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Asymmetric-top description of Rydberg-electron dynamics in crossed external fields
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Rydberg atoms in external electric and magnetic fields have recently emerged as atomic-scale labora-
tories where the quantum mechanics of classically nonintegrable systems can be studied. In this article
we show, using classical canonical perturbation theory, how the intricate nonlinear dynamics of a Ryd-
berg electron in crossed electric and magnetic fields can be described in terms of two coupled asym-

metric tops.

PACS number(s): 32.60.+1, 03.65.8q, 31.10.+z

I. INTRODUCTION

The hydrogen atom in perpendicular static electric and
magnetic fields is one of the classic problems of early
atomic theory. In the 1920s, an elegant treatment com-
bining advanced methods of celestial mechanics with the
old quantum theory yielded a first-order energy expres-
sion which brought out the double degeneracy in this sys-
tem [1]. In refined form, this expression has been used by
spectroscopists to analyze energy levels in the limit of
weak fields [2,3]. Interest in this system revived following
independent suggestions by Burkova et al. [4] and Rau
[5] that the very different effects of the two fields may
cooperate to stabilize the atomic electron at a consider-
able distance from the nucleus, thus creating unusual
states [6—8]. Recently, nonlinear dynamicists have joined
atomic physicists in researching the crossed-fields prob-
lem because Rydberg states in external fields are now
universally recognized as microscopic laboratories in
which the quantum mechanics of classically chaotic sys-
tems can be investigated [9-11].

The deceptive simplicity of the corresponding per-
turbed Coulomb Hamiltonian is belied by the rich non-
linear dynamics it generates. Great complexity is also
evident in the recent high-resolution experiments of
Holle, Wiebusch, and Welge [12] and Raithel, Fauth, and
Walther [13], who studied the spectra of Rydberg elec-
trons placed in crossed fields. Their striking success in
relating peaks of their spectra to periodic orbits of the
Hamiltonian has not diminished the wealth of informa-
tion which still awaits analysis. Consequently there is
great need for approaches that can uncover simpler struc-
tures that support this complexity.

In the present article, we demonstrate that this intri-
cate problem can be simplified considerably by expressing
it in terms of coupled asymmetric tops. This extends re-
cent results showing that the complex electronic spec-
trum of the quadratic Zeeman effect in the high-
principal-quantum-number limit can be systematized in
terms of the state structure of the asymmetric top
[14-18]. Indeed, the past few years have seen the recog-
nition of the asymmetric top as a paradigm underlying
certain localization phenomena [19], and our derivation
places the crossed-fields problem among such physical
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scenarios recently reviewed by Rau [20].

In our derivation we use canonical perturbation theory
[21]. This procedure, originally devised for problems of
celestial mechanics [21], can be a highly effective tool
when used in combination with the apt action-angle vari-
ables [22] of the unperturbed problem [23,24]. Recently,
we have demonstrated the use of extended Lissajous vari-
ables [22] to another perturbed Coulomb problem (name-
ly the parallel-field Stark-quadratic Zeeman effect [23,24])
and we use them here also.

This article is organized as follows. First we convert
the crossed-fields Hamiltonian into a pseudo-Hamiltonian
on which perturbation analysis can be performed. Our
dynamical variables come from the Kustaanheimo-Stiefel
(KS) transformation [25-28]. Then the two angular mo-
menta inherent to the Coulomb problem [29-32] are ex-
pressed in terms of the KS variables using the electron
angular momentum L and the Runge-Lenz-Laplace vec-
tor A. When the outcome of the canonical perturbation
theory is recast in terms of these angular momenta it can
be recognized as a pair of degenerate asymmetric tops
coupled to each other. The paper concludes with a dis-
cussion of the results.

II. HAMILTONIAN IN FOUR DIMENSIONS

For definiteness, we assume that the electric and mag-
netic fields are in the x and z directions, respectively.
The hydrogen-atom Hamiltonian becomes in atomic
units

2
H=3p48p 1 By Lip (1)
2 2 8 r
where B is the magnetic field in units 2.35X 10° T, and
the electric field F is in units of 5.14X10° Vem ™.

Classical perturbation theory is performed in the
Kustaanheimo-Stiefel coordinates [25-28] which allow
the perturbation expansion to be readily converted into
an expression containing apt action-angle variables that
reflect the symmetry of the original problem. The KS
transformation was originally designed to regularize the
effect of the Coulomb singularity on the classical dynam-
ics in the vicinity of the nucleus. It allows the unper-
turbed Hamiltonian and any perturbation to be written in
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terms of the canonical coordinates and the momenta of
an isotropic four-dimensional harmonic oscillator.

The KS transformation starts by relating the original
coordinates to a set of coordinates in a four-dimensional
space using [26]

r=Tu, @
where
Uy —u,; —uz Uy
Uy u; Uy U,
= Uz uy  u; U (3)
uy, —us U, —u
and w=(u,u,,u;3,u,), r=(x,X,,x;), and T satisfies the

orthogonality relation
T'T="TT=|u*=r , @
where the lowercase ¢ stands for transpose. In Eq. (4),
lul?>=u?+ud+uld+ui. (5)

The two sets of coordinates are related explicitly by

xy=x =2(uuytu,u,), (6)
x,=y =2(u uy,—uzu,), (7)
x,=z=ul—u3—ud+tul. (8)

The dynamical variables can be related by using the mo-
menta P, conjugate to u,

P,=YP,P,,P;3,P,) 9)
for which the constraint
u4P1 +u3P2 -

U Py— u,P;=0 (10)

holds, and the additional relation

prdx EPdu . (1n
i=1 i=1
Thus
1
px=—2—rTPi (12)
where
Px:t(l’x,’l’xz’pxg) . (13)

In view of Eq. (10), the system is subject to the constraint

L,=Py=m =u,P,—uP,=u3P,—u,P;, (14)
which converts the Hamiltonian to
=P} - ™ |2+BL +—-—(u§+u4>< +ud)
+2F(u us+uyuy) . (15)

This, in turn, can be converted into a system of four cou-
pled anharmonic oscillators by making the transforma-
tion to a time variable s (regularization) [26],
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dt
== =4r=4|ul?. (16)
ds

Multiplying through by 4r gives
4=1(P2 +0?*lul?)+2BL,|u|?
+2B?|ul2(u?+ul)ui+u?)
+8Flul®(uyus+uyuy,), (17
where
—8E . (18)
Scaling the coordinates and momenta
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u;—u;0 "%, p;—p,0'? (19)

results in the pseudo-Hamiltonian

F=2=Lp2 4w+ %BLZIuIZ
(0] ()

2
+2_B4 [ulXu?+ul)ud+ul)
®

8F
+?Iu|2(ulu3+u2u4) . (20)

III. APT VARIABLES AND TRANSFORMATIONS
From the classical-mechanical definitions
L=rXp 1)

and

2

_ 1 me

(—2mH,)'/?

pxL—2¢ (22)

for the unperturbed Coulomb Hamiltonian

1 >
1, e )
Ho= ; (23)

the components of L and A in four-dimensional space
can be obtained using the KS transformation. They are

L, =3[(uyPy—u Py)+(uyPy—u3P,],
L,=3[(uPy—u3P)+(uyP,—u,P,)J, (24)
L,=u,P,—u,P,=uyP,—u,P;,
and
A, =—L1[(P\P3+P,P,)+(uus+uyuy)l,
A,=—3[(P\Py—P3P,)—(uu, —uzu,)], (25)
A, =1[(Pi+uj+Pi+ui)— (P +ui+Pi+ul)l.

Now, a rotation in phase space is needed:
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1

U (g,+4q4), PIZV—E(P1+P4)7

=L
V2

1 1
u2=‘/—§(q2+q3) ’ Pzz‘/_i(Pz'*"Ps) >

1 1
”3:“/-5@2_1’3) > Psz‘/—a(%—‘h) s

1 1
u4=—‘/—§(1)4—p1> ) P4=72(q1 —q4) .

Next, we seek a transformation to action-angle variables.
Thereby the normal form resulting from the perturbation
treatment will be converted to an expression containing
the actions m and A4, and their conjugate angles ¢,, and
¢ 4, @S well as the conserved action n. The initial trans-
formation is

q;=V 2I;sing; , p;=V"2Icos, , @7

where i =1,2,3,4. Two further transformations are then
performed in order to eliminate two angles. First,

Il=(1a+Ib) > ¢1=%(¢a+¢b) 4

12:(1‘1 _Ib) ’ ¢2:%(¢a—¢b) ’
(28)
13=(Ic+1d) s ¢3=%(¢C+¢d) ’
I4Z(IC _Id) ’ ¢4=%(¢c_¢d) .
The constraint (14) requires that
I,=I,=n . (29)

The final transformation of the Lissajous action-angle
variables is

Ib=m +Az H ¢b=%(¢m+¢/{z) ’

(30)
I,=m—A4,, ¢,=3(¢,—d,).
The two angular momenta
J=HL+A), K=LL—-A) (31)

are the Lie-algebraic generators of SU(2)® SU(2) [which is
locally isomorphic to the symmetry group of the unper-
turbed Coulomb problem, SO(4)] [18,29-32] and provide
the most direct route to the asymmetric top description
we are seeking. Note that the components of the vectors
J and K take particularly simple forms under this succes-
sion of transformations, viz.

Jo=L[n?—(m + 4,)*]"%sin(¢,, té4 ),
J,=—1[n*~(m +AZ)2]1/2COS(¢m+¢AZ) ’ (32)
J,=im+4,),

and
K,=—3[n’—(m — 4,7 *sin(¢,, — ¢4 ),
K

y=3ln?—(m—4,7]1"cos(8,,~¢ 4 ) , (33)

J and K obey the angular momentum Poisson bracket re-
lations. Note that

n2

J'J=K'K=T N (34)

which in the correspondence principle limit is slightly
different from their length in quantum mechanics

[29-32]:
2__
JJ=K-K=2 : 1 (35)
since
A-A=L-L=n2—1. (36)

IV. PERTURBATION THEORY

To obtain the normal form, we use procedure due to
Birkhoff [33-36], as modified by Gustavson [35] for reso-
nant cases (as ours is). The procedure consists of finding
successively better action-angle variables starting from a
nonlinear Hamiltonian such as Eq. (20). It is suitable for
automatic manipulation [35,36], and we have used a sym-
bolic manipulation routine written in the MATHEMATICA
language to obtain the normal form [37]. The interested
reader is referred to this paper [37] where the details of
the computation are explained.

One technical aspect of the problem needs to be em-
phasized here: Since the Coulomb Hamiltonian is ex-
periencing two distinct perturbations, a multiple pertur-
bation treatment is needed. In conventional quantum-
mechanical treatments, the dependence of the energy on
the fields changes according to the choice of the unper-
turbed Hamiltonian as well as the relative field strengths
[38-41]. In contrast, the normal form theory employed in
this paper prescribes a unique ordering of perturbations
according to powers of the displacements [37].

V. RESULTS
The normal form of the pseudo-Hamiltonian, correct
to second order in the angular momenta J and K, is

NF_ 4 _ 4Bn 24Fn
K —;—2n+ 2 e

(J,+K,)+ (J,—K,)

B2
+F[6n3— 16n(J K, +J,K,)—12n(J2+K})]

n %[ 128(7,K, —J,K,)]

F2
+ Eg[%oanKx —336n(K2+J2)—136n°] .

(37

From this expression, 2n can be expressed as a power
series of !, and the energy can be obtained as a func-
tion of n, F, B, and the various angular momentum com-
ponents from this series by reversion [42]. The resulting
energy expression is
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EO=— L By k)3 g+ B
2n2 2 z z 2 X X 16
2.4
+Flg [—17n2+12(J§+K§+JXKX)]+52£n

This is the desired result which shows how the crossed
fields couple the angular momentum vectors J and K
(remember that n is conserved). If the purely quadratic
terms are examined, it becomes clear that the two asym-
metric tops contained in the expression of the form

HAT=AJ:+BJ}+CJ} (39)

are degenerate and are coupled through bilinear terms
containing their components.
Clearly, by using the vectors [39,40,43]

Q,=LB—-3nF), Q,=1HB+3nF), (40)
both of which have magnitude
Q=L(B24+9n%FH)'?, (41)

for perpendicular fields, the resonant nature of the prob-
lem can be brought out in the first-order contribution to
the energy [2,43]

EV=0,J+Q,K. (42)

This resonance in the first-order contribution is destroyed
when the two fields are not perpendicular.

For some quantum-mechanical applications [2,43], the
Hamiltonian implied in Eq. (42) is transformed using the
rotation operator

exp[iQJ+K)n]=exp(iQ4),) (43)

with i=¥. This rotation simplifies the first-order energy
contribution to

EV=Q(,+K,.) , (44)

where J,. and K, are the components of J and K along
the directions of ; and ,, respectively. However, the
second-order expression is thereby complicated consider-
ably, and has therefore been omitted.

VI. DISCUSSION AND OUTLOOK

If there is only one field present the second-order re-
sults agree with the second-order Stark and quadratic
Zeeman results obtained before [24]. For instance, for no
electric field, the contribution corresponding to the quad-
ratic Zeeman effect can be written as

2,2
B =L (302 —(m + 4,7 —(m — 4,
+2Xcos2¢Az+(m2—A22)] . (45)

In terms of
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[3n2—4(J2+K2—J,K,)—8(J K, +J,K,)]

3I,K,—J.K,) . (38)

[
X={[n>—(m+4,?)[n?—(m— 4, 1}'*, (46)

this expression becomes

B?n?
5=

which, using the classical-mechanical version [24] of the
Solov’ev-Herrick invariant A [44],

[3n2—m?—3A42+2X cos2¢, 1, @47

n*A=2X cos2d 4, —2A2—2m?*+2n?, (48)
i,s the semiclassical diamagnetic energy
2,2
B =L (n* 4 m2 4 n2A) (49)

and agrees with previous results [24]. Similarly, for no
magnetic field, and the electric field in the x direction, the
second-order contribution is

F*n*
EY)=" [~ 1T+ 1207+ K +T.K,)] (50)
F?n*
:_16_{—17,124—3[(LX—+~A,c 2+ (L, — A, )?
+LE— A (51)
2.4
- Fl’g [—17n2+9L2+342] (52)

which, in turn, agrees with the previous parallel-field
classical results [24].

The Hamiltonian in Eq. (38) is particularly suitable for
dynamical and localization studies. It can be seen that
the first-order part is integrable because it is separable,
whereas E‘?) has in its second-order contributions the
nonlinearities and couplings typical of coupled asym-
metric tops. There exists an analytical solution for the
dynamics of an asymmetric top with linear perturbations
in its components [45]; however, the higher-order cou-
plings are more difficult to analyze. The chaotic behavior
of a rotational system with similar bilinear couplings in
two angular momenta has been studied by Feingold and
Peres [46]. Furthermore, intricate graphical representa-
tions for such systems have been devised by Harter [47].
Analysis of the crossed-fields problem along these lines is
currently in progress.
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