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Asymmetric-top description of Rydberg-electron dynamics in crossed external fields
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Rydberg atoms in external electric and magnetic fields have recently emerged as atomic-scale labora-
tories where the quantum mechanics of classically nonintegrable systems can be studied. In this article
we show, using classical canonical perturbation theory, how the intricate nonlinear dynamics of a Ryd-
berg electron in crossed electric and magnetic fields can be described in terms of two coupled asym-
metric tops.

PACS number(s): 32.60.+ i, 03.65.Sq, 31.10.+z

I. INTRODUCTION

The hydrogen atom in perpendicular static electric and
magnetic fields is one of the classic problems of early
atomic theory. In the 1920s, an elegant treatment com-
bining advanced methods of celestial mechanics with the
old quantum theory yielded a first-order energy expres-
sion which brought out the double degeneracy in this sys-
tem [1]. In refined form, this expression has been used by
spectroscopists to analyze energy levels in the limit of
weak fields [2,3]. Interest in this system revived following
independent suggestions by Burkova et al [4] an. d Rau
[5] that the very different effects of the two fields may
cooperate to stabilize the atomic electron at a consider-
able distance from the nucleus, thus creating unusual
states [6—8]. Recently, nonlinear dynamicists have joined
atomic physicists in researching the crossed-fields prob-
lem because Rydberg states in external fields are now
universally recognized as microscopic laboratories in
which the quantum mechanics of classically chaotic sys-
tems can be investigated [9—11].

The deceptive simplicity of the corresponding per-
turbed Coulomb Hamiltonian is belied by the rich non-
linear dynamics it generates. Great complexity is also
evident in the recent high-resolution experiments of
Holle, Wiebusch, and Welge [12] and Raithel, Fauth, and
Walther [13], who studied the spectra of Rydberg elec-
trons placed in crossed fields. Their striking success in
relating peaks of their spectra to periodic orbits of the
Hamiltonian has not diminished the wealth of informa-
tion which still awaits analysis. Consequently there is
great need for approaches that can uncover simpler struc-
tures that support this complexity.

In the present article, we demonstrate that this intri-
cate problem can be simplified considerably by expressing
it in terms of coupled asymmetric tops. This extends re-
cent results showing that the complex electronic spec-
trum of the quadratic Zeeman effect in the high-
principal-quantum-number limit can be systematized in
terms of the state structure of the asymmetric top
[14—18]. Indeed, the past few years have seen the recog-
nition of the asymmetric top as a paradigm underlying
certain localization phenomena [19], and our derivation
places the crossed-fields problem among such physical

scenarios recently reviewed by Rau [20].
In our derivation we use canonical perturbation theory

[21]. This procedure, originally devised for problems of
celestial mechanics [21], can be a highly effective tool
when used in combination with the apt action-angle vari-
ables [22] of the unperturbed problem [23,24]. Recently,
we have demonstrated the use of extended Lissajous vari-
ables [22] to another perturbed Coulomb problem (name-
ly the parallel-field Stark-quadratic Zeeman effect [23,24])
and we use them here also.

This article is organized as follows. First we convert
the crossed-fields Hamiltonian into a pseudo-Hamiltonian
on which perturbation analysis can be performed. Our
dynamical variables come from the Kustaanheimo-Stiefel
(KS) transformation [25—28]. Then the two angular mo-
menta inherent to the Coulomb problem [29—32] are ex-
pressed in terms of the KS variables using the electron
angular momentum L and the Runge-Lenz-Laplace vec-
tor A. When the outcome of the canonical perturbation
theory is recast in terms of these angular momenta it can
be recognized as a pair of degenerate asymmetric tops
coupled to each other. The paper concludes with a dis-
cussion of the results.

II. HAMILTONIAN IN FOUR DIMENSIONS

For definiteness, we assume that the electric and mag-
netic fields are in the x and z directions, respectively.
The hydrogen-atom Hamiltonian becomes in atomic
units

H= —p + L, + (x +y—)
——+Fx,1 2 B B 2 2 1

2 2 ' 8 I"

where B is the magnetic field in units 2.35X10 T, and
the electric field F is in units of 5. 14X 10 V cm

Classical perturbation theory is performed in the
Kustaanheimo-Stiefel coordinates [25—28] which allow
the perturbation expansion to be readily converted into
an expression containing apt action-angle variables that
reAect the symmetry of the original problem. The KS
transformation was originally designed to regularize the
effect of the Coulomb singularity on the classical dynam-
ics in the vicinity of the nucleus. It allows the unper-
turbed Hamiltonian and any perturbation to be written in
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terms of the canonical coordinates and the momenta of
an isotropic four-dimensional harmonic oscillator.

The KS transformation starts by relating the original
coordinates to a set of coordinates in a four-dimensional
space using [26]

dt =4r =4/u/
dS

Multiplying through by 4r gives

4= —,'(P„+co oui )+28L, ini

r= Tu,
where

u1 2 3 u4

(2) +28 ini (u &+u4)(u2+u3)

+SF~u~ (u, u3+uzu4), (17)

u2 u1

u3 u4

u4

u1

u3

u2
(3)

where

co = —8E.2 (18)

u4 u3 u2 u1

where the lowercase t stands for transpose. In Eq. (4),

~u~'=u'+u'+u'+u'

The two sets of coordinates are related explicitly by

and u=(u„uz, u3, u4), r=(x„x2,x3), and T satisfies the
orthogonality relation

(4)

Scaling the coordinates and momenta

ui uico, p] pg co
—1/2 1/2

results in the pseudo-Hamiltonian

~=—=—(P'. + Inl')+4 1 2 2 2
co 2

B2

+2 iud (u&+u4)(uz+u3)

x, =x =2(u, u3+u2u4),

x2=y =2(u&u2 —u3u4),

x1 =z —u1 u2 u 3+u4

(6)

(8)

8I'+, oui (u, u, +u, u, ) . (20)

The dynamical variables can be related by using the mo-
menta P„conjugate to u,

P (PI P2 P3 P4)

for which the constraint

III. APT VARIABLES AND TRANSFORMATIONS

From the classical-mechanical definitions

L=rXp

u 1P4 u4P1 +u3P2 u2P3 =0

holds, and the additional relation

(10)
1 meA=

1/2
( —2mHO)' I"

(22)

3 4

gp dx, = QPdu, .
i=1 i=1 for the unperturbed Coulomb Hamiltonianll

Thus

(12)

1 2 eHo= P-
2m r

(23)

where

(13)

the components of L and A in four-dimensional space
can be obtained using the KS transformation. They are

In view of Eq. (10), the system is subject to the constraint

P~ m u4P1 u1P4 u3P2 u2P3, (14)

which converts the Hamiltonian to

P — + L+ (u +u —}(u +u }
1 2 1 B B

Sr "
~n~2 2 ' 2

+2F(u, u3+upug)

This, in turn, can be converted into a system of four cou-
pled anharmonic oscillators by making the transforrna-
tion to a time variable s (regularization) [26],

L„=-,'[( uP, —u, P2)+(u4P3 u3P4)], —

Ly =
—,'[(u, P3 3Pu/ )+(u4P2 u2P4)], —

I z u4P1 u1P4 = u 3P2 u2P3

and

3„=—
—,
' [(P,P3+P2P4)+(u, u3+u2u4)],

= —
—,'[(P,Pz P3P4) —(u

& u2 —u—3u~)],
=—'[(P +u +P +u ) —(P +u +P +u )]

Now, a rotation in phase space is needed:

(24}

(25)
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1

2

1
u4 (p4 p 1 )v'2

1
3 (q3 q2)

2

1P4= ~- (qi —q4) .V'2

1 1
u, = —(q, +q4), Pi= (p&+p4),

2 2

1 1—(q2+q3) P2 —(P2+P3)
2 v'2

(26)
nJ.J=K.K=
4

(34)

which in the correspondence principle limit is slightly
different from their length in quantum mechanics
[29—32]:

J and K obey the angular momentum Poisson bracket re-
lations. Note that

Next, we seek a transformation to action-angle variables.
Thereby the normal form resulting from the perturbation
treatment will be converted to an expression containing
the actions m and A, and their conjugate angles P and

Pz, as well as the conserved action n. The initial trans-
z

formation is

J J=KK= n —1

since

A A=L-L=n —1 .2 (36)

q, =+2I,sing, , p, =+2I,cosg, , (27) IV. PERTURBATIDN THEQRY

where i =1,2, 3,4. Two further transformations are then
performed in order to eliminate two angles. First,

Ii =(I.+Ib» 6= —2(4. +4b»
Iz =(I. I» 4—2= ,'(4. 4'b—)—
I3 = (I, +Id ), $3 =

—,
' (P, +Pd ),

I4=(I, Ia), p4—= ,'(p, pd) —. —

The constraint (14) requires that

I, =I,=n .

(28)

(29)

The final transformation of the Lissajous action-angle
variables is

Ib
——m+A, , yb

——
—,'(y +y„),

Id =m —A, , pd =
—,
' (p —p ~ ) .

(30)

The two angu1ar rnomenta

J=—,'(L+ A), K= —,'(L —A)

are the Lie-algebraic generators of SU(2) SU(2) [which is
locally isornorphic to the symmetry group of the unper-
turbed Coulomb problem, SO(4)] [18,29—32] and provide
the most direct route to the asymmetric top description
we are seeking. Note that the components of the vectors
J and K take particularly simple forms under this succes-
sion of transformations, viz.

To obtain the normal form, we use procedure due to
Birkhoff [33—36], as modified by Gustavson [35] for reso-
nant cases (as ours is). The procedure consists of finding
successively better action-angle variables starting from a
nonlinear Hamiltonian such as Eq. (20). It is suitable for
automatic manipulation [35,36], and we have used a sym-
bolic manipulation routine written in the MATHEMATICA

language to obtain the normal form [37]. The interested
reader is referred to this paper [37] where the details of
the computation are explained.

One technical aspect of the problem needs to be ern-
phasized here: Since the Coulomb Harniltonian is ex-
periencing two distinct perturbations, a multiple pertur-
bation treatment is needed. In conventional quantum-
mechanical treatments, the dependence of the energy on
the fields changes according to the choice of the unper-
turbed Hamiltonian as well as the relative field strengths
[38-41]. In contrast, the normal form theory employed in
this paper prescribes a unique ordering of perturbations
according to powers of the displacements [37].

V. RESULTS

The normal form of the pseudo-Hamiltonian, correct
to second order in the angular momenta J and K, is

+ [6n —16n (J,K, +J K )
—12n (J„+K )]

J„=,'[n —(m—+A, ) ]'~ sin(P +P„),
J»= —

—,'[n —(m + A, ) ]' cos(P +P„),
J,= —,'(m+ A, ),

(32)
+ [128(J,K —J„K,) ]

FB

F2+ [960nJ„K„—336n(K +J„)—136n ] .

and (37)

K„= ,'[n —(—m ——A, ) ]' sin(P —P~ ),
K»= —,'[n —(m —A, ) ]' cos(P —P~ ),
K, =

—,'(m —A, ) .

(33)

From this expression, 2n can be expressed as a power
series of co ', and the energy can be obtained as a func-
tion of n, F, B, and the various angular mornenturn com-
ponents from this series by reversion [42]. The resulting
energy expression is
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E(2)— B2 2

+—(J, +K, )
— (J, —K, )+ [3n 4—(J, +K, J—K, )

—8(J,K„+J~K )]
2n

F2 4

+ [ —17n +12(J +K +J K )]+ n (J,K —J K, ) .
16 2

(38)

This is the desired result which shows how the crossed
fields couple the angular momentum vectors J and K
(remember that n is conserved). If the purely quadratic
terms are examined, it becomes clear that the two asym-
metric tops contained in the expression of the form

X= j[n —(m+A, ) ][n —(m —A, ) ]]'~

this expression becomes

(2) B2n 2

E~1 '= [3n —m —3A, +2X cos2$„],

(46)

(47)

H = AJ +BJ +CJX Z (39)

are degenerate and are coupled through bilinear terms
containing their components.

Clearly, by using the vectors [39,40,43] n A=2Xcos2$~ —2A, —2m +2n
z

(48)

which, using the classical-mechanical version [24] of the
Solov'ev-Herrick invariant A [44],

0,= —,'(B—3nF), Q2= —,'(B+3nF), (40) ip the semiclassical diamagnetic energy

both of which have magnitude

1 (I12+9n 2~2 )1/2
2 (41)

E'"=0, J+0 K . (42)

for perpendicular fields, the resonant nature of the prob-
lem can be brought out in the first-order contribution to
the energy [2,43]

B nE'"= (n'+m'+n'A)D 16
(49)

F2 4
E' '= [

—17n +12(J +K +J K )] (50)

and agrees with previous results [24]. Similarly, for no
magnetic field, and the electric field in the x direction, the
second-order contribution is

This resonance in the first-order contribution is destroyed
when the two fields are not perpendicular.

For some quantum-mechanical applications [2,43], the
Hamiltonian implied in Eq. (42) is transformed using the
rotation operator

F n
[
—17n +3[(L +A ) +(L —A )

+(L„A)]]—
F2 4

[
—17n +9L +3A ]

(51)

(52)

exp [if'(J+K).n] =exp(i 0A~ ) (43)

with n=y. This rotation simplifies the first-order energy
contribution to

E"'=0(J,.+K, ), (44)

where J,. and K,- are the components of J and K along
the directions of Q& and Q2, respectively. However, the
second-order expression is thereby complicated consider-
ably, and has therefore been omitted.

VI. DISCUSSION AND OUTLOOK

B n
ED '= [3n —(m + A, ) —(m —A, )

If there is only one field present the second-order re-
sults agree with the second-order Stark and quadratic
Zeeman results obtained before [24]. For instance, for no
electric field, the contribution corresponding to the quad-
ratic Zeeman effect can be written as

which, in turn, agrees with the previous parallel-field
classical results [24].

The Hamiltonian in Eq. (38) is particularly suitable for
dynamical and localization studies. It can be seen that
the first-order part is integrable because it is separable,
whereas E' ' has in its second-order contributions the
nonlinearities and couplings typical of coupled asym-
metric tops. There exists an analytical solution for the
dynamics of an asymmetric top with linear perturbations
in its components [45]; however, the higher-order cou-
plings are more difficult to analyze. The chaotic behavior
of a rotational system with similar bilinear couplings in
two angular momenta has been studied by Feingold and
Peres [46]. Furthermore, intricate graphical representa-
tions for such systems have been devised by Harter [47].
Analysis of the crossed-fields problem along these lines is
currently in progress.
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