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A recent model of particle transport in plane-parallel media, including both quasielastic and inelastic
scattering, has been proposed [Goulet et al., Phys. Rev. A 41, 6006 (1990)] which claims to be fully three
dimensional, to include the effects of multiple scattering, and to avoid the normal difficulties associated
with such problems. The present paper demonstrates that a transport problem is being solved and that
the method used is of comparable accuracy to elementary diffusion theory. It is shown that the model,
applied here to the low-energy-electron transmission and reflection spectroscopy problem, is valid only
under a fairly stringent assumption on the interface scattering at the boundaries of the layer. The model
is rederived for this case in terms of standard transport theory. A comparison of the two models points
to an ambiguity in the interface reflectivity in the previous model. In addition the method presented
here leads to a more satisfactory application of the Snell-Descartes law and a full solution in terms of

known functions.

I. INTRODUCTION

Particle transport, described by the Boltzmann equa-
tion, has applications in a great many areas of physical
science. For example, in recent years there have been
several attempts (using both analytical [1] and Monte
Carlo [2] methods) to investigate the effects of elastic and
inelastic scattering on the information obtainable from
electron spectroscopies. The areas of Auger-electron
spectroscopy (AES) and x-ray-photoelectron spectrosco-
py (XPS) have seen a considerable amount of work on the
true meaning of the attenuation length [1-3] and on the
nature of the attenuation of an electron signal with depth,
e.g., [4]. Somewhat in parallel, there have been similar
developments in the modeling of low-energy-electron
transmission (LEET) spectroscopy and its complimentary
reflection spectroscopy (LEER) for transmission and
reflection experiments of low-energy electrons (0—~20
eV) on thin solid films deposited on a metallic substrate
[5,6].

In all cases the particle transport media are taken to be
plane parallel. The geometry for the LEET-LEER exper-
iment is shown in Fig. 1(a). The problem is one of trans-
port in a thin-film layer bounded on one side by a vacu-
um, from which electrons are incident, and, on the other
side, by a metal that serves to collect transmitted elec-
trons. The LEET experiment analyzes the transmitted
electrons as a function of the incident electron energy,
while the LEER experiment analyzes the electrons
reflected back into the vacuum as a function of their en-
ergy. However, the integro-differential equation which
describes such transport can only be solved numerically
unless some form of simplifying assumption is made. It is
generally true that modeling of LEET-LEER has been
performed in the so-called two-stream approximation, in
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which particles may only travel along the two possible
directions of a suitably chosen axis [6]. In this case many
transport problems become relatively straightforward.
Whilst several other simplifying assumptions have been
used in the quantification of AES and XPS, the two-
stream approximation has also been used and this has re-
sulted in some duplication of effort (this can be seen, for
example, by comparing references [5,6] with [3,7,8]).

(a) I
vacuum | layer

)

Incident beam

FIG. 1. (a) Geometry of the LEET-LEER experiment. Parti-
cles are incident on a thin-film dielectric layer mounted on a
metal substrate. (b) Schematic showing the physical meaning of
the relevant scattering functions.
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Recently a series of papers by Goulet, Keszei, and
Jay-Gerin [9] has appeared which claims to present the
first general three-dimensional particle-transport model
which includes inelastic scattering and multiple elastic
(or at least quasielastic) scattering whilst at the same time
suffering none of the difficulties that normally attend the
Boltzmann equation. We should point out here that
there are numerous and more sophisticated Monte Carlo
calculations that have tackled fully three-dimensional,
multiple scattering in plane-parallel media (e.g., [2]). The
purpose of this paper in the first instance is to investigate
the assumptions implied by this model so as to properly
understand how these difficulties have been overcome.

II. LEER REFLECTION PROBABILITY

It is sensible to begin by analyzing the model of Gou-
let, Keszei, and Jay-Gerin [9] for the case of purely elas-
tic, isotropic bulk scattering. This is how the model was
first developed, and the other extreme, of the purely in-
elastic scattering of the transmitted flux, is trivial. The
problem is best understood by separating out the (possi-
bly anisotropic) reflection and transmission scattering of
the layer-vacuum and layer-metal interfaces from the iso-
tropic scattering occurring in the bulk of the layer. This
is shown in Fig. (1b). In order to better understand the
meaning of the expressions used in Ref. [9], it makes
sense to express the probabilities in terms of standard
transport theory.

Let us define the probability that an electron incident
on a layer of thickness z, with angle p,, is transmitted by
the layer with an angle in the range (u,,u;+dpu,) to be
T(pot1,z)duy, and similarly define the probability of
reflection to be R(ug,pu,z)dp,. Having passed through
the layer, let us define 7, (ug,uq)dp, and 7y, (po,puq)dpy,
respectively, as the probabilities of reflection from angle
o into an angular range (u,u,+du,) by the layer-
vacuum and the layer-metal interfaces, respectively. Let
us define similarly the transmission probabilities
t, (ot )dpy and 1y, (pg, 0 )d . At this point let us note
that the definitions for 7, and r;,, have some implications
for the application of the Snell-Descartes law, which shall
be discussed later. Let f(u) be the distribution of parti-
cles immediately after transmission through the vacuum-
layer interface. These functions now fully describe parti-
cle transport in the LEED-LEET process, Fig. 1(b). For
example, the distribution of particles after transmission
through the layer, reflection at the metal interface,
transmission back through the film, and reflection at the
vacuum interface ready for reentry into the layer, is

F1)= [ Fpo)T (ot Pim (1, 12) T (1)

Xrp(ps,p)dpedudp,dus -

The case of particle transport through a slab of material
of thickness z, for purely elastic, isotropic bulk scattering
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(the so-called conservative case) has been solved by Chan-
drasekhar and others [10]. Consequently rigorous ex-
pressions for the functions T'(u,141) and R (pg, ;) may be
found in the literature [10]. In addition various simple
yet relatively accurate approximations exist for the func-
tions R and T due to, for example, Grosjean [11] and
Richards [12]. Indeed, elementary diffusion theory works
very well for the conservative case, e.g., [13].

Using these functions, which may be considered stan-
dard for this type of problem, the calculation in Ref. [9]
may be repeated. Let P,(u)du be the probability that the
incident particles represented by the distribution f(u)
return to the layer-vacuum interface for the first time
with an angle in the range (u,u+dp). In the geometry
described by Fig. 1(b) we take this to mean ‘“‘the probabil-
ity that a particle which has passed through the vacuum-
layer interface (to the point A4) returns to A for the first
time,” although this is not too important. P,(x) may be
written as a sum of contributions P,,(u) representing the
probabilities that the particle returns to the point 4 hav-
ing suffered n collisions with the layer-metal interface.
Consider the contribution P,(u); this may be expressed,
in terms of the functions listed above, as

Poo(i)= [ £ ()R (paoy )i - M

Similarly the distributions P,(x) and P,,(u) may be
represented by

Poy()= [ £ (o) T (oot 7 (1,1 Tty ) prod pr1d
)
and

ff(.u'())T(”’wy’l)rlm(y'l’/‘l‘Z)R(/-“2a,u3)r1m(”’3’/1’4)
T(pgp)dpodpmdp,dpsdp, , (3

respectively, and the other contributions to P,, P,,
(n >2), are determined in exactly the same fashion.
However, it is clear that, in general, the series

P,= 3 P, 4)
n=0

cannot be summed analytically. The analysis can be car-
ried further, provided that certain assumptions are made
regarding the layer-metal reflectivity 7;,,. Only in the
case

Pim (115 2) =V (1 )W 2 (1) (5)

may the long list of integrals in Eqgs. (2) and (3) be
separated. The physical significance of this is clear if we
choose, without loss of generality, the normalization con-
dition

fol\Pﬁf,’(,u)d,u=l . 6)
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Now W'?)(u) represents the probability density of elec-
trons reflected from the interface and W!!(u) represents
the probability of reflection at the interface for electrons
incident at the angle u.

To simplify the analysis, let us introduce the following
vectors and inner products:

(P,|=P, (1) (7)

and
J
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ilelr)= [, o [, _of 1tu0@upy)

Xfapr)dpdp, ,

_ 1
rilel= [, _of1wQupmdp, ®)
1 1
(nlelpl=J, o J, _f10Qum,)
XP(pyp)dp,dp, .

With these expressions, we may write

(P,|=(fIRI+{fITI¥DYCW2|T|+ (£ TI¥ VYWD RV )| T

ATV (PP RIWO (WD T+ - - =(f|RI+

Clearly, by replacing f(u,) by 8(po—pu,), one obtains the
Green’s function G(u,u) for the reflection problem: the
probability density for a return to A, for the first time,
from the layer-metal combination, with an exit angle in
the range (u,u+dp), for particles incident on the layer,
from the point A4, with angle u,.

The probability that the incident electrons escape to
the vacuum may be expressed as a series in the same way
as for P,(u). The probability that an incident electron,
which has been reflected to 4, is immediately transmitted
through the layer-vacuum interface, is given by

Po()= [ £(10)G (oot )ty (prop)dpodpsy ,  (10)

while the probability that an electron is transmitted hav-
ing suffered a single layer-vacuum interface reflection is

(F1TIe L)Y (w2 7]

= G| . 9
—(worpny S1el ©

P()= [ f(110)G (s pa1 )71y (1 12) G (i )

Xty (p3p)dpodidpydps - (an

Similarly it is possible to derive expressions for the proba-
bilities P,(x) that an incident electron escapes having
suffered exactly n layer-vacuum interface reflections.
However, once again the series

Pescape(:u“)z §0Pn (IJ’) (12)

may not be summed unless one assumes that the
reflection probability r;, (u,u,) is separable, i.e.,

(1 t2) =65 ()6 (1) - 13)

In this case the escape distribution is given by

(Pogeape| = F1Gl2| +(£1Gl¢ ) PG |t] +( £ |Gl ) (471Gl ) (4,7|Glel

(1G4 V){¢?|Glt|

+{(fIG|¢" (|Gl )N ¢ PGlt| + - - - =(fIG|t| + . (14)

Again, by replacing f(uq) by 8(ug—pu,), one obtains the
Green’s function H(u,,u) for escape from A4. Clearly the
function H(u,,u) depends on the transmission probabili-
ty through the layer-vacuum interface from the layer
side. The total probability of escape from all angles is
Pescape = Pescape| 1) In a similar way it is simple to cal-
culate the transmission probability.
In the case of the Snell-Descartes reflection,

V() =0(u.—un), (15)

where here O(x) is the unit step function. The total
reflectivity of the interface for an isotropic incident beam
is then given by

1 1
Lo Lo pop)dpmdp=pe (16)

1—(6|Glg\")

r

as used by Bader et al. [14]. This is a standard for
reflectivity of the layer. The effective reflectivity of the
interface, according to the Snell-Descartes law, varies
with the incident electron flux and one has to be careful
in the application of the law, as we shall see later.

Equation (14) expresses the film transmission and
reflection probabilities in terms of standard Boltzmann
transport functions R and 7. The unknown parameters
or inputs to the problem are the interface reflection and
transmission probabilities [since one may consider f(u,)
as a transmission probability]. These are three source
functions:

fw), ¥2w), 2w,

and two functions which determine the reflectivity of the
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interfaces:
W), ¢V .

At this stage we are in a position to compare the present
analysis with that presented by Goulet, Keszei, and Jay-
Gerin. In Ref. [9] the three source functions are taken as
fitting functions since little is known regarding the
reflection from interfaces while of the remaining two
functions ¢'!(u) is determined from the application of
Snell-Descartes. This leaves the metal-layer interface
reflectivity also a fitting parameter. In Ref. [9] this is tak-
en to be equal to the vacuum-metal reflectivity.

III. SNELL-DESCARTES LAW

In the present analysis the expression of the Snell-
Descartes law is given by Eq. (15). If a group of electrons
F(u) arrives at the interface the number that is reflected
is given by

NRp= [ F(wdp=(Fle,), (17

where O, is the step function, equal to zero if u> . (the
critical angle). If F(u) is a normalized probability distri-
bution, this is also the fraction which reaches the inter-
face with p<pu, and, therefore, also the interface
reflectivity. In general, for a nonnormalized group the
effective reflectivity for that group is given by

_(Fl®,)

RF_—<F|1—> (18)

Thus each group sees a different effective reflectivity.
The number that are reflected, however, is fixed. Conse-
quently, it is safer to deal with the number reflected rath-
er than an average global reflectivity which is then ap-
plied to all particles. This removes the problem which
arises in the calculation of a global layer-vacuum
reflectivity of which electrons at the interface are to take
part in the calculation. Is it all the electrons present, or,
as chosen in Ref. [9], only those which have not suffered
a layer-vacuum interface reflection? It is especially im-
portant to use the number transmitted if the global
reflectivity may only be calculated by using a fairly crude
approximation for the depth distribution of collision sites
[9]. The difficulties with estimating a global reflectivity
and then applying it to each interface scattering become
apparent in Sec. IV.

It should be noted here that this is not mere pedantry.
A global reflectivity may be defined for the total incident
cloud of electrons only a posteriori, and this naturally
makes the concept redundant in an a priori theoretical
description.

(143z)

(4432)—

exp(—z)+
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IV. DISCUSSION

In this section we compare the present analysis with
the previous model of Goulet, Keszei, and Jay-Gerin [9].
The first point has been already made, that the interface
reflectivities at the two interfaces must be separable in
their incident and reflected angles. The physical
significance of this assumption is clear. The requirement
of separation implies that whatever the angular distribu-
tion of the incident beam, the form of angular distribu-
tion of the reflected beam is unaltered except for a multi-
plying reflection factor. The result of this is that a parti-
cle distribution transmitted through or reflected by a film
which diffuses to some broader function in transit, on
reflection by one of the interfaces, is regrouped (except
for some multiplying factor) to the original distribution.
Although this is rather crude, it does enable the summa-
tions to be carried out. This assumption is implicit in the
derivation given in Ref. [9], although not commented on.
It is clearly rather stringent.

Second, the functions B, and B,, are related to some
“known” (in the sense of tabulated) functions from reac-
tor physics. Comparing Eq. (11) with Eq. (10) from Ref.
[9], one finds the relations

S,B,=(fIR|1) , S, B,=(¥VZIR[1),
(1—S,B,)=(¥2|T|1), (1—S,B,)=(fITI1) .

Let us now refer back to the definitions of R (pg,u;) and
T(ug,uy). These functions represent the distributions of
particles transmitted through and reflected from the layer
(thickness z). These problems have been solved for the
case of isotropic elastic scattering (considered here) by
workers in reactor physics and astrophysics. Rigorously,
(10]

IRID)=1)—|TI1),

(@}—B)[X(u)+Y(u)]
2[(a;+By)z +2(ay+By)]

(20)

|TI1)=

The functions X(u) and Y(u) are the X- and Y- functions
of Chandrasekhar, which are well tabulated [15], and «;
and f3; are their ith moments.

More importantly, however, several good approxima-
tions also exist, dependent on what level of complexity
one is willing to accept [11,12]. The simple diffusion ap-
proximation [13] gives

[RI1)=|1)—|TI1),

S,B,(iso)=(1|R|1)= 4+3z

(21)
IT]1) = (24+3u)+(2—3ulexp(—z/u)
443z )
Thus, for isotropic scattering,
2+ % ]zEI (2)
(22)
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FIG. 2. Comparison of the thin-film reflection function as a
function of normalized (or optical) thickness (to A.) calculated
from the present analysis with that of Goulet, Keszei, and Jay-
Gerin [9]. S, B, from [9], solid curve; (1|R|1), dashed curve.

This is compared with the calculated function given in [9]
in Fig. 2 and clearly there is no significant difference be-
tween the two. As a consequence, in the absence of in-
elastic scattering, Eqgs. (19) and (21) give a solution to this
problem using simple approximate functions in place of
the computer-intensive Monte Carlo calculations of Ref.
[9]. Thus, for example, the present form for the LEER-
LEET problem is easily solved for any source function,
and a separate calculation for B, need not be carried out,
merely a separate integral.

A difficulty arises when one tries to extract the inter-
face reflectivity by comparing the two final formulas.
The problem arises because there are three at each inter-
face, one for each source function. After transmission
through the layer, the source function f(u,) will possess
a certain distribution and will reflect off the layer-metal
interface with a certain reflectivity, while the source func-
tion 9¥'2)(u) produced by these reflected electrons, which
are subsequently reflected by the layer back to the layer
interface, will suffer a different reflectivity at the inter-
face, as indeed they should. However, the numbers of
electrons reflected in each case will be correctly given by
the Snell-Descartes law as { f|T]¢\}) and (¢'2|R|¢\1)).
An average global reflectivity may be calculated by some
form of average method, but this reduces to picking a
number so that the total number reflected ends up
correct. Here we suggest that one deal with these num-
bers from the very beginning. In addition, the global in-
terface reflectivities will need to be self-consistent so that
choosing R, to be the vacuum-metal value needs some
justification.

More simply, for the LEET-LEER problem it does not
make sense to talk about a global reflectivity for an inter-
face when the Snell-Descartes law is applied, since this
reflectivity depends upon the angular distribution of elec-
trons incident on the interface. One can calculate a pos-
teriori the value required to produce the correct answer,
but this value is of little use since, in obtaining it, one has
already solved the problem.

Additionally, substituting a plausible value a priori
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such as the vacuum-metal value for R,, is unlikely to give
the self-consistent value required a posteriori. Further
work is required in this area.

V. INELASTIC SCATTERING

Particle transport in a random medium such as the
dielectric layer is represented by the solution to the
Boltzmann equation with the appropriate boundary con-
ditions. In the case of isotropic scattering, this becomes

1 ()

v Max
In the case of purely elastic scattering, ¢ =1. However, if
the Boltzmann equation is solved with ¢ as a parameter,
the coefficients of ¢” in the series expansion of ® give the
probability, for any transport problem, of a particle
suffering exactly n elastic scatterings during transport.
The total probability of the process is obtained by setting
c=1.

Equation (23) also represents the transport of particles
in a medium where inelastic events are also occurring.
The solution ® represents the probability distribution for
particles which have avoided inelastic scattering in a
medium with inelastic scattering length A;, when

—crt
@(x,p)—zfp=_l<l>(x,,u)du. (23)

1

ke]
c—-1ﬁ+L. (24)

A A

el in
This is equivalent to Egs. (5) and (6) in Ref. [9].

As for the LEET-LEER problems considered here, to
include inelastic scattering one need only use the ap-
propriate functions for 7 and R with the appropriate
value of ¢. These functions are tabulated in, for example,
Ref. [15].

VI. CONCLUDING REMARKS

In this paper, we have shown that the model of Goulet,
Keszei, and Jay-Gerin [9] for the LEET-LEER experi-
ment makes the implicit assumption that the interface
reflectivities are separable. This means that the shape of
the reflected electron cloud is independent of the incident
cloud except for a multiplying reflection factor. With
this assumption the model has been rederived. A com-
parison of the two solutions to the LEER-LEET problem.
reveals that the transport equation is being solved with
the determination of the function B,. The present
method provides an equally accurate solution to the
problem using elementary diffusion theory Eq. (21). Fur-
thermore, consideration of ambiguities in the definition of
the interface reflectivity lead to a more accurate applica-
tion of the Snell-Descartes law. The solution is readily
expressed in terms of functions known to reactor physics
and inelastic scattering is easily included. In the case of
purely elastic scattering, simple approximate functions
are given for those functions which require considerable
numerical effort in Ref. [9] [i.e., Eq. (22)]. Thus for addi-
tional source functions the problem of calculating B, is
reduced, not to a full transport problem but merely a sin-
gle integral.
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