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Spin-dependent observables in electron-sodium scattering
calculated using the coupled-channel optical method
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We present coupled-channel optical (CCO) calculations of the elastic and the 3 S—3 P transitions
in electron-sodium scattering at 1 to 40 eV. The results are compared with the measurements of spin
asymmetries A, , the ratio of final- to initial-spin polarization perpendicular to the scattering plane
P'/P, and the angular momentum transferred to the atom perpendicular to the scattering plane for
singlet Lz, triplet Lz, and spin-averaged L~. We find excellent agreement with measurements of all
of these parameters at all energies. For energies above the ionization threshold we find that inclusion
of the continuum target states in the CCO formalism has a very large effect on the spin asymmetries,
particularly the 3 P channel, and brings about excellent agreement with experiment. The treatment
of the dynamics of the interaction is such that the quality of the structure approximation of the
sodium atom may be readily studied.

PACS number(s): 34.80.Bm, 34.80.Dp, 34.80.Nz

I. INTRODUCTION

In order to obtain a thorough test of any general
electron-atom scattering theory it is necessary to have an
extensive set of reliable measurements of various observ-
ables at many energies and angles. From the theoretical
point of view two aspects of the scattering theory require
testing. First we must be able to describe the structure
of the atom, together with the complete set of excited
target states, in the absence of the projectile. Second we
must be able to take into account the dynamics of the
interaction correctly. One of the more dificult aspects
of the dynamics is the proper treatment of the exchange
between the projectile electron and the atomic electrons.
Another problem involves incorporating the effect of the
in6nite set of discrete target excited states as well as the
target continuum.

Rather than testing the descriptions of the structure
and the dynamics simultaneously, an electron-atom scat-
tering theory may first be applied to the hydrogen atom.
This system is ideal for the theorist as the atomic struc-
ture is simple and is known analytically. A great deal of
theoretical attention has been given to electron-hydrogen
scattering. Unfortunately atomic hydrogen is a very dif-
ficult target for experimentalists. Though there is a great
deal of data at a very broad range of energies, most data
are averaged over the singlet and triplet spin states, thus
losing the information that allows a direct test of the
theoretical treatment of exchange.

A most extensive set of measurements that select
spin states has been carried out for electron scattering
on sodium by McClelland, Kelley, and Celotta [1, 2],
Scholten et al. [3], Kelley et aL [4], and I orentz et al. [5].
They measured the ratio of triplet-to-singlet scattering
for the 3 S—3~S and 3 P—3 S channels, as well as the
angular momentum transferred to the atom perpendicu-

lar to the scattering plane for singlet, triplet, and spin-
averaged scattering. The inelastic data were gathered
using superelastic techniques. We use the fact that the
theory is time-reversal independent, i.e. , the 3zS—3zP
channel is equivalent to the 3 P 3zS chann—el. In addi-
tion there are the measurements of the ratio of final-to-
initial polarization perpendicular to the scattering plane
carried out by Hegemann et al. [6]. All of these measure-
ments involve the determination of ratios at each angle,
which do not sufFer from the considerable difficulties asso-
ciated with accurate measurements necessary in absolute
experiments, such as when measuring difFerential cross
sections.

Whilst the structure of the sodium atom is not as sim-
ple as that of hydrogen it is very well modeled as a hydro-
genlike atom of one valence electron above a frozen core.
Zhou et al. [7] showed that the frozen-core one-electron
wave functions of the sodium atom can be improved by
the addition of a phenomenological polarization poten-
tial which leads to eigenenergies which are in excellent
agreement with experiment.

The electron-atom scattering theory that we use is
the coupled-channel optical (CCO) method based on the
work of McCarthy and Stelbovics [8]. This is a general-
ization of the close-coupling (CC) formalism where only
a finite set of the low-lying target discrete states are cou-
pled together. In the CCO method we also couple the
low-lying target discrete states (P space), but in addition
the effect of the higher discrete and continuum states (Q
space) is taken into account via a complex nonlocal po-
larization potential. This potential is calculated ab initio
in the weak-coupling approximation [9]. By this we mean
that we do not allow any coupling between distinct Q-
space states, but direct coupling between P-space states
and Q-space states is included. This approximation is
readily tested for discrete states by seeing the effect of in-
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terchanging a particular state between P and Q spaces.
The only way we have of testing the treatment of the
continuum is by comparison with experiment.

Our CCO formalism using symmetric P and Q projec-
tion operators [9] has been extensively tested at a broad
range of energies by getting excellent agreement with dif-
ferential cross-section measurements of electron scatter-
ing on atomic hydrogen [9, 10] and on sodium [ll, 12].
The theory is applicable to the complete energy range
spanning the low-, intermediate-, and high-energy regions
of atomic physics.

In a preliminary report of this work [13]we showed that
the spin asymmetries at 10 and 20 eV are greatly infiu-
enced by continuum states. We found that at some angles
the inclusion of the continuum leads to a large change
from singlet dominance to triplet dominance, and is in
complete agreement with experiment. This confirms an
earlier finding of McCarthy, Mitroy, and Nicholson [14],
who approximated the optical potential by an equivalent
local potential. In this work we apply our CCO theory to
the broad range of energies measured by McClelland and
co-workers [1—5]. We find that the quality of the scat-
tering theory is so good (general quantitative agreement

I

with experiment is achieved at all energies) that we are
able to examine the quality of the structure representa-
tion as well.

II. THEGRV
Before we can begin writing down the CCO equations

of scattering we must define the approximations we use
in describing the structure of the sodium atom. We get
the one-electron core wave function ]@~) by solving the
self-consistent-field Hartree-Fock equations [15] for the
ground state of the sodium atom. As in Refs. [11,12] to
get the complete set of one-electron noncore target states
~P~), discrete and continuous orthogonalized to the core
states, we solve the frozen-core Hartree-Fock equations
[16]. However, we also add a phenomenological core-
polarization potential, which considerably improves the
one-electron energies. Calculations that use wave func-
tions generated with this potential we denote by FCHF+,
and those without by FCHF. Thus our noncore target
states ~P~) satisfy

where

v Pz(r) = ——+ v& ~(r) +2 ) d r', Pz(r) —)Fc Z

and where the notation C indicates the set of frozen-core
states. For sodium we take the core to be 1sz2s22ps iS.
The polarization potential v»i, which is intended to ap-
proximate virtual excitations of the core, is given by Zhou
et at. [7]

vp, )(r) = "(1—exp (r/p) j—,

where ag = 0.99ao and p = 1.439ao. With this choice of
the polarization potential we reproduce the experimental
ionization energies [17] to almost four significant figures,
an improvement of around two significant figures on the
plain frozen-core model, see Table I. In our earlier work
[11—13] we believed that having correct one-electron en-
ergies and associated wave functions ~P~) was not very
important away from excitation thresholds. In the course
of the present work we found that these play a small, but
significant, role in the description of the l~ parameter
at all energies.

The theory that we use to describe electron-atom scat-
tering is based on the work of McCarthy and Stelbovics
[8]. They formed and showed how to solve the CCO equa-

tions in momentum space using the Lippmann-Schwinger
equation. The major enhancements have been carried
out by Bray, Konovalov, and McCarthy [9] who defined
a considerably improved optical potential using symmet-
ric P and Q projection operators, and Bray et al. [18]
who showed how to solve the coupled equations using
the distorted-wave representation. The latter is a com-
putational technique used throughout this work which
considerably reduces the numerical difficulties associated
with solving the Lippmann-Schwinger equation.

Rather than treat the sodium target by the
independent-particle model as was done in Ref. [8],
we consider the electron-sodium scattering system as a
three-body problem of an inert core, one valence, and one
projectile electron. The problem is then similar to the
electron-hydrogen scattering problem, except that the lo-
cal electron-proton potential is replaced by the nonlocal
electron-core potential v c of Eq. (2).

All matrix elements in the Lippmann-Schwinger equa-
tion are written as two-electron matrix elements. This
integral equation for the T~ matrix, where S is the total
spin, in the distorted-wave representation [18] is
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TABLE I. Ionization energies (eV) of the low-lying
sodium states. The pure frozen-core Hartree-Fock results are
denoted by FCHF. The results vrith an added phenomenolog-
ical polarization potential given in Eq. (3) are denoted by
FCHF+. The experimental values are due to Moore [17].

indicate outgoing or incoming spherical-wave boundary
conditions, respectively. The distorted waves Ik~+&) are
the complete set of solutions (including bound states) of

(5)

State FCHF FCHF+ Expt. where we take U to be

3s
4s
5s
6s
3p
4y
5p
6p
3d
4d
5d
6d
4f
5f
6f

4.956
1.910
1.009
0.622
2.980
1.370
0.787
0.511
1.515
0.852
0.545
0.379
0.850
0.544
0.378

5.140
1.947
1.022
0.629
3.040
1.387
0.795
0.515
1.522
0.856
0.547
0.380
0.851
0.544
0.378

5.139
1.948
1.024
0.630
3.038
1.387
0.795
0.516
1.523
0.856
0.548
0.381
0.851
0.545
0.379

where the projectile with momentum ko is incident on the
target with the valence electron in the ground state Igo),
energy so, above the frozen core, and where E = eo+k02/2
is the on-shell energy. The indices (+) or (—) are used to

f s„ i40(~')I'
(6)

The most important criterion that this potential satisfies
is that it is Z/r —at the origin, and falls to zero quite
rapidly. This potential is used to remove the Z/r be-—
havior at the origin in the V& (8) matrix elements in (4),
and so achieves very rapid convergence in the integrand
as a function of increasing k . Utilizing the potential U,
the maximum k' that we require in (4) is of order 3 a.u. ,

whereas without it we require k' of order 100 a.u. . This
potential is very useful in testing the numerical analysis
since the solution of the Lippmann-Schwinger equation
(4) must be independent of U.

Writing the coordinate space-exchange operator as P„
the matrix elements of Vg(8) are given [9, 18, 19] by

(kQ, I Vg I P, k') = (kQ, I
v —U+ viz(l+ (—1) P„) I P, k') + (—1) (1 —8)(e;+e; —E)(kIP, )(P,Ik')

+~" 8 ):(&'+ s —E)(kid~)(4~1k') + (k&i I &~+ ( I)'&~&.—
I &' k')

6P

where viz is the electron-electron potential, and Vg is
the complex nonlocal polarization potential [9] which is
calculated ab initio subject to the weak-coupling approx-
imation in Q space. The constant 8 above is arbitrary.
Bray and Stelbovics [19] have shown that any nonzero 8
leads to a unique answer for the T matrix independent
of 8, both on and ofF the energy shell. In our previous
work [9—12] we had in effect 8 = 0. Stelbovics [20] has
shown that for 8 = 0 only the on-shell T matrix is defined
uriiquely which explains why we achieved stable results.
However, we have found that as the number of P-space
states is increased, off-shell instability afFects the on-shell
stability. This problem is eliminated for 8 g 0. In this
work we take 8 = 1 since it completely eliminates the
second term in (7).

Another major difFerence in the potential matrix ele-
ments used here is the absence of core-overlap exchange
terms (see Refs. [12, 13] for example) that arose when
McCarthy and Stelbovics [8] treated alkali-metal atoms
by the independent-particle model. We found that these
terms do not make any notable contribution, validating
the treatment of the sodium-electron scattering system
as a three-body problem.

The Lippmann-Schwinger equation (4) is solved in
partial-wave formalism [8] with each partial wave being

[6]
P'/P = 1 —Igl'/~ (8)

treated in exactly the same way, with as many partial
waves taken as necessary for convergence. We take ad-
vantage of the fact that for nonelastic channels for suffi-
ciently large total orbital angular momentum the T ma-
trix approaches the first Born matrix element, and we are
able to take account of the higher partial waves by doing
an analytic Born subtraction [8] without having to calcu-
late them. For the elastic channel, large partial-wave ma-
trix elements are dominated by the dipole polarization,
which is not included in the Born approximation. We ex-
trapolate, if necessary, using the relation [21] T = n/Ls,
where a is derived by matching. The number of partial
waves that we calculate varies with the projectile energy.
For example at 1, 10, and 40 eV we calculate, respec-
tively, 10, 30, and 60 partial waves explicitly by solving
the Lippmann-Schwinger equation.

The relations between various observables, such as the
spin asymmetry A,„or L~, and the partial T-matrix
elements may be found in Ref. [10]. Writing the direct
and exchange amplitudes as f and g, respectively, with
corresponding singlet S = f + g and triplet T = f —g
amplitudes, the ratio of the final-to-initial polarization
perpendicular to the scattering plane P'/P is given by
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where o = (ISI + 3ITI )/4 is the difFerential cross sec-
tion. This ratio has been measured for electron-sodium
scattering at 4.0 and 12.1 eV by Hegemann et at. [6]. For
the elastic channel, writing S = a, e'&' and T = a&e'~',
McClelland et at. [2] expressed P'/P as

2r + 2~r cos(+p, i)
+St —PS Pt (9)

where r = ITlz/ISI2 is the ratio of triplet-to-singlet scat-
tering, and combined their measurements of r with those
of P'/P to provide a set of measurements for cos p, i. This
gives a measured value for the magnitude of p, i.

The ratio r may be equivalently expressed as spin
asymmetry A,»

1 —T

1 +3T (10)

Ls IS+il' —IS-il'
ls+il'+ ls-il'

and triplet

Lr I&+il' —I&-il'
I&+il'+ I&-il'

scattering. The spin-averaged L~ is

ls+il' —ls il'+ 3(l&+il' —P' il')
ls+il'+ ls-il'+ 3(l&+il'+ I&-il')

'

(12)

(13)

III. DISCUSSION

Before we proceed to do any calculations we have to
decide which discrete target states to include in P space.
The matrix elements of the operator Vq are calculated
in the approximation that neglects coupling between dis-
tinct Q-space states. This approximation is readily tested
internally for the discrete Q-space states. In calculating
differential cross sections [ll, 12] we found that it is a very

The spin asymmetry A,„has the advantage that it al-
ways remains finite with a minimum of —1/3 when triplet
scattering is dominant (r is infinite), and a maximum of
1 when singlet scattering is dominant (r = 0). A value
of zero indicates that ISI = ITI, which often indicates
that the exchange amplitude is zero.

The determination of A,„or r, the absolute differen-
tial cross section, and the phase difference p, i completes
the characterization of the elastic-scattering process. For
the inelastic-scattering process 3 S—3 P, or its time re-
versal, the situation is a little more complicated. Here
the singlet and triplet amplitudes split into two parts,
one for each magnetic sublevel ML, = +1 and ML, ———1
(the "natural" coordinate system is being used, i.e. , the z
axis is normal to the scattering plane). Experimentally,
the magnitudes of these four amplitudes S+i, S i, T+i,
and T i may be determined by measuring the differen-
tial cross section, the ratio of triplet-to-singlet scattering,
both summed over the magnetic sublevels, as well as the
angular momentum transferred to the atom perpendicu-
lar to the scattering plane [4] for singlet

good approximation. Its main advantage is that it allows
a relatively small number of P-space states to be used,
which saves considerable computational time. In testing
this approximation, when calculating the spin asymme-
try and L~ parameters, we found that it was not as good
as it was for the differential cross sections. This can be
seen in the work by Madison, Bartschat, and McEachran
[22] who compared experiment and their distorted-wave
second-order-Born (DWB2) calculations with the 3CCO
[12] spin asymmetries and L~ generated from the T
matrix elements that were only checked against stability
in the differential cross sections.

The remedy is very simple. As it is the calculation of
the continuum contributions that takes around 95'% of
the computational time, we first take as large a P space
as necessary to get complete convergence in the treat-
ment of the discrete states. We then add the continuum
contributions to as many of the low-lying P-space states
as necessary, until convergence has been obtained.

We find this approach rather attractive. Using tech-
niques outlined by Bray and Stelbovics for real potentials
[19] we can find the number of discrete states necessary
for complete convergence just using the close-coupling
formalism very quickly. Having found the minimal P
space necessary for convergence we proceed to add the
contributions from the complex polarization potential Ug
for the continuum to the potential matrix elements cou-
pling the low-lying states of P space. This allows us to
observe the eKect of the continuum on the scattering as
well as observing the convergence as the number of P
space states with continuum contributions is increased.
We denote such calculations by the notation nCCOm,
where we use n to denote the number of P space states,
and m the number of states whose coupling has contin-
uum contributions. It is the magnitude of m, that dom-
inates the length of the calculation. Previously, as in
[12], for example, we used the notation mCCO to in-
dicate that there were m P-space states and each one
had a contribution from Q space. A calculation nCCOrn
with n & m & 1 takes approximately the same amount of
computational time as the corresponding rnCCO calcula-
tion, and the former has the advantage of treating the n
P-space discrete states without resorting to the weak-
coupling approximation for any of the discrete states.
In this formalism Q space contains only the continuum.
However, not all couplings between P-space states and
the continuum have been included. In particular, by com-
putational necessity the couplings between the high-lying
P-space states and the continuum are omitted. These
couplings were also never included in the mCCO calcu-
lations. Another advantage of the nCCOm calculations
over the mCCO ones is that the transitions between the
ground state and all of the n elastic and excited states
are simultaneously calculated.

The number of P-space states necessary for complete
convergence depends on the scattering channel of interest
and the projectile energy. In this work we concentrate on
the elastic and 3 P channels. We found that of the en-
ergies which we considered the one requiring the largest
number of P-space states was 4.1 eV. These states were
the 15 states that have the principal quantum number
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IV. RESULTS

We apply our CCO theory at projectile energies where
there is a considerable set of measurements of spin-
dependent observables. The results are presented only
in pictorial form. The spin-dependent complex ampli-
tudes at 1' intervals for the transition from the ground
state to any one of the 15 states in Table I, or results at a
different energy to those presented here, may be obtained
by sending an electronic-mail request to the first author

In Fig. 1 we look at the elastic spin asymmetries mea-
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FIG. 1. Elastic spin asymmetries calculated using 15-state
close-coupling for electron-sodium scattering at projectile en-
ergies of 1.0 and 1.6 eV. The calculation denoted FCHF+
uses the phenomenological polarization potential (3) to im-
prove the electron ionization energies, FCHF does not. The
measurements are due to Lorentz et aL [5]. Quantitative re-
sults may be obtained by corresponding with the Grst author.

range from 3 to 6 and orbital angular-momentum range
from 0 to 3 (see Table I for the one-electron energies).
To get convergence in the inclusion of continuum contri-
butions we had to have these contributions in the Grst
six states with t & 2. We denote these calculations by
15CCO6, each of which takes approximately 2 h CPU
time per partial wave on our local IBM RS6000/530 com-
puters. A corresponding 15CC calculation takes only 6
min per partial wave. The reason that the continuum
contributions take so long is that the nonlocal complex
polarization potential Vg is a second-order term which
is generated for each channel by incorporating over 100
continuum states (20 states for each t = 0 to 5) used to
integrate over the continuum momentum [9].

sured by Lorentz et at. [5] at projectile energies of 1.0 and
1.6 eV. At these very low energies, below the first excita-
tion threshold of 2.1 eV for the 32P channel (see Table
I), only the virtual excitation of the first few low-lying
excited states is necessary to achieve convergence to bet-
ter than 5%. The effect of the continuum is completely
negligible. We compare two 15CC calculations with ex-
periment. One, which we denote by FCHF+, uses the
phenomenological polarization potential (3) to define the
noncore wave functions. The other, denoted by FCHF,
leaves this potential out. We see that at 1.0 eV the two
calculations are not very different, and are in good agree-
ment with experiment. However, at 1.6 eV there is a
very large discrepancy between the two calculations with
the FCHF+ being in excellent agreement with experi-
ment. It should be noted that we do not expect perfect
quantitative agreement at these energies. Apart from the
fact that we are treating electron-sodium scattering as a
three-body problem, the electron beam used in the exper-
iment has a width of around 0.1 eV. Our investigations
have shown that the rate of change in the asymmetries
as a function of energy is particularly high at 1.6 eV. The
difference between the FCHF+ and FCHF calculations
are indicative of this rate of change. At all other ener-
gies, unless otherwise stated, we use the FCHF+ model
for the wave functions.

In Fig. 2 we compare the results of our 15CCO6 and
15CC (to see the efFect of the continuum) calculations
at 4.1 eV, with various measured observables. The mea-
surements of P'/P (Hegemann et at. [6]) were performed
at 4.0 eV; however, we found that the theoretical results
are not significantly altered between these two energies,
and we presume that this is the case experimentally also.
Whilst there is a discrepancy at the backward angles
for this and the derived cosy, i parameter, we are in-
formed [23] that at this energy the efFect of sodium dimer
molecules may be to increase the P'/P measurements by
up to 0.06 at backward angles. This may be the cause of
this discrepancy.

At this energy the ionization channel is still closed, so
as expected the effect of the continuum on the scatter-
ing is very small. We find very good agreement with the
spin asymmetries (McClelland et al. [1,2]) for both chan-
nels and with the L~ parameters. For the 3 P channel
we present the equivalent spin asymmetry and the ratio
measurements to show how they are related.

In Fig. 3 we compare the 15CCO6, 15CC, and the
DWB2 of Madison, Bartshat, and McEachran [22] calcu-
lations at 10 eV with various measured observables. At
this energy the complete set of excited discrete and ion-
ization channels is open. We see that whilst the 15CC
calculation, which is convergent in the treatment of the
discrete states, gets good qualitative agreement with ex-
periment (Scholten et at. [3], Kelley et at. [4]) the addi-
tion of the continuum contributions brings about excel-
lent quantitative agreement with the exception of the sin-
glet L~ parameter near 60'. We will see that this prob-
lem is unique only to this energy. At all other energies
we require only small contributions from the continuum
to any of the Iz parameters in order to get quantitative
agreement with experiment. This may prove to be a test



322 IGOR BRAY AND IAN E. McCARTHY 47

0.9 ""asymmetr

0.6

M

0.3

0.0 .

-0.3

0 ~ 3

0.2

0. 1

0.0

-0. 1

-0.2

0 ~ 9

0.6 .

0.9

0.6

0.3

0.0

-0.3

0.9

0 ~ 6

0.3

0.0

-0.3

0.9

0.6

inglet

0.9

0.6

0.3

0.0

-0.3

-0.6

-0.9

2. 4

2. 1

1.8 "

1 ~ 2

0.3

0.9

0.6

ratio
FIG. 2. Calculations of s in-

observables for lor e ectron-sodium scatte
projectile energy of 4.1 eV. The c
denoted by 15CCO6
tinuum added to

has the ee ect of thecon-
a e to the first six states

'/

he rest are due to McC
Quantitative results m b '

d
ue o cClelland et al.

responding with th fi
u s may be obtained

e rst author.

0.3 . 0.3 0.3

0.0 0.0 0.0

-0.3

-0.6

-0.3

-0.6 15CC

40 80 120 160 0 40 120 160 0

scattering angle (deg)
40 80 120 160

LsL~ —Lg + 3r(Lg —Ig). (14)

case for an exexact treatment of the efFect
h i . I ss interestin to

fth e ratio r and the
e

not independent. For example 'I

This relation holds for the measure
0

p

1 dar reement with a11 the
h h d id fth bea ovee uatio

e

deceptive wh en we compare the c
q tion, this turns out t bu o e

emphasizes th e importance of havin
e combined results. Th's. 1s

avj.ng measurements of

0.9

0.6

0.3

0.0

-0.3

0.6

0.3

0.0 .

-0.3

0.9

0.6

0.3 .

-0.3

-0.6

-0.9

10

10

10

10

I

asymmetry '
10

10

10

10

0.9

0.6

0.3

0.0

-0.3

-0.6

-0.9

10

10

10

10
1

10

10

10'

10

10

10

10

0.9

singlet 0.6

0.3

0.0

-0.3

-0.6

-0.9

et DCS

15CC06
15CC 1'

DWB2

FIG. 3. Calculations of s i-p - p
s or e ectron-sodium scatteri

projectile energy f 10
d ot d b 15CCO

o eV. The

continuum dd d
6 has the efF

a e to the firs
fact of the

c culation. The secon-
distorted- a B alve orn calculation of

ac a [ 2] is deno ted

d to Shl
e measurements d

and Kll t l. 4
c oten et al. 3 i

d oted omb
e a . 4 (elastic . Th

urements of the di

e o alned by corresy responding with the

40 80 120 160 0 120 160 0

scattering angle (deg)
40 80 120 160



SPIN-DEPENDENT OBSERVABLES IN ELECTRON-SODIUM. . . 323

spin-dependent observables for a thorough test of theory.
We followed the example of MeClelland et at. [2] to

generate the difFerential cross section for both singlet and
triplet scattering by combining the measurements for the
spin asymmetry with those of the spin-averaged differen-
tial cross section (Srivastava and Vuskovic [24]). These
are in good quantitative agreement with our results.

The DWB2 calculation is surprisingly good at this en-

ergy. As it is based on a perturbative approach we do
not expect it to be convergent at this low energy. It will
be interesting to see how the DWB2 calculation improves
further with increasing energy.

In the next figure (Fig. 4) we compare various mea-
surements at 12.1 eV with the 15CCO6 and 15CC calcu-
lations. The latter is calculated with two sets of wave-
functions FCHF+ and FCHF. We do this to show what
effect the choice of wave functions has on the scattering
at an energy well away from any excitation threshold.
We see that there is an angular shift to the left from the
FCHF+ to the FCHF calculations in the L~ parameters,
most pronounced for the triplet and summed L~. This
happens to be the situation at the other energies also (see
Bray [13] for calculations of Lz and Lz at 10 and 20 eV
using FCHF wave functions). Since in the triplet and
spin-averaged cases there is a very large rate of change in
the intermediate angular range, we find that the FCHF+
calculations result in much better agreement with exper-
iment than the corresponding FCHF calculations.

By comparing the 15CCO6 with the 15CC results we
once again see that the effect of the continuum is quite
large and brings about excellent agreement with experi-
ment. At this energy we can claim complete quantitative

agreement with available measurements of the spin asym-
metry and cosy, & (MeClelland et aL [2]), P'/P (Hege-
mann et at. [6]), and L~ (Scholten et at. [25])]. It is
unfortunate that spin-resolved measurements of the lat-
ter parameter are not available at this energy, and so we
are unable to see if the discrepancy at 10 eV for the I f is
also a problem at 12.1 eV. Given the demonstrated sen-
sitivity of the I& parameter at 10 eV, it is worth noting
that agreement around 60' with the spin-averaged L~ at
this energy is considerably better than at 10 eV.

As at 4.1 eV, we give both the spin asymmetry and the
ratio for the 32P channel. In this case the effect of the
continuum is greatly emphasized at the forward angles
by looking at the ratio parameter.

In Fig. 5 we look at the 20-eV results. Here we see
the greatest effect of the continuum on the spin asym-
metries (McClelland et aL [1], Kelley et at. [4]), which
brings about remarkable agreement with experiment. For
the inelastic channel, while qualitative agreement is ex-
cellent, quantitative agreement is not as good as it was
at 10 eV where the efFect of the continuum was smaller.
Agreement with the L~ parameters is complete, with the
continuum having only a marginal effect. This under-
lines the sensitivity of the asymmetry parameter. Using
the relation (14) we can express r, and therefore A,„, in
terms of just the L~ parameters. Looking at 120', for
example, we see excellent agreement between experiment
and theory for the I~ parameters. However, agreement
between theory and experiment for the A,„parameter at
this angle is quite poor though both theory and experi-
ment do satisfy relation (14). Another way of seeing this
sensitivity is by observing that the continuum does not
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Lorentz and Miller [26] in conjunction with the asym-
metry measurements to generate the singlet and triplet
differential cross sections. These have been normalized
to the theory using integrated cross sections, and are in
good agreement with the theory

Finally, in Fig. 6 we look at the 40-eV results. There
are no elastic asymmetry measurements so we use the
theoretical values to generate the singlet and triplet dif-
ferential cross sections from the spin-unresolved measure-
ments (Srivastava and Vuskovic [24]). We find good
agreement between the measured and calculated difFer-
ential cross sections.

The continuum once again has a big effect on the asym-
metries for both channels. The theory predicts a bigger
peak around 40' for the inelastic channel than the exper-
iment (Scholten et al. [3]). This is likely to be due to the
inexact treatment of the continuum. It should be noted
that at this energy the magnitude of the asymmetries has
dropped considerably to be much nearer zero, indicating
that exchange effects are much less important at this and
higher energies.

Agreement between the 15CCO6 results and the mea-
surements of L~ (Scholten et aL [3]) is excellent. The
quality of the DWB2 calculation has improved markedly,
particularly for the singlet L~ parameter.

V. CONCLUSIONS

We have found that our CCO description of the re-
action mechanism in electron-sodium scattering is ex-
tremely good. As a result, we have been able to test
the description of the structure of the atom. Calculat-
ing the target-wave functions, with or without the phe-
nomenological polarization potential (3), has a small but
significant effect on the results. The addition of this po-
tential considerably improves agreement of the theory at
just below the first excitation threshold. This effect we
anticipated. However, we also found that it shifts the
L~ parameters a few degrees to the right around the in-
termediate angles at all energies, thus giving excellent
agreement with experiment.

By looking at the measurements of the spin asymrne-
tries and P'/P we have seen that exchange plays a sig-
nificant role (whenever A,„P0, P'/P ( 1) at all of the
energies considered. For energies above the ionization
threshold we saw that a close-coupling calculation that

treats all bound excited states to convergence is unable
to reproduce the experiment. Addition of the contin-
uum contributions yields remarkable quantitative agree-
ment with experiment, suggesting that the exchange am-
plitudes are sometimes infiuenced predominantly by the
continuum channel.

The effect of the continuum on the I~ parameters has
been found to be relatively small at all energies, but is
generally necessary to give quantitative agreement with
experiment. However, the 10-eV singlet L~ measure-
ments suggest that at this energy the continuum should
have a large effect around 60'. We conclude this be-
cause the 15CC calculation presented is convergent in
the treatment of the discrete excited states. We have
also checked that this region is not significantly affected
by either choice of target-wave functions.

While we have presented results which give gener-
ally excellent quantitative agreement with experiment,
it must be remembered that the contribution of the con-
tinuum upon the scattering has been calculated within
the weak-coupling approximation. Bray and Stelbovics
[19] have demonstrated that the electron-hydrogen scat-
tering problem can be solved to convergence using very
large orthogonal Laguerre-basis expansions for the tar-
get wave functions. As these result in square-integrable
states, a close-coupling formalism may be applied directly
without resorting to the coupled-channel optical method
presented here. We intend to apply these ideas to the
sodium target as well. Perhaps this will help to resolve
the remaining minor discrepancies.

Though in this work we have concentrated on the
channels and energies where there exists the largest
set of spin-dependent data, the results arising from the
15CCO6 calculations include transitions from the ground
state to any one of the states given in Table I, and may
be obtained by electronic-mail. Also, upon request the
15CCO6 calculation may be performed at any other en-

ergy of interest to the reader.
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