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Distorted-wave calculation of stopping powers for light ions traversing H targets
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The continuum-distorted-wave —eikonal-initial-state model is applied to the calculation of charged
charge-state electronic stopping powers. The contributions from electron capture, excitation, and ion-
ization are evaluated for P, H+, He +, and Li'+ projectiles impinging on H targets at energies of 10—1000
keV/amu. With the neutral H charge-state electronic stopping power obtained from the first Born ap-
proximation, charge-state fractions and total mean electronic stopping powers for H+ beams traversing
H are calculated. Present results are compared with calculations using the first Born approximation, a
one-center atomic-orbital coupled-channel code, and experimental data for H2 targets.

PACS number(s): 34.50.8w, 34.50.Fa, 34.70.+e

I. INTRODUCTION

One of the oldest problems in quantum collision theory
is that of the calculation of the energy loss of ions
traversing dense matter. For gaseous targets, calcula-
tions were performed by Bethe [1] in the first Born ap-
proximation (Bl). Using a multipole expansion of the
perturbation, and keeping only the dipole term, he was
also able to obtain closed formulas of the cross sections
for single excitation and ionization by bare ion impact.
These two reactions are the most important mechanisms
for energy loss at high energies. As a consequence, the
Bethe formula gives the high-energy behavior of the stop-
ping power. As the energy decreases, other reaction
channels become important and the contribution from
different charge states must be included. These calcula-
tions can also be done within the first Born approxima-
tion. This task was undertaken by Bates and GrifFing
[2,3] during the 1950s. In pioneering works, performed
without computers, total cross sections for single ioniza-
tion and excitation of H by H+ and H impact were calcu-
lated between 10 keV and 3.5 MeV. For the latter case
the contributions from double transitions were also calcu-
lated without using closure [3]. It was shown that these
reactions, where the neutral projectile is excited or ion-
ized simultaneously with the target, give important con-
tributions to the cross sections. These results were later
shown to be in good agreement with experimental data
above 50 keV [4,5]. Dalgarno and Griffing [6], using the
charge-state approach, applied the 6rst Born approxirna-
tion to calculate the stopping power and the charge-state
fractions of protons in H targets between 10 keV and 3.5
MeV. Their results show the typical behavior of 6rst
Born calculations; they give good agreement for high en-
ergies, while at intermediate and low energies it overesti-
mates the experimental results. For proton impact on H
it is well known that the 6rst Born approximation overes-

timates the total cross section for single ionization [7] and
electron capture [8], which are the main mechanisms of
energy loss for the H+ charge state at intermediate and
low energies, respectively. Another feature where it fails
is in the projectile charge dependence of the stopping
power. Experiments with antiprotons or highly charged
ions are in disagreement with the Z scaling law of Bl,
where Z is the projectile nuclear charge.

To improve the description of this process, Schiwietz
[9] introduced a one-center coupled-channel calculation
using atomic orbitals (AO). The main problem with the
method is that it requires very large basis sets in order to
describe the capture channel and a large number of pseu-
dostates for the continuum in order to account for ioniza-
tion. These limitations imply that the AO method will be
valid at intermediate and high energies. An extension to
lower energies can only be done in practice using two-
center coupled-channel calculations [12,13] or even
three-center ones [14]. This was recognized in a recent
work [10], where AO is used for energies higher than 25
keV and a two-center coupled-channel atomic-orbital ex-
pansion (AO+) [13] is used for lower energies. In [10]
the contribution from the neutral charge-state fraction
was also calculated with AO but without explicit in-
clusion of double transitions.

An alternative approach is to use perturbation expan-
sions based on the distorted-wave (DW) method. Calcu-
lations with approximations based on this method are
much less expensive than the coupled-channel ones in
computer time, and they have been shown to yield excel-
lent agreement with experiments for ionization [7], exci-
tation [15—17], and capture [18] in a broad range of im-
pact energies starting at 10 keV. The main limitation is
that coupling between the different channels is neglected.
A coupled-channel calculation using two-center
distorted-wave functions has not been attempted yet.

In the present work we will present calculations of the
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stopping power of proton beams impinging on a H target.
The charge-state approach will be used and the stopping
power of the H+ and H fractions will be calculated using
distorted-wave models and first-order Born, respectively.
For the neutral fraction double transitions are taken into
account. Previous results using the one-center atomic-
orbital expansion model [9] will be corrected to include
these effects. Results from the distorted-wave models for
the H+ fraction will be compared with the coupled-
channel and first Born calculations. The capture cross
sections obtained with the distorted-wave model, and the
loss cross section calculated with the first Born approxi-
mation are used to obtain charge-state fractions, which
are compared with those of [6] and with experimental
ones from [19]. The sum of the stopping power of H+
and H averaged over the corresponding charge-state frac-
tion will be compared with experimental data, first Born
[6], and AO [9] calculations.

II. THEORETICAL MODELS

A. Distorted-wave models for charged projectiles

We are concerned with the calculation of the stopping
power of protons impinging on H but the present results
can be extended to more complex atomic targets. The
only reactions that will give contributions to the energy
loss are single excitation:

H+ +H( ls) —+H +H(nlm ),

this election is that the distortion preserves the normali-
zation of the initial state [7].

For the final state the distortion is chosen as the full
Coulomb wave representing the projectile-electron in-
teraction for reactions (1) and (2), and the target-electron
interaction for reaction (3). The model that results from
this approximation is the continuum-distorted-
wave —eikonal-initial-state (CDW-EIS) [7]. For reaction
(1) we will make a further approximation to the final
state. The Coulomb wave will be approximated by its
asymptotic form, i.e., an eikonal phase as used for the ini-
tial state. We make this approximation because for this
reaction the electron remains bound and does not change
center, so a symmetric model is more appropriate. This
model is called the symmetric-eikonal (SE) approxima-
tion and the differential and total cross sections obtained
from it are in very good agreement with experiments
[15,16]. For asymmetric systems the CDW-EIS model
may give better results [17].

With these distorted initial and Anal wave functions
the transition amplitudes can be obtained in closed form.
To calculate the stopping power in reactions (1) and (3) a
one-dimensional numerical integration is necessary, while
for reaction (2) the numerical integration is more cumber-
some because it is necessary to perform an additional
three-dimensional integration over the final electronic
momentum. Although these calculations take more corn-
puter time than the corresponding ones using first Born,
they can be easily done on a PC-486.

where nlm indicate the quantum numbers of the final
state; single ionization:

H++H( ls) —+H++H++ e (2)

and single electron capture:

H++H( ls)~H(nlm)+H+ .

The common feature of these three reactions is that the
initial- and final-channel potentials are Coulomb poten-
tials. This potential has an infinite range, so that the ini-
tial or final bound states are distorted even at infinite dis-
tances. For reaction (2) the situation is even more com-
plicated because the ejected electron travels in the pres-
ence of two Coulomb potentials, and it is not possible to
neglect either of them [7]. The distortion can be incor-
porated using the DW method. Usually the initial and
final unperturbed states as defined by the first Born ap-
proximation are distorted using multiplicative factors
that take into account part of the perturbation. These
are the initial and final distorted waves. The remainder
of the perturbation can be calculated from them and it is
expected to be smaller than the full perturbation from
B1. In this way the perturbation expansion will converge
faster than the Born series and the first order will contain
higher orders of the Born expansion. A full description
of the method with application to reaction (3) can be
found in [8] and its application to reaction (2) in [7].

For the initial state we will use what is known as the
eikonal distortion. The multiplicative factor is chosen as
an eikonal phase which represents the projectile-electron
interaction at large distances. The main reason behind

B. First Born calculations for neutral projectiles

For neutral hydrogen impact the incoming nucleus is
screened by its electron. The perturbation is then of
short range and weaker than in the case of a bare proton.
There is no distortion of the initial bound state. The first
Born approximation is then useful to treat this problem.

In this case there are several open channels because
both collision partners can be excited and/or ionized.
The final state of the incoming hydrogen atom defines the
projectile-elastic and projectile-inelastic channels if it
remains in the initial ground state or is excited to a
bound or continuum state, respectively. The final state of
the target defines the symmetric target-elastic and
target-inelastic channels. The application of first Born to
study these reactions was introduced by Bates and
Griffing [2,3]. Two basic assumptions are made: (i) ex-
change is neglected, and (ii) when the projectile or target
electron is ionized it is assumed to travel only in the field
of its parent nucleus. The first approximation is always
valid at high impact energies, while the second one is also
correct because electrons are usually emitted with low ve-
locities. In the first work [2] only the projectile-elastic
channel was considered. In successive works [3] the con-
tributions from all double transition reactions were
summed to get the total contribution from the projectile-
inelastic channel. This approach was also taken for the
stopping-power calculations [6] and is the one we will
take here. There are other authors that have used the
closure relation to sum the contributions from the
different channels. To do this it is necessary to suppose
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H( ls)+H( ls) ~H( ls)+H(nlm)

~H(nlm )+H( ls),
and single ionization:

H( ls)+H(ls)~H( ls)+H++e
—+H++e +H(ls) .

(4)

The projectile-inelastic and target-inelastic channels
are double excitation:

H( ls)+H( ls) ~H(n'1'm')+ H(nlm),

with n, n'%1; double ionization:

H(ls)+H( is)~H++e +H++e

and simultaneous excitation and ionization:

H( ls) +H( ls) ~H(n 'l'm ') +H++ e

~H++e +H(nlm) .

(6)

We will consider n, n' ~ 3, because contributions from
higher excited states are negligible [3,6]. The formulas
for the computation of the stopping power in reactions
(5)—(9) are given in [6]. It must be noted that the contri-
butions from the H charge-state fraction and from the
fraction of neutrals in excited states are also neglected.
While the first one is usually very small [19], the second
one may give an important contribution. In this case the
energy loss is less than for projectiles initially in the
ground state but the cross sections are much higher [5].

that the minimum momentum transfer is the same for all
channels [20] or to introduce a mean minimum momen-
tum transfer [21]. This approach overestimates the total
cross section [22]. A detailed analysis of the application
of closure shows that corrections must be introduced
[21], but the corrected closure method yields results
which are similar to those from [3].

The projectile-elastic and target-elastic channels are
single excitation:

14

i B1 H + H

AO',

tron. For the first term we use the SE approximation,
while for the other two we use the CDW-EIS. It must be
noted that the cross sections for each reaction are in ex-
cellent agreement with corresponding experiments. We
have also compared our results for capture and ionization
with calculations using different two-center coupled-
channel models [12,13]. All theoretical results are in very
good agreement at all impact energies considered here
(from 10 keV/amu to 1 MeV/amu).

In Fig. 1 our present DW results for S,+ are compared
with first Born from [6] and coupled channel with atomic
orbitals (AO) from [9]. At high energies our results agree
with first Born and hence with Bethe's formula while AO
gives lower values [9]. At intermediate and low energies
the three models show different behaviors: distorted-
wave values of S,+ are lower than those from first Born,
both reach a maximum at different impact energies and
then decrease as the energy increases towards Bethe's
limit. The close-coupling values of S,+ always increase as
the impact energy decreases and are lower than those
from the other models at high energies. From these re-
sults one would expect that the AO and Bl calculation
will overestimate the total mean energy loss because first
Born always overestimates the total cross sections. This
may not be the case, because the proton stopping power
has to be weighted with its corresponding charge-state
fraction. In the figure we also show these results, labeled
AO*, 81*, and DW', which show a similar behavior.
Although the ratio between the results from these models
does not change, the difference between them decreases
by a factor equal to the charge-state fraction. From these
results we can expect that the calculated total stopping
power from the three models will be similar. As indicat-
ed in [9] the incorrect behavior of AO at intermediate en-

III. RESULTS AND DISCUSSIONS

A. Electronic stopping power of protons on H targets

First of all we study the proton charge-state contribu-
tion to the electronic stopping power S,+. In all the cal-
culations we neglect the contribution from the nuclear
stopping power because it is very small in the range of
impact energies that we study in the present work. S,+ is
calculated as described in Sec. IIA from the cross sec-
tions and energy transfers AE; for the different channels

I
Se g (Elf 0 /~f +Elf 0 j~f ) + f dE„~E,„,(9)

dEk

where o.
;& and o.

;& are the total cross section for reactions
(1) and (3), respectively. d cr;k /dEk is the single
differential cross section for ionization [reaction (2)] as a
function of the final electron energy EJ, =(erik) /2m, with
A'k the momentum and m the mass of the ejected elec-
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FIG. 1. Electronic stopping power for the H+ charge-state
fraction as a function of projectile energy. Present DW calcula-
tions, solid line; one-center AO from [9], short dashed line; Bl
from [6], dashed line. Present DW multiplied by calculated
charge-state fraction (DW*), solid line; AO from [9] multiplied
by experimental charge-state fraction [19] (AO*), short-dashed
line; B1 multiplied by calculated charge-state fractions [6]
(81*),dashed line.



3058 FAINSTEIN, PONCE, AND MARTINEZ

ergies arises from the truncation of the one-center expan-
sion. This behavior was corrected in subsequent work by
considering a two-center atomic-orbital expansion at en-
ergies lower than 25 keV [10].

B. Projectile-charge dependence
of the electronic stopping power

First-order perturbative approximations like B1 for ex-
citation or ionization, predict that the cross sections scale
with the square of the projectile charge. Deviations with
respect to this simple scaling are usually associated with
higher orders of the Born series. Negative charged pro-
jectiles like antiprotons have received great attention be-
cause differences in the cross sections that depend on the
sign of the projectile charge yield information about what
are usually called Z corrections. In the Born series they
appear in the second order [23]. In the distorted-wave
series they are already considered in the first order due to
the correct treatment of the Coulomb potentials [7]. The
close-coupling calculations contain, in principle, contri-
butions from all orders of Z .

The projectile charge dependence of S,+ is studied by
making the ratio with the result obtained from first Born,
where only the contribution from single ionization and
excitation are considered. These ratios are shown in Fig.
2 for different projectiles: protons, antiprotons, He +,
and Li +. Also included are the ratios for protons and
antiprotons calculated with the atomic-orbital expansion
[9]. For antiprotons, He + and Li + impact, the close-
coupling and distorted-wave calculations give the same
behavior although the ratios calculated from DW are
smaller. The distorted-wave calculations for capture will
probably underestimate experiments because only final
states with n ~2 are considered. If higher values of n
were included the calculated stopping power would be
higher and the ratios would increase bringing both

theories in closer agreement. For proton impact the re-
sults are very different as could be expected from Fig. 1.

The different behavior of the AO ratios for proton im-
pact as compared with the other projectiles was attribut-
ed to the possibility of resonant capture in the case of H+
impact [9]. This is true if only the ground state is con-
sidered. For He + and Li + there are resonant condi-
tions for final states with n =2 and n =3, respectively,
while for antiprotons the capture channel is always
closed. Also, there are other mechanisms that come into
play for multiply charged ions. For example, first Born
total capture cross section scale as Z at intermediate en-
ergies [24] and as Z at higher energies [25]. Hence, the
different reaction channels have different behaviors as a
function of the projectile charge. To see this we calculate
the fractional contribution of each channel to the total
charge-state stopping power as the ratio between each
contribution with S, . These ratios are plotted in Fig. 3.
We see that at low energies the importance of capture in-
creases while that of ionization and excitation decrease
with the projectile charge. Capture remains very
effective to the energy loss because there is resonant cap-
ture to highly excited states of the projectile and because
the binding effect makes the ionization and excitation
cross sections to fall down very quickly as the energy de-
creases [7].

Another feature of the ratios shown in Fig. 2 is that
they are frequently used to search for high-order effects
in the Born series. As the first order for excitation and
ionization scale with the square of the projectile charge,
all deviation in the ratios are related to terms in the Born
series proportional to higher powers of Z . The second-
order contribution of order Z is called the Barkas
correction and it accounts for the differences in the
ranges of particles of opposite charge such as protons and
antiprotons. Several experiments with antiprotons have
been done in the last years to compare with theoretical
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FICs. 2. Ratio of stopping powers, calculated with present
DW model (solid line), and with one-center AO [9] {dashed
line), with B1 calculations including only excitation and ioniza-
tion channels as a function of projectile energy.
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FIG. 3. Present DW calculations of the contribution from
the different channels to S,+ for H+ impact (solid line), He +

impact (dashed line), and Li + impact (short dashed line) as a
function of projectile energy.
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predictions of the Barkas effect [26]. As we have men-
tioned above the first Born capture cross sections scale as
Z at intermediate energies. This indicates that a first
Born calculation of S,+ will also have this behavior in this
energy range. Then the ratios shown in Fig. 2 are not
adequate to highlight higher-order effects in a perturba-
tion expansion, because even the first order does not fol-
low the simple Z scaling law. The reason for this is that
the expansion of the Born series in powers of the projec-
tile charge is valid only for asymmetric systems where
Z~ &&Z, (with Z, the target nuclear charge). This was
pointed out by Basbas, Brandt, and Laubert [27] in their
original treatment of these higher-order effects in inner-
shell ionization of heavy targets by light projectiles. The
projectile charge, which represents the strength of the
perturbation, must be smaller than the target nuclear
charge in order to make the first-order perturbation treat-
ment valid. For these asymmetric systems capture gives
a very small contribution and so the stopping power cal-
culated with first Born will follow a Z dependence. In
this case the ratios can be used to obtain information
about the Barkas effect and other high-order effects like
binding and polarization [7,27]. For one-center coupled-
channel calculations the deviations with respect to first
Born represent not only the contributions from these
mechanisms but also from capture which can be con-
sidered as a higher-order contribution in this formalism.

C. Equilibrium charge-state fractions

The present method of calculation, where the cross sec-
tions for all the open channels are known, allows to cal-
culate the charge-state fractions. If the charged and neu-
tral components of the beam are in equilibrium, they are
given by [6]

1.0
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Proj ectite Energy (ke V)

FIG. 4. Equilibrium charge-state fractions for proton beams
traversing H as a function of projectile energy. Present DW cal-
culation, solid line; Bl from [6], o; experiments for H2 targets
[19],~.

S, =f (H+)S,++f (H )S, . (12)

In Fig. 5 our present distorted-wave results are com-

D. Total mean electronic stopping power
of protons on H targets

From the stopping power for the charged fraction 5,+
calculated with (9), the stopping power for the neutral
fraction S, as given in [6] and the charge-state fractions
calculated in the previous section we can calculate the to-
tal mean stopping power of the beam given by

f (H+)= (10)

and
'

6

f(H )=

where o. is the total capture cross section and o. is the
total loss cross section. The first is calculated with the
CDW-EIS approximation and the second with first Born
taking into account double transitions as given in [6].
Our present results are shown in Fig. 4 together with the
results from [6] where first Born was used to calculate all
the cross sections, and experiments for H2 targets from
[19]. At high energies the theoretical results agree with
experiments. At low energies first Born and CDW-EIS
results for (11) are higher than experiments due to the
possibility of resonant electron capture in H targets. At
intermediate energies the differences between theory and
experiment remain and we see that the slope of the
theoretical results is higher than the experimental ones.
These differences are indications of the breakdown of
Bragg's rule for H2 targets as suggested in [6] and
confirmed in loss experiments [4,5).

0
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10 '10 '
Proj ectite Energy (keV)

FIG. 5. Total mean electronic stopping power of proton
beams on H targets as a function of projectile energy. Present
DW calculations, solid line; Bl results from [6], dashed line;
one-center AO results from [9] corrected for double transitions,
short dashed line; experiments for H2 targets, open triangles
[28], closed circles [29], open circles [30], squares [31], closed
triangles [32].
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pared with full first Born and single-center atomic-orbital
close-coupling calculations from [6] and [9], respectively.
The AO results are obtained from (12) using the results
from [9] for S,+ (shown in Fig. 1), while S, is taken from
[6] as in our present distorted-wave calculations. Howev-
er, in this case it is not possible to calculate the charge-
state fractions because the contributions from different
channels are not available. Experimental charge-state
fractions from [19] for Hz targets are then used. The
main difFerence with previous results of the AO model [9]
is that here we have included the contribution to S, from
double transitions. It must be noted that our distorted-
wave results do not change very much if the experimental
charge-state fractions are used instead of the calculated
ones. Experiments for the stopping of proton beams on
Hz targets [28—32] are included for comparison.

Above 70 keV the distorted-wave results are in excel-
lent agreement with experiments. The same happens
with first Born above 150 keV. In the region of the max-
imum first Born overestimates and distorted wave un-
derestimates the experimental data, and at low energies
both models go below the measurements. The single-
center atomic-orbital results with explicit inclusion of
double transitions are in excellent agreement with the ex-
perimental data over all the energy ranges. These results
are also in very good agreement with recent calculations
[10,11] where the AO model has been improved by using
two-center atomic orbitals for the calculation of S,+ at
low energies and a single-center atomic-orbital expansion
for the calculation of S, instead of the first Born used
here and in previous works [9]. The only difference be-
tween them appears at intermediate energies where the
results from [10,11] are lower than the ones presented in
Fig. 5.

The very good agreement with experiments at all im-
pact energies considered here indicates that the AO mod-
el is very well suited to perform stopping-power calcula-
tions. Probably the new results where S,+ and S, are cal-
culated with atomic-orbital expansions are more reliable
than the ones presented here where S, is calculated with
first Born corrected to account for double transitions.
The better agreement with experiments of these calcula-
tions is a result of the fact that the one-center atomic-
orbital calculation of S,+ is much higher than the
distorted-wave and two-center atomic-orbital results.

This difference remains after S,+ is multiplied by the
charge-state fraction (see Fig. 1).

The distorted-wave results are also quite good. Some
improvements are necessary for energies below 70 keV.
As the cross sections for the different channels in the H+
impact case are in very good agreement with experiments
the problem arises in the first Born calculation of S, . At
low impact energies total cross sections calculated with
this approximation for H impact on H are lower than the
experimental data [4,5, 10,33]. The first Born calculation
of S, will underestimate this contribution. At intermedi-
ate energies where the stopping power reaches its max-
imum, the charge-state fraction for the neutral projectile
calculated for an atomic target is lower than the experi-
mental one for a molecular target. The inclusion of this
molecular effect will also increase the calculated stopping
power. An atomic-orbital calculation of S, together with
the distorted-wave calculation of S,+ will probably be in
much better agreement with experiments.

IV. CONCLUSIONS

We have used distorted-wave models to evaluate the
stopping power of the charged fraction in collisions be-
tween protons and thick H targets. The neutral fraction
is calculated with the first Born approximation. The
cross sections obtained for the different reaction channels
are used to calculate the charge-state fractions which are
then used as weights for the calculation of the total mean
energy loss. This full ab initio calculation is in excellent
agreement with experiments at high energies and in good
agreement at intermediate energies. Previous calcula-
tions with a one-center coupled-channel approach are in
excellent agreement with experiments at intermediate and
high energies when double transitions are considered in
the loss cross sections. Calculations with the first Born
approximation give good results only at high energies.
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