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Theory and computation of electric-field-induced tunneling rates of polyelectronic atomic states
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It is shown how to obtain efficiently quantum-mechanical tunneling rates (and energy shifts) induced

by electric fields for arbitrary polyelectronic states. The problem is formulated as one of solving nonper-

turbatively a complex-eigenvalue matrix equation, constructed in terms of two separately optimized mul-

tidimensional function spaces, Q and P. The theory is demonstrated on two prototypical ground states,
He 1s 'S and Li 1s 2s S, as well as on the Li 1s 2p P' excited levels (ML =0,+1). For example, for
field strengths F=3.86X10 -3.86X10' V/cm the He 'S tunneling rates range from 5.79X10' to
7.75 X 10' s

PACS number(s): 32.60.+ i

I. FIELD-INDUCED TUNNELING RATES
FOR POLYELECTRONIC STATES

The LoSurdo-Stark eftect has a history spanning most
of this century. It refers to the shifting and broadening of
atomic and molecular states under the inAuence of an
external electric field. As regards the near-zero-field en-
ergy shift and its breakdown into linear and nonlinear po-
larizabilities, its study has defined a whole field of experi-
mental and theoretical research covering one-electron as
well as many-electron systems, and a huge amount of re-
lated information is available, albeit of varying quality
(e.g. , see Refs. [1—8] and references therein}.

On the other hand, our knowledge of the dynamics of
this phenomenon, i.e., of the energy broadening due to
field-induced tunneling (FIT), is limited to systems which
are treated quantum mechanically or semiclassically as
monoelectronic, such as the hydrogen atom, high-lying
Rydberg levels, or negative ions [6—27]. For example, for
the H atom there is an accumulation of methods and re-
sults on the tunneling rates (energy widths) of the ground
and of the excited states [15—27]. Most of the theories
are specific to the hydrogenic system (e.g., use of parabol-
ic coordinates). A few, such as those of Refs. [26,27] are
formulated in such a way so as to be computationally im-
plementable for many-electron states.

Recent work has shown that it is possible to compute
FIT rates (FITR's} using polyelectronic, electronic struc-
ture dependent methods [27—30]. The first applications
involved the ground states of the negative ions H and
Li [28,29] as well as multiply excited states (MES) [30].
For the ground states, the formal complexity is reduced
due to the nonexistence of discrete states of the same
spin. However, consideration of neighboring bound
states does become necessary in MES of negative ions
[30]. On the other hand, in negative ions the core of the
final state is neutral and more easily polarizable than an
ionic one. This implies that the theory must incorporate
the important couplings of low-lying excited states of the
neutral system, thus adding intriguing complexity to the
problem. This has been done in the case of the strongly

correlated Li ls 2s 'S [28], where the mixing of the
final core states Li 1s 2s S and 1s 2p P' is important
and results in observable physical effects (see Fig. 2 of
Ref. [28]).

It follows from the above that for ordinary ground or
low-lying excited states of neutval atoms or molecules,
the subject of FITR's remains terra incognita. How large
are such quantities, what magnitude of field strengths is
necessary to make them observable, what is their depen-
dence on electronic structure and angular momentum,
and how can one compute them from first principles'

This paper presents results of many-electron computa-
tions of FIT rates in neutrals, in an attempt to provide
answers to the above questions. Apart from the basic
physics, knowledge of such quantities could prove useful
for the understanding and modeling of phenomena where
electric fields are created, such as discharges. We con-
sidered three prototypical atomic states: The two-
electron He 1s 'S and the three-electron Li 1s 2s S and
1s 2p P . The last two are connected by an electric di-
pole transition. Possible measurement of the linewidth
variation as a function of field strength would produce in-
formation on FITR s, provided the variation of the radia-
tive channel due to the field-induced mixing of states is
accounted for. (See Ref. [8] for a measurement and cal-
culation of the energy shift of the Li D

&
line. )

II. THEORY

The system "neutral atom plus dc field" constitutes an
electronic structure dependent many-electron problem
whose solution to good accuracy can be achieved as fol-
lows. Upon application of the field, the discrete spectrum
changes into a resonance spectrum whose states corre-
spond to the solutions of the complex-eigenvalue
Schrodinger equation (CESE) [27]

(H —zo)4=0,
where
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N

H=H„+ gF r; (2)
which is diagonalized repeatedly until the stability con-
ditions

and az =0. ' =0
Qg z=zo

zo=EO+b(F) ——1(F) . (3)

Hgg Hgp
H=

Hpg Hpp

H~ is the free-atom Hamiltonian and F represents the
external electric field. The shift 6 and the width I are
functions of the field strength. Eo is the energy of H~ in
the state of interest.

Since %' represents a nonstationary state decaying into
the electronic continuum, it satisfies a special asymptotic
boundary condition that makes it unnormalizable [27].
Nevertheless, the solution of Eq. (1) is feasible in terms of
function spaces which are square integrable, provided the
transformation p=re' is applied [27]. This coordinate
rotation was used on the Hamiltonian operators for the
computation of the LoSurdo-Stark ground-state reso-
nance of the H atom and the solution was achieved by
direct diagonalization of the non-Hermitian Hamiltonian
on a large square-integrable basis set [19]. However, for
decaying states of many-electron systems, the brute-force
diagonalization approach is unrealistic, just like it is for
the much "simpler" many-electron problem correspond-
ing to the stationary states of the conventional real eigen-
value Schrodinger equation.

In a series of papers ([27—32] and references
therein) it has been shown how state-specific electronic
structure theory, based on Hartree-Fock (HF) or
multiconfiguration HF zeroth-order functions, can be
combined with methods accounting for the peculiarities
of decaying states, in order to treat reliably a number of
nonstationary phenomena in atoms and molecules. For
the general case of an X-electron system with a discrete
and a continuous spectrum, we divide the total function
space into two multidimensional parts, Q: [4;] and P:

The Q space is fixed by considering judiciously the
electronic structure and spectrum of the system under
study, in conjunction with the dipole form of the pertur-
bation. Its elements are state-specific correlated or un-
correlated wave functions of the significant states which
make up the Hamiltonian matrix H.

The P space is not fixed. It contains parametrized [f3 is
defined as the nonlinear parameter, see Eq. (5)] virtual
configurations with real as well as complex orbitals
representing contributions from the multichannel high
Rydberg and scattering states. It is the variational op-
timization of this space via diagonalization of H (see
below) that allows the fine tuning of the concerted eff'ect

of field-induced state mixing and of electron correlation
and leads to the determination of the energy width and
shift of the perturbated state [Eq. (3)].

Having thus defined the Q and P spaces, we construct
the complex symmetric "dressed" matrix of the atom
plus field Hamiltonian

are satisfied for the root of H [Eq. (4)] whose overlap with
the unperturbed reference function is maximum. The pa-
rameter Il is the nonlinear parameter of the Slater orbitals
in the P space (see below).

III. APPLICATION TO THE He 1s 'S, Li 1s 2s S,
and 1s 2p P STATES

Let Us first consider the He 1s 'S state. If understand-
ing and efFiciency for the general polyelectronic problem
is to go along with sufhcient accuracy, it is necessary to
incorporate only that part of the radial and angular
correlation which contributes to the overall nature of the
wave function and to its outer region the most. Hence,
based on the accumulated knowledge on the problem of
He electron correlation, in order to define the reference
vector, i =0, we computed a six-term numerical
multiconfigurational Hartree-Fock (MCHF) wave func-
tion [33]

4&0('$)=0.996(ls ) —0.062(2s )+0.063(2p )
(6)—0.007(3s )+0.010(3p ) —0.012(3d ),

EMCHF
—2.901 84 a.u.

The remaining 4; (i&0) in the Q space of the He ls 'S
are chosen according to the following syllogism. The two
valence electrons are correlated in the ground state main-
ly as in Eq. (6), where the ls character is overwhelming.
In other words, the Fermi sea (FS) (i.e., the set of orbitals
making up the important zeroth-order configurations) is
given reliably by the 1s orbital only. Nevertheless, in or-
der to push the level of accuracy and also in order to
demonstrate how our ideas can be applied to arbitrary
states, most of which have multiconfigurational Fermi
seas, in this application we have included the 2s and 2p
orbitals into the He S Fermi sea. Following this choice,
the @,. (i&0) configurations in Q were chosen as the sing-

ly excited 1snl, n =2, 3 l=0, 1,2, as well as the Fermi-
sea-induced doubly excited 2s2p and 2p3d 'P'. Because
convergence was good enough, we did not enlarge com-
putation by including doubly excited states of 'D or 'S
symmetry. However, we point out that such states ought
to be more important in heavier atoms, where they are
found much lower in energy than in He ( —57—60 eV),
and carry larger oscillator strengths.

The case of Li has difFerent characteristics. Its spectral
and polarization properties are dominated by the single
valence electron. Therefore, the portion of Q space
which contributes the most to the physics of tunneling
over a large range of field strengths is formed by uncorre-
lated Hartree-Fock configurations representing the
ground together with discrete Rydberg states:
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FIG. 1. Calculated quantum-mechanical tunneling half-
widths of the helium ground state over a range of applied static
fields. The axis of I /2 is on a logarithmic scale.

FIG. 2. Half-widths of the lithium ground state calculated
over a range of applied static fields.

TABLE I. Field-induced energy shift 6, half-width I /2, and corresponding tunneling
rate, R, for the LoSurdo-Stark effect of the helium ground state [R (sec ')]=4.136X10' [I (a.u. )]
[I' (V/cm)] =5. 14X 10 [F (a.u.)].

F (a.u. )

0.0025
0.0050
0.0075
0.0100
0.0125
0.0150
0.0175
0.0200
0.0225
0.0250
0.0275
0.0300
0.0325
0.0350
0.0375
0.0400
0.0425
0.0450
0.0475
0.0500
0.0525
0.0550
0.0575
0.0600
0.0625
0.0650
0.0675
0.0700
0.0725
0.0750

F (V/cm)

1.29x 10
2.57x 10
3.86x10'
5. 14x10'
6.43 x 10
7.71x10'
9.00x10'
1.03 x 10
1.16x10'
1.29x 10
1.41x10'
1.54x10'
1.67 x10'
1.80x10'
1.93 x10'
2.06x10'
2. 18x10'
2.31x10'
2.44x 10
2.57 X 10
2.70x 10
2.83x 10
2.96x10'
3.08x 10
3.21x10'
3.34x 10
3.47x10'
3.60x 10
3.73 x10'
3.86 X 10'

—b, (a.u. )

4.34x 10
1.74 x 10-'
3.91x 10-'
6.95x10 '
1.09 x 10-'
1.56 x 10-'
2. 13x 10
2.78 X 10-"
3.52x 10
4.35 x 10-'
5.26 x 10-'
6.27 x 10-'
7.36 x 10-'
8.54x 10
9.80 x 10-'
1.12x 10-'
1.26x 10
1.41x 10-'
1.58 x 10-'
1.75 x 10
1.93 x 10
2. 12x 10
2.32x10-'
2.52x 10
2.74x10-'
2.97 x 10-'
3.20x 10
3.45 x 10
3.70x 10
3.97 x10-'

r/2 (a.u. )

7.0x10 "
3.8 x10-'

8.50x 10
1.47 x10-'
2.21x 10-'
3.09x 10
4.09x 10
5.23 x10-'
6.49x10 '
7.89 x10-'
9.43 x 10-'
1. 11 X 10
1.30x10-'
1 ~

50x10-'
1.72 x 10-'
1.97x 10
2.24x 10
2.54x10 '
2. 87 x 10-'
3.25 x10-'
3.66x 10
4. 12x10-'
4.65x10 '
5.26x 10
5.96x10 '
6.79x10-'
7.84x 10
9.38x10

R (s ')

5.79x10'
3. 14x10'
7.03 x 10
1.22x 10
1.83x 10
2.55x 10
3.38 x10'
4.32 x10'
5.37 x10'
6.52x10
7.80x10'
9.20x10'
1.07x10"
1.24x10"
1.43 x10"
1.63 x10"
1.85 x10"
2. 10x10"
2.38x 10'
2.68 x 10'
3 ~ 03 x 10'
3.41 x 10'
3.85x10'
4.35 x 10'
4.93 x 10'
5.62x10"
6.48 x10"
7.75 x 10'
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TABLE II. Field-induced energy shift, half-width, and corresponding tunneling rate for the
LoSurdo-Stark effect of the lithium ground state.

F (a.u. ) F (V/cm) —6 (a.u. ) I /2 (a.u. ) R (s ')

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.010
0.011
0.012
0.013
0.014
0.015
0.016
0.017
0.018
0.019
0.020

5. 14x10'
1.03 x10'
1.54x10'
2.06X 10
2. 57 X 10
3.08 x10'
3.60x10'
4. 11x10'
4.63 x10'
5. 14x10'
5.65 x10'
6. 17 X 10
6.68 x10'
7.20 x10'
7.71x10'
8.22 X 10
8.74x10'
9.25 x10'
9.77 x10'
1.03 x10'

8.31x 10-'
3.33 x10-'
7.63 x 10-"
1.35 x10-'
2. 11x10-'
3.04 X 10
4. 15x10-'
5.44x10-'
6.94X 10
8.65 X 10
1.06 x 10-'
1.27X10 '
1.50x10-'
1.75x10 '
2.00X 10
2.26X 10
2.52X10 '
2.79 X 10
3 ~ 05 x10-'
3.31 x 10-'

1.9x10 '
1.35X 10
5.50x 10
1.68x 10
3.90X 10
7.57x 10
1.29 x10-'
1.98 x 10-'
2. 82X 10
3.81x10-'
4.90x10-'
6. 12X 10
7.45 x 10-'

1.57 X 10"
1. 12 X 10'
4.55 X 10'
1.17 X 10'
3.22 x10"
6.26x10"
1.06 X 10'
1.64x10"
2.34x10"
3. 15 X 10'
4.05 X 10'
5.06 X 10'
6. 16x 10"

No( S)= ls 2s, No( P ) = ls 2p, 4,&o. ls nl,
n =2, 3,4, J'=0, 1,2, 3 .

These account for valence electron excitations induced by
the interelectronic interactions (e.g. , 2s~3s) and by the
electric field (e.g. , 2s~2p~3d++4f) . Core or -core-
valence excitations are not expected to aA'ect the results
significantly.

The P space consisted of virtual configurations 1skl
and ls kl, where the coordinate of (kl) is complex,
p=re ' . The cores, He+ 1s and Li+ 1s, were comput-
ed separately, while the (kl) had the convenient Slater
form (kl)=p"+ 'e ~~, with 9s, 9p, 7d, 6f, 5g, 5h, 5i,
5k, 41,4m functions for He and for Li, which were kept
orthogonal to each other but not to the bound HF orbit-
als. The nonlinear parameter P is optimized according to
Eq. (5).

TABLE III. Field-induced energy shift, half-width, and corresponding tunneling rate for the
LoSurdo-Stark effect of the 1s 2p P'(ML =0) level of the lithium atom.

F (a.u. )

0.0005
0.0008
0.0010
0.0013
0.0015
0.0018
0.0020
0.0022
0.0025
0.0027
0.0030
0.0032
0.0035
0.0037
0.0040
0.0045
0.0050
0.0055
0.0060
0.0065
0.0070

F (V/cm)

2. 57 X 10
4. 11x10'
5. 14X 10
6.68 x10'
7.71 x 10'
9.25 X 10
1.03 x 10
1.13x10'
1.29 x10'
1.39x10"
1.54X 10
1.64X 10
1.80x 10
1.90X 10
2.06 X 10
2.31x10'
2.57 X 10
2.83 X 10
3.08 X 10
3.34X 10
3.60x 10

—6 (a.u. )

1.70 x 10-'
4.38 x10-'
6.88 X 10
1.18x 10
1.58 X 10
2. 31 x 10-'
2.89 X 10
3 ~ 54x 10
4.69 x 10-'
5.57x 10
7.09 x 10-'
8.26X 10
1.03 x 10
1.19X 10
1.47 x10-'
2.07 x10-'
2. 87 x10-'
3.84X 10
4.92 X 10
5.90x 10
6.77 x 10-'

I /2 (a.u. )

3.23 x10-'
8.59X10 '
1.28 x 10-'
2.22 X 10
2. 85 X 10
3.45 x 10-'
4.42 x 10-'
5.67 x 10-'
8.40X 10
1.18 X 10
2.34 x 10-'
4 09X10
1.01 X 10
7.30X 10
2.74x 10
7.33 x 10-'
1.57X 10
2.70X 10
4.22X 10

R (s ')

2.67x 10
7. 10x10'
1.06x10"
1.84X 10'
2.36 X 10'
2. 85 X 10'
3.65 X 10'
4.69 X 10'
6.95 X 10'
9.76x10"
1 ~ 93 X 10"
3.38x10"
8.35 x10"
6.04x 10"
2.27 X 10'
6.06x10"
1.30x10"
2.23 x10"
3.49 x10"
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FIG. 3. Half-widths of the 1s 2p P'(MI =0) level of the
lithium atom calculated over a range of applied static fields.

FIG. 4. Half-widths of the 1s 2p P (Ml =+1) state of the
lithium atom calculated over a range of applied static fields.
Note the difference between these results and those of Fig. 3.

IV. RESULTS

The results of our computations are presented in
Tables I—IV and in Figs. 1 —4. Energy widths as well as
shifts are presented. The tunneling rates (R) for the Li
states are much larger than those of the He ground state
for the same field strengths. For example, for F=0.020
a.u. the He 'S rate is 2.55X10 s ', while that of the Li
1s 2s S state is 6. 16X10' s '. Similarly, the Li I' lev-
els are field ionized faster than the Li S ground state.

If individual state measurements of ion or electron
emission could be made, the tunneling rates could be ob-
tained directly. If P - S linewidth or lifetime variation
measurements were made, these would be dominated by
the broadening of the P' state. The field strengths re-
quired for FITR's of about 3.7X 10 s ' (radiation transi-
tion rate of the Li P state) or larger, are probably
difficult to handle in the laboratory at the present time.
On the other hand, calculations for smaller fields do not
exhibit reliable convergence, since the corresponding

TABLE IV. Field-induced energy shift, half-width, and corresponding tunneling rate for the
LoSurdo-Stark effect of the 1s 2p P'(ML =+1) level of the lithium atom.

F (a.u. )

0.0005
0.0008
0.0010
0.0013
0.0015
0.0018
0.0020
0.0022
0.0025
0.0027
0.0030
0.0032
0.0035
0.0037
0.0040
0.0045
0.0050
0.0055
0.0060
0.0065
0.0070

F (V/cm)

2.57 X 10
4. 11x10'
5. 14X 10
6.68X 10
7.71 X 10
9.25 X 10
1.03 x10'
1.13X 10
1.29x10'
1.39x10'
1.54X 10
1.64x10'
1.80X 10
1.90X 10
2.06 X 10
2.31X10
2.57 X 10
2.83 X 10
3.08 X 10
3.34 X 107

3.60 X 107

—6 (a.u. )

1.70X 10
4.35X10
6.81x10-'
1.15x10-'
1.54X 10
2.22X 10
2.75 x 10-'
3.33x10-'
4.31x10-'
5.05 X 10
6.27 X 10
7. 16x 10-'
8.62 X 10
9.67 X 10
1.14x 10-'
1.46 X 10
1.84 x 10-'
2.29 X 10
2.80X 10
3.36x 10-'
3.98x10 '

I /2 (a.u. )

2.40 X 10
6.99x10-'
1.34X 10
3.01 X 10
4.90x 10-'
9.63X10
2.88X10
8.62X 10
2, .73 x ].0-'
6.37X 10
1.43 X 10
2.61 X 10

R (s ')

1.98 X 10
5.78 X 10
1.11x10"
2.49 X 1010

4.05 x10"
7.96x10"
2.38x10"
7. 13x10"
2.26 X 10"
5.27x10"
1.18 X 10'
2. 16X 10'
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FITR's rapidly become very small. We note that the
same occurs even in the case of hydrogen [15—26], the
reason being the exponential times a power series depen-
dence of the width on the field strength, F, as F goes to
zero [15,20,21].

V. CONCLUSION

The present many-electron theory and computations
break away from the half-century-old study of the one-

electron atom [6,15—26] and demonstrate the feasibility
of obtaining from first principles (FITR's) of polyelect-
ronic states of neutral systems over a broad range of field
strengths. The foundations of the theory of the reso-
nances of the LoSurdo-Stark eff'ect can be found in [27]
while the implementation (separation into Q and P
spaces, each containing physically diQ'erent wave func-
tions) herein shows how states with closed- or open-shell
electronic structures can be treated with economy and ac-
curacy.
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