 8'~', for three different values of the
squeezing parameter r: (curve a) r =0, (curve b) r =1, (curve c)
r =2. The contribution of the mirror noise to h has also been
drawn in (see curve d).

In this section we investigate the effect of placing a
Kerr medium inside both cavities of the interferometer in
the hope of beating the SQL. A Kerr medium has the
property that it has an intensity-dependent refractive in-
dex. It has been noted by Loudon [6] that there is a simi-
larity between a Kerr medium and radiation pressure in
their effect on the cavity light field, namely, they both in-
troduce a phase shift proportional to the intensity of the
light. From this observation stemmed the idea [16] that
if the sign and magnitude of the Kerr medium were care-
fully chosen, then it might completely cancel out the
effect of the radiation pressure fluctuations, thus improv-
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ing the sensitivity of the interferometer's measurement of
h. The method is the same as before, so the notation in-
troduced in Sec. II will remain unchanged.

A. The system and its solution

y
i /2g

y, /2+ i [ b, +~(P+P" ) + 2ya "a ]

l K(X CX

yi, /2+i 0

(4.4)

(4.5)

As in Sec. II, we are considering the external laser field
detuned relative to the internal cavity resonance frequen-
cy and hence the internal cavity mode, a, will be treated
in an interaction picture rotating at the laser frequency.
The introduction of a Kerr medium into each cavity may
be modeled by adding a term Aya~ a to the Hamiltonian
in Eq. (2.2). So H,„,becomes

H,„,=Aha a+fish b+fi~a a(b+b )

+Aks(t)(b +b )+fiya a (4.1)

(4.2)

where g is a constant proportional to g' '. The other
terms and parameters are the same as before.

A quantum Langevin equation for each internal mode
operator can now be written as

a = —i[ha+ra(b+b )+g2a a ]
— a+y,' a'",Xa

where ( a ) =a, ( b ) =P, ( b'" ) =0, and ( a'" ) =g, where

g is the coherent driving field amplitude due to the laser.
In this problem we are free to choose the values of both

6 and y. We shall always choose the detuning b so that

b, +x(p+ p*)+2ya*a =0, (4.6)

&/z
Va

(4.7)

(4.8)

and then choose g to give us the best sensitivity for our
measurement of h. Physically this corresponds to choos-
ing the detuning in such a way that the cavity is still on
resonance.

Inserting Eq. (4.6) back into Eq. (4.4) gives

b= —i[Ab+~a a+ks(t)] — b+yi, b'", (4.3)
Now substituting the following back into Eqs. (4.2) and

(4.3),

a =a+5a, b =P+5b,
where, as before, y, is the cavity field mode damping
constant and yb is the mirror mode damping constant.

As in Sec. II, we can linearize Eqs. (4.2) and (4.3) about
their semiclassical solutions. So setting all operators and
parameters equal to their respective steady-state mean
values we obtain

ain g+5ain bin 5bin
(4.9)

and expanding to first order in the fiuctuations [using Eq.
(4.6)], we obtain the linearized equations of motion which
in matrix form are

2l gA l K(X iKa

5a
5a~

dt
5b

2l +ex

iKa*

l KO!

l K(X
Tb

2

2
' —2iy l

a l' i~a*— 5a
5a~

5b

5b

l K(X l KO!

Qy. 5a'"
in'

5b in

5b in'

0
0

—iks(t)
+iks(t)

(4.10)

5a(t)= —A5a(t)+F(t)+g(t) .d
dt

Transforming Eq. (4.11) into the frequency domain using Eq. (2.13) yields

5a(a~) =( A —icoI) '[F(co)+g(co)],

(4.11)

(4.12)
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where

F(co)=

y 1/25 in(

y 1/25' in'( )

1/25b in(

y1/25bin1'(~)

g(co) =iks(co) (4.13)

and

( A i c—oI )
' = ( A —icoI)1 '

A,A,A4+ 21«'I a I'

A)A3A4

2ia* (yA3A4 Qii —)
A)A3A4

l K(X

A)A3

l KCX

A)A4

2ia (y—A3A4 Q~ )—
A)A3A4

AOA3A4 —2i Qa a
I

A(A3A4

E KCX

A)A3

l KCX

A)A4

l KCX

A)A3

1

A3

l K(X

A)A4

1

A4

l KCX lKA

A)A3 A)A4

(4.14)

(4.15)

where

Va
Ao =—Ao(co) = +i(2yIaI —co),

2
(4.16)

(5a'1"(co)5a2" (co') ) = (5a2"(co)5a'1" (co') ) =0,
and the other correlations are

(4.21)

Va
A 1

——
A i(co) = i co, —

2

Xa
A2 =—A2(oi) = —1(2rlal'+oi),

2

VbA3—:A3(co) = + i(Q —co),
2

~b
A4 =A4( co ) = —i ( Q+ co ) .

2

(4.17)

(4.18)

(4.19)

(4.20)

0 1 0 0
0 0 0 0
0 0 0 1

5(co+ co') . (4.22)

0 0 0 0

The following results are obtained for the components of
C(co):

11 33 [ I:y.b 11 ~)—]y.b12

The b,j.(co) remain defined by Eq. (2.21), where
( A —i coI)1 ' is now given by Eq. (4.15).

Comparing Eqs. (2.17)—(2.20) with Eqs. (4.15)—(4.20)
we see that the two matrices are exactly equal apart from
the 2 X 2 submatrix in the upper left-hand corner, that is,
apart from the ter~s b», b», b», and b».

+y, ybb, 3(co)b24(co')]5(co+co'),

C21 =C43 = [3 b21(M)b12(& )

(4.24)

+y yb bn] 3 ( co )b 14 ( co' ) ] 5 ( ~+~ ), (4.23)

c12=c34= [[y,b (cia)
—1 ][y,b22(co') —1]

B. Calculating the signal and variance
+y. y b b23(~)b 14(~') ]5(~+~'),

C22= —C44=[ .yb1 2~([).yb22~(') —1]

(4.25)

Now the next step is to combine the contributions from
both cavities. Equations (2.22) —(2.32) and the accom-
panying comments, hold equally true here for the Kerr
medium case. Our input light fields, c, and c2 (see Fig.
1), are a coherent state (laser input) and an unsqueezed
vacuum, respectively. The mirror inputs, 5b'&" and 5hz",
will also be assumed to be unsqueezed vacuum states.
The input light fields are independent of the mirror in-
puts. As before, the thermal Auctuations in all the input
field correlations will be neglected. With these assump-
tions, 6a'&" and 5az" are independent of each other:

+y, y b b23 (co)b24(co') I 5(co+co'), (4.26)

C }3 C]4 C23 C24 C3] C32 C4( —
C4P

—0 (4.27)

=2(Iy, )' ks(co)[b, 4(co) b,3(co)+b23(—co) b24(co)]—
(4.29)

Using the large intensity approximation Eq. (2.44) our
signal is

(4.28)
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32h co&coos (co )I
A, (co)A3(co)A4(co)

(4.30)

&= (I, (co)—I2(co ),I &
(co') —I&(co') )

=2I [c,2+ c2&
—(c» +cz2 ) ]

16m yb[(yb/2) +Q +co ]I=2I 1+
I A &(~ }I'I A3(~) I'I A4(~) I'

(4.31)

(4.32)

+ 4
" 5(co+co'),f(y)

(4.33)

where the A;(co) are defined in Eqs. (4.16)—(4.20). The
signal is independent of g and is identical to the signal
found in Sec. II [see Eq. (2.47}]. We do indeed expect the
gravity wave interaction to be independent of both the
squeezing and Kerr medium.

Using Eq. (2.44) together with Eqs. (4.23)—(4.27) and
(4.15), we get the following result for the variance:

harmonic oscillator. As the mirror acts like a damped,
forced harmonic oscillator, at high frequencies the mirror
displacement and radiation pressure fluctuations are al-
most out of phase, hence y, , is negative.

Comparing our expression for the optimum variance
for the Kerr medium (4.36) with the variance without the
Kerr medium [i.e., set y=0 in Eq. (4.33)], we see that the
Kerr rnediurn reduces the radiation pressure noise while
leaving the mirror noise and photon counting noise un-
changed. There is complete cancellation of the radiation
pressure noise only when the mirror displacement and
the radiation pressure fluctuations are either exactly in
phase or exactly out of phase. Although this condition is
never exactly met at finite, nonzero frequencies, the radi-
ation pressure noise can be very much reduced.

C. Evaluating the performance

The next step is to optimize the power. The signal and
variance can be written in the form of Eqs. (2.52) and
(2.53), where

where

f(y)=16 I {y ~A3(co)~ ~A4(co)~

2y Q~ —[(y b /2 ) +Q —co ]+ ( Qa ) ]

=16 I iyA3(co)A4(co) Qa i— (4.34)

(4.35)

and

32co&cooI
f, (co) =

A, (co)A, (co)A4(co)

16~ yb[(yb/2) +Q +co ]If, (co)=2I 1+
I Ag(~) I'I A3(~ }I'I Ad ~ }I'

(4.38)

As the signal is independent of y, in order to optimize
the system with respect to the free parameter y we need
to minimize the variance. Fortunately the expression for
the variance in Eq. (4.33) has only one term which de-
pends on g. We find for the minimum variance

16m. yq[(yq/2) +Q +co ]I
V '"(co)=2I 1+

I
A ((~) I'I A3(~ }I'I A4(~ }I'

(16yb~ Qco) I
+

So using Eq. (2.57) we get

h =f(cog )[1/I+f, ( s)co+ f2(cog )I],
where

(4.39)

(4.40)

(16yq~ Qco) I+
4

5(co+co'),

(4.36)

which occurs for

f(co)=
r [16~,'~, ]'

16~ yb[(yb/2) +Q +co ]

(4.41)

(4.42)

Qx [(yb/2) +Q —co ]x=x. ~(~)= (4.37)
(16yb~ Qco)f2(co) = (4.43)

It is interesting to note that g, , is independent of
power. This is to be expected physically since the whole
point of using a Kerr medium was to cancel out the
effects of power fluctuations, independent of the size of
these fluctuations. It can also be seen that the sign of y, pf
depends on the frequency. For high frequencies p p&

is
negative, corresponding to a "normal" Kerr medium (see
Appendix D}. In Bondurant's analysis [16] the Kerr
medium required did not change sign and was always
equivalent to y being positive, that is, an anomalous Kerr
medium. This discrepancy can be traced back to the fact
that although Bondurant treated the mirror quantum
mechanically, he did not specifically treat it as a damped

By differentiation we find a minimum in h at

1IOP~ [f ( ) ]1/2

16/bK QQ3

corresponding to an optimum laser power of

P, =2RcooI, ,

(4.44)

(4.45)

(4.46)

Comparing this with the optimum power obtained in Eq.
(2.76}, Po, and realizing that we are in the frequency re-
gime in which cos ))(y&/2) +Q2, we get
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(4.47)

Inserting I, , back into the expression for h (4.40) gives

h';. =f(~, ) {2If2(~, )1'"+fi(~, ) I (4.48)

&Xb

8M' L ~Q

2

2@~ + +@2+~2
2

(4.49)

&Xb

8M' L wQ
(4.50)

where in the last line we have noted that in the high-
frequency regime in which we are interested we have

FICx. 8. (Curve a) The minimum possible gravitational wave
amplitude h detectable as a function of power using a Kerr
medium. (Curve b) The contribution of the mirror noise to h.

V. CONCLUSIONS

The physical origin of the interferometer noise sources
was explained from the perspective that an interferome-
ter simply detects phase fluctuations of the light inside
the cavity. In particular, the photon counting noise is due
to phase fluctuations in the light entering the cavity, and
the radiation pressure noise is due to intensity Auctua-
tions in the light entering the cavity —these produce Auc-
tuations in the mirror displacement, which in turn pro-
duce phase changes in the cavity light field.

Either the photon counting or the radiation pressure
Auctuations may be reduced by injecting phase or ampli-
tude squeezed light into the empty port of the interferom-
eter, as shown by Caves. However, a reduction of both
noise sources can be achieved by using a squeezed state
with negative correlations between the quadratures. By
choosing the optimum phase of the squeezing, reductions
below the SQL for h can be obtained. The light noise,
with sufficient squeezing, can be reduced to an
insignificant level compared to the mirror noise (which is
independent of the squeezing). The laser power required
to get the best sensitivity in the measurement of h does
not change with squeezing.

The effect of including the Kerr medium is to reduce
the radiation pressure fiuctuations, but there is not com-
plete cancellation due to a phase lag in the response of
the mirror to the light field driving it. Reductions below
the SQL for h can be obtained but a higher laser power,
relative to the squeezing case, is required in order to get
the best sensitivity in the measurement of h. The sign of
the Kerr medium required is negative, corresponding to a
normal Kerr medium, not an anomalous one. The system
is limited ultimately not by fluctuations in the light but
by the damping noise in the mirrors.
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co )) ~b
2

++ +20cog (4.51)

The first term in the square brackets in Eq. (4.49) can be
traced back to the quantum-mechanical uncertainties in
the light. This term is now insignificant compared to the
mirror noise, which is unchanged from Eq. (3.37) and
which consists of the remaining terms in Eq. (4.49). Thus
the inclusion of the Kerr medium into each cavity
significantly reduces h;„and hence beats the SQL. This
minimum in h occurs at a much higher laser power than
before [see Eq. (4.47)], simply because the e6'ect of the
Kerr medium is to reduce the radiation pressure noise,
which means that the photon counting noise and radia-
tion pressure noise are equal (and hence minimum) at a
much higher laser power. Figure 8 highlights the point
that h is limited by the mirror noise, as opposed to the
light noise, and that this minimum in h occurs at a very
large laser power. Bondurant in his analysis did not treat
the mirror as a damped harmonic oscillator, hence he
was able to nullify the radiation pressure noise at a par-
ticular frequency (though not over a finite bandwidth)
and he did not get a mirror noise term.

APPENDIX A: DERIVATION OF a'

In this appendix we show just one of a variety of possi-
ble ways of deriving the radiation pressure coupling con-
stant ~ in terms of the parameters of the system.

Consider a cavity of length L with a cavity resonance
frequency of coo. Then the Hamiltonian for the light reso-
nant inside the cavity is

H=hcooa a . (A 1)

Now we have

coo = ( n + —,
'

)cof, (A2)

where n is integral or half-integral and cof is the funda-
mental cavity frequency:

27TC
Ct7f = L

(A3)
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Research.
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Therefore Eq. (Al) can be written as F„,„,,„(t)=Mg(t), (81)

H=A'(n+ —) a a .
27Tc

L (A4)

Now if the mirror moves so that the length of the cavi-
ty is increased from L to L +x, this decreases the funda-
mental cavity frequency to cof. So Eq. (A4) becomes

where M is the mass of the mirror and g (t) is the ac-
celeration of the mirror due to the gravity wave. In this
paper it is assumed that the gravity wave, in the absence
of all other forces, displaces the mirror sinusoidally in
time. Therefore the acceleration is

H=fi(n+ —,') a a .27TC

But from Eq. (A3) we have

(A5)
g (t) =gs(t),

where g is a constant to be determined and

s ( t) =cos(cps t),

(82)

(83)
2'ITC —

COfL (A6)

where cof is the original fundamental cavity frequency.
So

where cu is the gravity wave angular frequency.
Integrating s(t) twice, we get for the displacement of

the mirror, x (t):

LH=A'(n+ —,')cof a a, (A7) x(t)=- gs (t)
2

COg

(84)

H=Amp 1 ——a a
x
L

(A8)

COp

=a~pa'a —m a ~ax,
L

(A9)

1/2

(b+bt), (A10)

where M is the mass of the mirror and 0 is its charac-
teristic frequency. Substituting Eq. (A10) back into the
radiation pressure energy term in Eq. (A9) gives

1/2

H = —A a a
~o

y 2A
rp (b+b ). (A 1 1)

where in Eq. (AS) we have assumed x small. The last
term in Eq. (A9) shows how the intracavity energy
changes as the mirror moves, which is the radiation pres-
sure energy term.

This derivation assumes that x does not move a
significant fraction of a wavelength in one cavity round-
trip time; if it did there would be Doppler-induced
scattering into other cavity modes. We are certainly
justified in ignoring this for the parameters given in Table
I.

Now quantizing the mirror position x we get

Now the gravitational wave amplitude h is defined to
be the maximum fractional change in the cavity length L
produced by the gravity wave in the absence of all other
forces acting. So

max(x (t) ) —g
Lco

(85)

MhLto s(t)x—(t) (87)

MhLco s—(t) 2A

Mn
(b+b ), (88)

where in the last line the mirror position, x(t), has been
quantized using Eq. (A10). Comparing this with the
gravity wave energy term used in this paper,

H„,„;,„(t)=Aks(t)(b +b t ), (89)

we see that
1/2

2M
hL Q)g (810)

Therefore using Eqs. (Bl) and (85) the gravity wave ener-
gy term can be written as

(86)

1/2
~o 2A'

L MQ
(A13)

APPENDIX 8: DERIVATION OF k

In this appendix we derive an expression for k in terms
of the experimental parameters of the system and the
gravity wave amplitude h.

The force on the mirror due to the gravity wave is

Comparing this with the radiation pressure energy term
used in this paper,

H,„=A~a a(b+b ), (A12)

we see that

APPENDIX C: EXPRESSION FOR 7

We wish to express y, in terms of the cavity parame-
ters. We have a cavity of length L enclosed by two mir-
rors M1 and M2. M1 has a reQectivity R and a cavity
damping constant y„while M2 is assumed to be perfect-
ly rejecting.

The cavity damping constant y, is simply the recipro-
cal of t„ the mean cavity lifetime of a photon. A photon
has a round-trip time inside the cavity of 2L/c and each
time it hits the mirror M1 it has a probability of
T=1—R of being transmitted and exiting the cavity.
Therefore a photon has a probability of (1 —R)R' ' of
having a cavity lifetime of i times the round-trip time. So
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t, = gi (1 —R)R'
i =1

2L 1

c 1 —R

and hence

c(1—R)
2L

APPENDIX D: COMMENTS ABOUT
THE SIGN OF y

(C 1)

(C2)

(C3)

Strictly speaking [25], the Hamiltonian should be writ-
ten in terms of the electric displacement vector D (the
conjugate momentum of A) and not the electric field vec-
tor E (the conjugate velocity of A), where D=eE,

D2 B2+ dr. (D3)
Pp

For g' 'E small compared with 1 we have

(1 ~(3)E2) (1 ~(3)E—2D2)1 1 3 2
E' Ep E'p

and hence, for a single mode analysis,

The Hamiltonian for a medium with a g' ' nonlinearity
is usually expressed in the form

02 B2H=,' J (1—y' 'e D )+
Ep Pp

(D5)

1 2
B~H= —J eE+ dr,

2 pp

where the dielectric constant e is

@=co(l+y'"E ) .

(D 1)

(D2)

= fgtoo(a ta + —,
' )+trtya a (D6)

Comparing Eq. (D5) with Eq. (D6) we see that y negative
corresponds to y' ' positive, which is a norma/ Kerr
medium; conversely, g positive corresponds to an anoma-
lous Kerr medium.
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