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In this, the first of two papers, we obtain a simple analytic formula for the photodetachment cross sec-
tion of H™ in crossed electric and magnetic fields. The three-dimensional semiclassical approximation
predicts oscillations in the spectrum and these oscillations are correlated with closed classical orbits. In
the following paper [A. D. Peters and J. B. Delos, Phys. Rev. A 47, 3036 (1993)] we derive fully-
quantum-mechanical formulas for the cross section in perpendicular electric and magnetic fields and
show how these results can be reduced to the semiclassical results of this paper.
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I. INTRODUCTION

In the past few years much theoretical and experimen-
tal work has been conducted in an effort to understand
photodetachment of electrons from negative ions, as well
as photoionization of atoms in strong static electric and
magnetic fields. Garton and Tomkins [1] were the first to
observe oscillations in the photoionization cross section
near threshold. More detailed experimental work was
conducted on the hydrogen atom in a magnetic field [2],
and the closed-orbit theory describing these oscillations
was given by Du and Delos [3]. A fairly complete
quantum-mechanical explanation of these oscillations in
various systems has been discussed by several authors [4].
Experimental measurements of the cross section for pho-
todetachment from H™ in strong static electric fields
were reported by Bryant et al. [5], confirming theoretical
predictions made by a number of workers [6]. Especially
large oscillations in parallel electric and magnetic fields
were predicted by Du [7]. Fabrikant [8] predicted that
oscillations would also occur in the photodetachment
cross section in crossed electric and magnetic fields. His
quantum formulation gives precise numerical predictions,
but it does not display the underlying simplicity and or-
der of the oscillations.

In Sec. II we derive a general formula for the photode-
tachment cross section of H™ in crossed electric and
magnetic fields using a three-dimensional semiclassical
approximation. We find that the cross section is a
smooth background (equal to the no-field photodetach-
ment cross section o) plus a sum of sinusoidal fluctua-
tions. Each oscillation is correlated with an electron or-
bit that returns to the atom: every returning orbit pro-
duces its own sinusoidal oscillation, and when these indi-
vidual contributions are added together they give the pre-
dicted oscillations in the spectrum.

The physical process can be described in the following
terms. The active electron is initially in a loosely bound s
state of the ion. When the ion absorbs a photon, the elec-
tron goes into an outgoing p wave. This wave then prop-
agates away from the neutral hydrogen atom in all direc-
tions. Sufficiently far from the atom, the wave propa-
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gates according to semiclassical mechanics, and it is
correlated with classical trajectories. A pencil of trajec-
tories emanating from a small circular arc about the nu-
cleus is shown in Fig. 1. The wave fronts are transverse
to the trajectories, and the waves propagate along the tra-
jectories. Eventually, the trajectories are turned back by
the laboratory fields; some of the orbits return to the hy-
drogen atom, and the associated waves (now incoming)
propagate inward until they overlap with the initial state.
It is the interference of these returning waves with the
steadily produced outgoing waves that leads to the pre-
dicted oscillations in the absorption spectrum.
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FIG. 1. A pencil of trajectories representing electrons propa-
gating away from the H atom. As the trajectories leave the ori-
gin, they diverge from each other, and the probability density is
spread out over a larger area. At the caustic, the trajectories
cross back over each other and then, after being turned back by
the fields, pass close to the atom. The trajectories continue until
they pass through a focus, at ¢t =1 cyclotron time, where they
converge. The process repeats itself. Wave fronts associated
with this pencil of trajectories are also drawn. Usually wave-
fronts are orthogonal to trajectories but not in a magnetic field.
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In Sec. IIT we analyze the returning orbits for the case
of perpendicular electric and magnetic fields. Consistent
with the order of the trajectories visible in Fig. 1, the set
of returning orbits has an orderly pattern: at the lowest
energies there is one returning orbit, and at each of a set
of ‘“boundary energies” two additional returning orbits
are created. The important properties of each trajectory
are the following: (i) its classical action, which deter-
mines the phase of the returning wave relative to the out-
going wave; (ii) its Maslov index, which counts the num-
ber of caustics and foci through which the trajectory
passes, and gives corrections to the classical phase; and
(iii) the classical density of the neighbors of each return-
ing trajectory, which determines the amplitude of each
returning wave.

Quantitative formulas for the action, Maslov index,
and classical density associated with each closed orbit are
presented in Sec. III. Additionally, a quantitative formu-
la for the boundary energies is provided.

In Sec. IV the general expression for the semiclassical
photodetachment cross section, which was derived in Sec.
11, is evaluated using the classical results of Sec. III. A
simple and lovely pattern of oscillations is displayed. The
oscillations are small, but they may be detectable close to
the threshold.

Presently no experiments on photodetachment in
crossed fields have been carried out. Our predictions
show that there are interesting phenomena here, and we
hope that our calculations may guide future measure-
ments.

II. THE PHOTODETACHMENT CROSS SECTION

We treat photodetachment as a one-electron process.
We imagine that there is a short-range, spherically sym-
metric potential V,(r) which loosely binds the active elec-
tron to the hydrogen atom. The most important fact
about the applied electric and magnetic fields is that they
are weak in atomic units. Therefore, although they great-
ly affect the large-scale motion of the electron, they have
a negligible effect on the motion at small scales. On an
atomic length scale, the electron moves on a straight line
at constant speed.

The energy of the detached electron is denoted by E.
The binding energy of the electron to the negative ion is
E,=#’k?/2m,, where E, is approximately 0.754 eV and
the mass of the electron is denoted by m,. The photon
energy is expressed as E,=FE,+E. The photodetach-
ment cross section is related to an oscillator-strength den-
sity Df (E) in the following way:

2
o=2"_4Df(E) .
m,c

e

(2.1

It has been shown by Du and Delos [3] that the
oscillator-strength density can be expressed as

Df(E)=— (2.2)

2m,E
7;12" Im(DV,|G T|DVY,) .

The outgoing Green’s function is denoted by G ©. The
dipole operator D is equal to the projection of the elec-
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tron coordinate onto the direction of polarization of the
laser field.

Our previously discussed physical picture develops out
of this formula. The initial state |¥; ) is modified by the
dipole operator associated with the laser field to give a
“source function” |DW,). The Green’s function G+
propagates these waves outward at fixed energy within
the “atomic” region, near the atomic core. At (5-10)a,
this quantum wave is joined to a semiclassical wave,
which propagates along trajectories. The trajectories are
turned around by the laboratory fields, and some are re-
turned to the origin. At around 10a, the returning semi-
classical wave is very nearly a plane wave, and so we join
it to a quantum-mechanical plane wave, which we expand
in partial waves. Finally, the incoming waves overlap
with (DV,|, giving the interference pattern in the ab-
sorption spectrum.

The final result is that the photodetachment cross sec-
tion is given by the formula

0,=0g+ 3 C;(E)sin®,(E) , (2.3)
J

where the summation is over all closed orbits. o is the

no-field cross section. The phase ®;(E) of the sinusoidal

oscillations is given by

W
©;(E)=—S;(E) /ity . (2.4)

S;(E) is the classical action for the returning orbit evalu-
ated at its return time ¢,,. The returning orbit passes
through caustics and foci on its way back to the origin.
At each such “singular point” the phase undergoes a
change of 7/2. The Maslov index (y;) is equal to the to-
tal number of singular points through which the electron
passes on its journey. The action, Maslov index, and
phase are independent of the direction of polarization.
The amplitude of each oscillation C;(E) is given by

172
Ji(tp)

Jj(tret )
X [X( eéut’ ¢{;ut )X*( G{ev ¢{et )] N

We call this quantity the “recurrence amplitude.” This
formula contains ““classical” factors, related to the orbits,
and ‘“‘quantum” factors, related to the initial atomic state
and dipole operator. The factor I,_, appearing in Eq.
(2.5) is a radial dipole integral between the initial state
(presumed to be an s state) and the outgoing wave state
(which therefore must be p). It determines the overall
magnitude of the detachment cross section and of the os-
cillations. x(6,¢) is the angular distribution of outgoing
waves (p, or p, in our case, according to the polarization
vector of the laser field). The angles {6/,,¢/,} and
{6/, ¢} refer to the outgoing and returning directions
of the jth closed orbit. Finally, (1/r3,)|J;(29)/J;(t¢)]
is the classical density of the returning wave.

The reader may recall that a similar formula was ob-
tained in Ref. [3] for photoionization of atoms in a mag-
netic field. The present formula differs from that one in
two important ways: (i) For ionization, there is a long-

2 o2 2mE
C(E): 167 e e™~p 1
4 c K #H roy

(2.5)
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range Coulomb force which substantially modifies the
outgoing waves. In Ref. [3], the dipole integral involved
zero-energy Coulomb waves, and hiding in the formula
was a Coulomb density of states. In the present case, a
free-particle approximation can be used for the outgoing
waves near the atom. (ii) In a magnetic field only, the
forces are cylindrically symmetric. Therefore, in Ref. [3],
each returning orbit actually represents a cylindrical fam-
ily of orbits, having initial azimuthal angles between O
and 27. In crossed fields, this symmetry does not hold, so
each returning orbit is isolated. As a consequence, much
smaller oscillations are obtained in the present case.

The remainder of this section gives the proof of Egs.
(2.3)=(2.5). The reader may prefer to skip to Sec. III,
where returning orbits are presented.

A. The Hamiltonian, initial wave function,
and dipole operator

The Hamiltonian is given by
2

—eV ,

m (2.6)

e
+<A
P c

e

where e is the absolute value of the electron charge. In
the particular case of perpendicular fields (with H, point-
ing in the +2z direction and F in the +x direction), we
may choose the potentials in the following way:

A:Hox? N
V=—Fx+Vy(r),

2.7

where V,(r) is the effective potential that binds the active
electron to the form. Then the Hamiltonian has the fol-
lowing form:

2
__1 5 2 Py
H= m, pit+im,wp (x+ —
+eFx + pZ—eV,(r), (2.8)
where the electron cyclotron frequency is given by
eH,
wg= . (2.9)
m,c

For the development in this section, there is only one im-
portant property of the Hamiltonian: if r is sufficiently
small, and the applied fields are weak compared to V,(r),
then the terms proportional to F and to wg can be
neglected. The Hamiltonian reduces to that of an elec-
tron interacting with a short-range potential energy.

For the bound state we can use a familiar approxima-
tion, which has been found in the past to be quite accu-
rate:

e " R

\l/(r)=B0 ’ = \/Z— .
T

(2.10)

B is a “normalization” constant, which must be chosen
with care; the appropriate value is 0.31552 in a.u. The
constant k, is related to the binding energy of the active
electron E, =#°k2/2m,.
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When a dipole operator (D=a,x +a,y+a,z) acts on
these states it produces a p state, or combination of p
states:

|DW,)=rR(r)x(6,¢) . (2.11)

Since the initial state is spherically symmetric and we as-
sume that the light is linearly polarized, the angular fac-
tors are single p waves:

Xx(6,0)= ‘/L_ﬂ_ sinf cos¢ ,

X,(60,8)= \/11»_17 sinfsing ,

1.(6,4)= ‘/%;cose :

(2.12)

B. The Green’s function, outgoing waves,
and the direct contribution to the cross section

When the laser photodetaches the electron, outgoing
electron waves are produced. The Green’s function
G *(q,q'; E) represents the waves at q which arise from a
source at q'. Since in Eq. (2.2) the Green’s function sits
between (DW,| and |D¥, ), the relevant source points q’
and the field points q all lie within a few bohrs of the nu-
cleus. Two types of waves arrive at q. First, there are
waves which propagate outward from q' to q without
ever leaving the vicinity of the nucleus. Second, there are
waves that propagate outward from q’, travel into the
external region, are turned around by the perpendicular
electric and magnetic fields, and return to the vicinity of
the nucleus, finally arriving at q. The distinction between
the two types is unambiguous; therefore

G*(q,q3E)=G},(q,q3E)+G L (q,q;E) . (2.13)

First let us consider the direct term. For q somewhat
larger than q’, the quantity G35 |DV,) represents outgo-
ing electron waves. The binding potential has a short
range, and the waves quickly propagate outside the
influence of the atom and through a region
(3ay =r=10a,) where neither the atomic potential nor
the applied fields have any significant effect. We con-
clude, therefore, that the Green’s function which propa-
gates these waves is the Green’s function of a free particle

Gt =73 gf(r,rY,,,(6,6)Y}, (6,4, 2.14)
Im
where
E —2im, ) +
8 (r7r’): ‘ﬁz k][(kr<)h1 (kr>) . (2.15)

The standard notation that r_ =max{r,r’} and
r . =min{r,r'} has been used. From this we can get an
explicit expression for the outgoing waves. Defining

I(k)= *® . 1y, 3 ' ' .
()= [ “jitkr')r *R(r)dr" (2.16)
where we obtain for the integral [9]

I_\(k)=ByV &7 —2K 2.17)

(kZ+k2?
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the outgoing wave can be expressed as

—2i

m,
G +lD\I’,-)=——ﬁ—2——k (kr)I = (k)x(6,8) . (2.18)
Its amplitude is proportional to the radial dipole integral
I;_, and its angular distribution is given by x(6,¢).

With this, we can evaluate the contribution of G, to

the photodetachment cross section:

O gir= —Cz—’iﬁﬁ—zE Im(DVY,|G}. |DY,) . (2.19)
Using Eq. (2.18) we find
2 3 2
O g4ir= 6:: z k ¢ =0y . (2.20)

O(kZ+k2)} #

Since the external fields only affect the large-scale motion
of the electron, the direct contribution to the cross sec-
tion is the same as if there were no fields present.

C. Returning waves and spectral oscillations

In this section we will calculate the returning waves

Voo =G| DY) (2.21)
and their contribution to the photodetachment cross sec-
tion

o —-;21"ﬁ 2E,Im(DVY,|¥,,) .

ret (2.22)

To calculate W (r) the following reasoning is used.
@dlrlD\I/ ) is a wave that propagates outward from the
atomic core where |DV¥,;) is substantial. Anywhere be-
tween Sa, and 10a, these outgoing waves are joined to
semiclassical waves on a sphere. The semiclassical waves
are correlated with trajectories, and with each trajectory
that returns to the sphere there is an associated returning
semiclassical wave function. Only returning trajectories
and their associated waves can form a substantial overlap
with (DW;|. Near the atomic core the returning semi-
classical wave function is proportional to a quantum-
mechanical plane wave. The two are joined and the
quantum-mechanical plane wave continues to propagate
inward to overlap with ( DV, |. Thus a returning wave is
associated with each closed orbit, and the full returning
wave W . (r) is the sum of such returning waves.

1. The direct part produces an outgoing wave

Equation (2.18) gave an expression for the outgoing
wave. At fairly large distances (k» >3) we can use the
asymptotic approximation for the Hankel function,
which is given by

4 I+ eik~r
ht(kr)=(—i)t1=——,

o (2.23)

to obtain

@dll‘ e 1

—eik"11=1(k))((9,¢)

(2.24)

2. The outgoing wave is joined to a semiclassical wave,
which propagates to large distances

We now wish to continue this wave into the region
where the laboratory fields cannot be neglected. This
continuation is accomplished with a semiclassical ap-
proximation. In order to construct the semiclassical
wave function, a two-dimensional surface with two intrin-
sic coordinates q° is defined. We choose a spherical sur-
face centered at the origin with radius »,,, =~10a,. The
spherical angles 6, and ¢, are chosen as the two coor-
dinates of the surface. Let the outgoing wave GJ, |DV¥;)
evaluated on this surface be written as
0)e iS(q%) /%

W(q)=(G"|DY;)),-, =4A(q (2.25)

Then a semiclassical approximation to the wave W¥(q)
outside the surface is given by

W(q)= 3 W(q) (gl VT (2.26)
j
where
s (q)=fq‘f)p-dq,
J(t=0,q%) |'”*
4,(q)= —Oq’ , (2.27)
J(t,qj')
dq;(t,q7%)
J(1,q9)=|det 9597
a(t,qj)

The integral for S;(q) is evaluated on a classical trajecto-
ry having energy E, emanating from the initial surface at
q° ; and arriving at q. The sum is over all returning traJec-
tories which arrive at the point q from different points q° F
on the initial surface. The Jacobian J(¢,q j) is evaluated
by examining the divergence of adjacent trajectories from
each central trajectory going from the point q? to q. The
quantity u; in Eq. (2.26) is the Maslov index.

The Maslov index is calculated by counting caustics
and foci, which are singular points where J(q) goes to
zero and A(q) goes to infinity. These singular points pro-
duce additional phase shifts of the wave, and these phase
shifts are described by the Maslov index. In the present
case the caustics are of the simplest type, known as a
“fold” (at which the trajectories curve back over each
other, producing a boundary between classically allowed
and forbidden regions). As the trajectory passes through
the fold, the Maslov index increases by 1, and the wave
undergoes a phase loss of 7/2.

There is another type of singular region. At a focus,
where trajectories converge from a circle to a point, the
Jacobian will also go to zero. Associated with such a
focus is also a phase loss of 7 /2.

By examining the classical equations of motion it will
be possible to determine, for a particular closed orbit, the
number of caustics and foci encountered. Combining Eq.
(2.26) and the formula (2.24) for the outgoing wave on the
initial surface, the wave function in the external region is
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_ Zime 1 ik{;ut'rou( J
VgQ=3 P I (kL X (Ol )
J
172
J(ty) is. —u,
X jrto e [S](t)/ﬁ ,u]n-/z] ) (2.28)
J; (1)

Again the sum is over all trajectories that arrive at q
from the initial surface.

3. The semiclassical wave returns

Each point on the initial sphere with radius 7, defines
a set of initial conditions for classical trajectories. In-
tegrating the equations of motion, we follow the trajecto-
ry through space. Leaving the atomic region, the elec-
tron interacts with the laboratory fields and the trajectory
is turned around by the fields. Initial conditions giving
rise to closed orbits return at various times to the sphere
at 7. For each such orbit there is a point on the sphere
defined by the coordinates {7, 6, #..,}, and the kinetic
momentum of the returning electron at that point is
m, Vi =k,

Around each closed orbit, or central trajectory, there is
a family of trajectories which also returns to the sphere at
r.t- These trajectories stay close to the central trajecto-
ry, and the ratio of Jacobians measures the classical den-
sity associated with this family of trajectories.

The returning wave function evaluated on the sphere
defined by .., is therefore given by

2ime 1 ik/
—e

. i .r . .
w{'et(rret)= 2 o mHII (k{)ut) ( {)ut’(b{)ut)
A" Tout
1/2
Ji(tg) i)t /Ampym/2) (2.29)
Jj(tret)

Inside this circle the semiclassical waves associated with
each returning orbit are approximately equal to plane
waves:

J .
ikl T

Wi (1)« Ne' (2.30)

where N; is a normalization factor.
letting r — 7,

It is determined by

172
J

Ji(ter)

- _161T2€_2 2rneE‘p 1

Ji(tg)
ret c # ﬁz

j Fout

Thus we have arrived at Egs. (2.3)-(2.5).

Up to this point all our work has been of a general na-
ture, i.e., the equations which have been derived are valid
for any orientation of the external fields, and for any laser
polarization. In the next section we will compute trajec-
tories for perpendicular fields and derive formulas for the
action, density, and Maslov indices for returning orbits.

112:1[)((9{;m, out)X (eret’¢ret Jsin[S

2im, 1 i i j
Nj: —z—ll:l(kéut)x(e{)untbéut)
ﬁ rout
12 k],
Jj(to) I[SJ(HEHM_”/’”/Z]m 3
J(te) T >
f ret e ret “ret

If the approximations we have made are valid, then N;

will be independent of the radius of the final sphere .

In Eq. (2.31) we can conveniently take the limit
7 out = et — 0. In this limit the quantity
172
Ji(to)
L | Sl (2.32)
Tout Jj(tret)

approaches a finite value, and S;(E) becomes the action
integral over the full closed orbit, starting and ending at
the origin.

4. The returning wave overlaps the initial state

To calculate the overlap of the returning wave with the
source function, we use the partial-wave expansion of the
returning wave. The expansion of a plane wave, Eq.
(2.30), in spherical harmonics is well known:

\I,ret( r)= 47TN 2 Jl(kretr)Ylm (6,¢) Ylm k{el’(ﬁk{e() ’

(2.33)

where {0,; ,¢,, } are angles defining the direction of
ret ret

ki, the direction in which the returning wave is propa-
gating. We would like to express this in terms of the an-
gles 8, and ¢, (the direction from which the returning

trajectory ~ comes). Since Ore=7—06,;, , and
ret
¢ret:77+¢kf , we have
W (r)=47N; 2 —i)j (ki)Y ,.(0,4)
XY (Ol ble) (2.34)

To get the cross section we only have to find the over-
lap of this returning wave with { D¥;| and sum over all
returning waves. The same radial dipole integral, I,_,,
and angular functions x(68,¢) are involved, and so we find

(tee )/ Fipym/2] . (2.35)

III. THE CLASSICAL MOTION

In this section we examine the trajectories for an elec-
tron in perpendicular electric and magnetic fields. As is
well known, if the magnetic field (H,) points in the posi-
tive z direction, and the electric field (F) is in the positive
x direction, the motion of the electron can be separated
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into constant velocity motion along the z axis, and a
motion in the x-y plane. For returning orbits p, ‘must
equal zero. Motion in the x-y plane is that of a trochoid:
a circular motion about a center superposed upon a
translational motion down the y axis. For returning or-
bits the linear speed must be less than the circular speed.

Calculations show that at low energy (E) there is al-
ways one returning orbit. As the energy increases, the
trajectories change their shape, and at each of a set of
discrete boundary energies a new closed orbit arises. The
newly formed orbit separates into a pair with the slightest
increase of energy. For any given energy E, other than
the boundary energies, there are (2j + 1) returning orbits.

In the first part of this section, we will display these
facts using pictures of the orbits. In the second part we
will give a quantitative analysis, i.e., we will obtain for-
mulas for the classical action, density, and Maslov index.
These formulas will subsequently be used to evaluate the
photodetachment cross section, derived in Sec. II, for
perpendicular electric and magnetic fields.

A. Families of trajectories and returning orbits

Classically, once the electron is photodetached, it will
exhibit trochoidal motion: circular cyclotron motion at
constant speed relative to a center moving at the fixed
“E X B drift” velocity. This is described in many text-
books [10]. It is convenient to define a set of scaled vari-
ables:

(3.1
t'=owpt .

Units of time are chosen such that one cyclotron period is
27 units, and units of length are chosen such that the
drift velocity is 1. In these units, the position as a func-
tion of time is

x(2)=V2¢[sin(t +¢)—sin(¢)] ,
y(t)=—V2e[cos(t +¢)—cos(p)]—1t , (3.2)

z(t)=pzot .

We recognize these equations to be the parametric rep-
resentation of a trochoid: circular motion about a center
superposed upon a translational motion. The circular
motion is primarily due to the interaction of the electron
with the magnetic field. The radius of this motion is
given by the quantity V'2¢, which (since the angular ve-
locity is equal to 1 in scaled units) also represents the
speed of the circular motion. ¢ is that part of the kinetic
energy associated with the circular motion. The transla-
tion of the electron (“EXB drift”) has a velocity
—eF /m,wpg; in scaled units it has a fixed value of —1.

If the linear speed exceeds the circular speed
(1>Vv2¢), the trajectory is curtate and never intersects
itself. If the linear speed is less than the circular speed,
the trajectory is prolate and self-intersecting. When the
two are equal it is a cycloid (Fig. 2).

The initial conditions on the trajectories follow from
the fact that the electron was detached from an H™ ion

by a laser: all electrons begin at {x =0,y =0,z =0} going
outward in all directions, all at the same speed, deter-
mined by the photon energy. Scrutinizing Eq. (3.2) we
find that this condition of fixed initial speed implies that
there must be a relationship between ¢ and €. This im-
plies a relationship between the initial direction of propa-
gation and the radius of the circular motion.

Figure 3 shows the whole family of electron orbits in
the x-y plane at low photon energy. In scaled units, the
electron’s energy is its initial kinetic energy:

1

E'=—
2

4aq’

o (3.3)

t=0

The orbits in Fig. 3 have E=1.

All three types of motion are visible in Fig. 3. There is
one self-intersecting prolate orbit that allows the electron
to return to the atom. This returning trajectory has been
emphasized in the figure. Other things are also visible.
The trajectories all focus on a point on the negative y axis
after one cyclotron time. The caustics, or boundaries be-

1.0 T T T
prolate |

1.0 | cycloid]

y (scaled units)

7.0 : : :
20 -1.0 00 1.0 20

X (scaled units)

FIG. 2. For any returning orbit, the momentum in the z
direction must be zero. The motion of the electron is therefore
confined to the x-y plane if there are to be returning orbits.
Furthermore, the equations for x (¢) and y (¢) are the parametric
representation of a trochoid. We have circular motion around a
center which moves at constant speed down the y axis. If the
linear speed exceeds the circular speed (V2¢), the trajectory is
curtate. If the circular speed is larger, the trajectory is prolate,
and may return to the origin. When they are equal it is a cy-
cloid.
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tween classically allowed and forbidden regions, are also
apparent.

What happens if the photon energy is increased? The
electron begins with a larger kinetic energy, but since the
drift velocity is fixed at ¢cF/H, (or 1 in scaled units), the
increased energy can only go into the circular motion.
The circles then have a larger radius and higher speed, so
therefore any curtate orbits eventually disappear and the
prolate orbits become larger and more tightly wound.
This is apparent in Fig. 4. Note that the location of the
first caustic is now closer to the origin than in Fig. 3.
Again we have emphasized the one returning orbit in the
figure.

Increasing the scaled energy to a value E=E b1 close
to 9.5 scaled units (Fig. 5), we find that this caustic now
touches the origin, and a new closed orbit has been creat-
ed. We call this the first boundary energy. Increasing
the energy further, the new closed orbit splits into two
(Fig. 6).

As we continue to increase the energy, the second caus-
tic on the y axis begins to approach the origin (Fig. 7).
At the second boundary energy, E =E %, which is ap-
proximately 29.5 scaled units, the caustic comes tangent
to the origin, and again a new closed orbit is created (Fig.
8). As the caustic rises above the x axis, the newly
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FIG. 3. The entire family of outgoing electron trajectories at
a scaled energy E=1. There is one closed orbit (bold,
“balloon-shaped” curve) which is labeled with j =0. Note the
boundaries between the classically allowed and classically for-
bidden regions (caustics). Also, all trajectories focus on a point
on the negative y axis after one cyclotron time.

formed closed orbit than splits into two (Fig. 9). Thus as
the energy increases, the closed orbits increase in steady
progression from one to three to five, and so on.

B. Returning orbits — quantitative theory

Let us now give a quantitative analysis of returning or-
bits. The essential results of this section are the follow-
ing: (i) An approximate formula, Eq. (3.18), for the
boundary energies at which new closed orbits appear. (ii)
A formula, Eq. (3.25), for the Jacobian, which gives the
classical density associated with the trajectories. It there-
fore will give the amplitude of the returning wave; it will
also verify our prescription for the Maslov index. (iii) A
formula, Eq. (3.35), for the classical action on an orbit.
This determines the phase of the returning wave. The
reader who is not interested in the derivation of these for-
mulas may now skip to Sec. IV.

The equations that appear later will be easier to under-
stand if we begin with a preliminary remark. The total
energy of the electron is

E=1m,v’+eFx , (3.4a)
and the drift velocity is in the minus-y direction. Let us
define v, as the y component of the electron’s velocity rel-

y
ative to the drift frame:

0.0

AR
"I’" 9“;
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A
AN

y (scaled units)

-10.0
i
W=

-20.0 - : :
-10.0 -5.0 0. 5.0

0
X (scaled units)

FIG. 4. The total scaled energy E has been increased to 6.
The ‘“balloon-shaped” orbit associated with j =0 has grown in
size and become more circular. The first caustic is approaching
the x axis from below.
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(3.4b)

v, 2 =200, +vi=0] . (3.4¢)

r—
v, =v,+u, ,

Using Eq. (3.4c), the total energy can be written in the
form

2

E=eg+imupl—imui—pov,, (3.4d)
where

e=im,(vi+v)?), (3.4¢)

py=m, (v, —wpgx) . (3.4f)

Here ¢ is the kinetic energy of circular motion of the elec-
tron, as seen in the drift frame. We know that this is con-
served. v, is also conserved, v, is a constant, and the to-
tal energy is conserved, so it follows that Dy» defined in
Eq. (3.4f), must also be conserved. (This says that the x
component of position and the y component of velocity
oscillate 180° out of phase with each other.) Further-
more, the initial value of p, is the initial y component of
the kinetic momentum, m,v;.

In what follows, we will use these conservation laws to
derive the required quantitative properties of the return-
ing orbits. To retain the close connection with quantum

10.0 - 1
0.0 = 1
n 7
= Yty
o
Q2
S 100t 1
2]
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>
-20.0 t :
-30.0 L 1 L 1 L
150 -100 -50 00 50 100

X (scaled units)

FIG. 5. The entire family of outgoing electron trajectories at
a scaled energy E=E'®", which is approximately 9.5. This is
the energy of the first boundary orbit, and it is at this energy
that the caustic comes tangent to the origin. One closed orbit
has been created associated with j =1 (the “heart-shaped” or-
bit). Notice that we have reduced the scale of the plot.
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FIG. 6. Scaled energy E=18. The caustic that was once
touching the origin has moved upward. The boundary orbit has
separated into two distinct orbits, both “heart-shaped,” and as-
sociated with j=1(a) and j=1(b). At this energy there are
three closed orbits. The j =0 orbit continues to grow in size
and becomes more circular.

20.0 T T T T T T T

10.0 \ i=1(a) R

0.0 =0 A

-10.0 |- 1

y (scaled units)

-20.0 | 1

-30.0

-40.0 1 ) L 1 . )
-25.0 -20.0 -15.0 -10.0 -5.0 0.0 5.0

x (scaled units)

10.0 15.0 20.0

FIG. 7. Close to but below the second boundary energy in
scaled units we see the second caustic rising towards the x axis.
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FIG. 8. At the second boundary energy (E'®?'~29.5 scaled
units), the second caustic has come tangent to the origin. A new
closed orbit (j =2) is created, the “double-heart-shaped” orbit.
We have omitted the j =0 and 1 orbits.
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FIG. 9. For a scaled energy E =42, above the second bound-
ary energy, the second caustic has risen above the x axis. The
“double-heart-shaped” orbit of Fig. 8 splits into two distinct or-
bits, and are associated with j =2(a) and 2(b). We omit here
the j =0 and 1 orbits.
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mechanics, we carry out the analysis in Hamiltonian
form.

1. Hamiltonian equations of motion

Starting from Eq. (2.8), and defining the quantity
2

_ 1 2 2 1 eF
e= am, pitim,wp [x+ o py+—c-0: , (3.5)
the Hamiltonian may be expressed as
2
eF | 1 eF
H=¢— + — -— 3.6
¢ m,wp Py 2m, P: 2m, | wp 3.6

It is easy to show (for example, using Poisson brackets)
that ¢, p,, and p, are independently conserved.

Parameters in Eq. (3.6) can be eliminated by making
the canonical scale change defined by Eqgs. (3.1) and

Wp
P , 3.7
oF P (3.7a)
2711
=L | £ H . (3.7b)
m, @p

In these variables, after dropping the primes, the Hamil-
tonian takes on the following uncomplicated form:

H=1pl+3x+(p,+ DP—p,+ip}—1 . (3.8)

The fact that we are able to find a canonical scale
transformation which completely removes the depen-
dence of the Hamiltonian on the field strengths is some-
what surprising. The physical significance of this fact
can be stated in the following ways: (1) The shapes of the
trajectories do not depend on the electric and magnetic
fields and the energy separately, but only upon the scaled
energy, and this is given by Eq. (3.7b) above. (2) If we
determine the trajectories (for all energies) for any one
fixed value of electric and magnetic fields, then we have
determined trajectories (for all energies) for any values of
the electric and magnetic fields.

[Note that the new variables are all dimensionless. As
a consequence, there are strange-looking combinations of
variables in Egs. (3.8), (3.15), and elsewhere. To check
the units, one must go back to unprimed variables.]

As stated earlier, the initial conditions are that the
electron begins at the origin, moving in any direction
with fixed speed. The velocity is not proportional to the
momentum; instead,

py()=yp()—x()=p, , (3.9)

p()=p, .

The velocity in the y direction and the position in the x
direction change in such a way as to keep the momentum
p, a constant. From the above, we can derive Eq. (3.2),
and we can relate the phase angle ¢ to the initial values
of the momenta,
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sing = ~‘/1Te(pyo+l) ,

Px,
V2e '

(3.10)

cosp=

2. Initial conditions for closed orbits

Let us now give quantitative conditions for returning
orbits. As stated above, the trochoid must be prolate and
p,=0. From energy conservation we must have that
E=s—py0-%. Since for returning orbits x (¢, )=O0, the
possible return times are given by

ta=—20+2j+ 1) . (3.11)

We must also have y(t,,)=0. This gives the condition
relating the azimuthal angle ¢ to the circular energy ¢:

1

1
+——¢———((+L)7=0. 3.12
cos® Ve @ Ve (j+3)7 (3.12)
Equations (3.11) and (3.12) imply
tet —2V 2e cosp=0 . (3.13)

If the return time is to be positive, then cosgp must be
defined on the interval from {—w/2,7/2}, where it is
positive definite. This also means that it is the positive
branch of the square root in Px0=+[25_(Py0+1)2]1/2

that we must take. The initial x component of momen-
tum (and velocity) must be positive for returning orbits;
i.e., the electron must begin its motion moving against
the electric force.

Some additional manipulations reduce Eq. (3.12) to an
equation involving only € and the fixed total energy E.
We eliminate ¢ and ?. from the three equations
(3.11)-(3.13) to obtain

(e—E_)
V2

[2e—(e—E_)*]'"?2—cos™! ‘ =jr,

(3.14)
L(e)=jm,

where E_ =E — 1 and L(e) is the left-hand side of (3.14).
Given the total energy E, this equation is used to deter-
mine the value of ¢; for which there is a closed orbit. Us-
ing energy conservation [Eq. (3.6)], we can determine the
value for the momentum in the y direction (p;) for that
returning orbit. ¢; and p; then determine the value of
Pxy The initial conditions on the orbit are then known.

3. Boundary orbits

Let us now find how many closed orbits exist at each
energy, and let us determine the boundary energies where
new closed orbits appear. In Fig. 10 the left-hand side of
Eq. (3.14) has been plotted at several values of the total
energy E as a function of €. The right-hand side has also
been plotted for j =1. For a given energy E, the function
on the left-hand has a single maximum. The right-hand
side is a constant for fixed j. Notice that for all energies
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the maximum on the left-hand side is greater than zero,
and therefore one solution exists for j =0 at all energies.
At low values of E, the maximum of the left-hand side is
less than 7, and so no solutions exist for j =1. At large
enough values of E, the function on the left has a max-
imum which is greater than 7. In this case there are two
roots to Eq. (3.14) having j =1, and hence two returning
orbits, which are labeled j =1(a) and 1(d).

There is another class of orbits which we call boundary
orbits. At the energy E'®", the curve representing the
left-hand side is tangent to the line j =1. A new closed
orbit is created at this energy. What are the boundary
energies? They occur when the maximum of the left-
hand side of Eq. (3.14) is equal to the right-hand side
(jm). To find the maximum we differentiate with respect
to €, holding E fixed. For this purpose we define the
function

6‘0 T T T T T T T
40 «
j=1
0
C 20} 1
=1
§e]
Q@
S
(2]
: 0.0 | /\ -
2 j=0
E=1
2.0 | E=E(b” 1
E=18
-4.0

-4.0 0.0 4.0 8.0 12.0 1é.O 20I.O .'24I.0 28.0
circular energy € (scaled units)

FIG. 10. Graphical solution to Eq. (3.14), the criterion for
closed orbits. The curves represent the left-hand side (LHS) of
Eq. (3.14), and the horizontal lines are the right-hand side
(RHS). Intersections of the curves and lines are solutions of the
equation. For all positive energies, a solution exists for Eq.
(3.14) with j =0. For low scaled energies, the maximum of the
LHS does not reach the value 7, so there are no solutions for
j= 1. For a scaled energy of E =18 there are two intersections
of the curve with the line j =1, (RHS=7), and two solutions
with j =1. These solutions have circular energies €, and €,
which are the final conditions for two returning orbits. At
boundary energies, such as when E‘®"=~9.5, the maximum of
the LHS is tangent to the horizontal line defined by j: this is
where a caustic has come tangent to the origin. As the energy is
increased from the boundary orbit energy, the boundary orbit
associated with this tangency separates to form two distinct
closed orbits.
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ple)=e—E_ , (3.15) The coordinates {#,0,,,®..} are the coordinates for the

d we find that th . h family of trajectories, i.e., for the Lagrangian manifold.
and we find that the maximum occurs when The intrinsic coordinates of the initial spherical surface,
(6, )=p, = 2 (3.16) centered about the origin with radius r,,, are

PR& =Py 14 1 ’ {20sO0ut>Pout}» and ¢y is the same for any point on the
2, sphere. They define the initial direction of motion of the

We can substitute this value for p(g,) into Eq. (3.14) and
solve for the boundary energy €, numerically.

If €, is large, i.e., the total energy E is large, we can ob-
tain a simple analytic expression for the magnitude of €,.
In this approximation p, is approximately equal to 2. We
substitute this result back into (3.14) and expand out the
square_root and inverse cosine keeping terms to order
Py, /V/ 2g,; then solving for €,, we obtain

g, ~L[(b+1)m)>. (3.17)

Coming out of scaled variables, the approximate energies
for the boundary orbits are given by (for large €;)

(eF /wp)* o
szT[(b+7)7T] , (3.18)
and from energy conservation
2
Ev= £ L {[((b+D)m]*=3} . (3.19)
Wp 2m,

In Fig. 11 we graphically display the results of the last
two sections concerning returning orbits and boundary
orbits. Given an energy E, which is not the energy of a
boundary orbit, there are (25, +1) returning orbits as-
sociated with that energy. There are two orbits which
arise from solving Eq. (3.14) for each given j, from j =1
to jmax> and one orbit for j =0. These orbits are labeled
Jj(a) and j(b), where the inequality €;(,, <€ =¢;(,, holds.

As the total energy is increased, a boundary orbit is
reached, and the number of returning orbits increases by
one; i.e., there is now an even number of returning orbits.
Upon the slightest increase in total energy, this new orbit
separates into two orbits. The dashed curve in Fig. 11
was obtained by substituting Eq. (3.15) into Eq. (3.16),
and calculating €, as a function of E. It represents the
curve upon which new orbits will appear.

4. The Jacobian

The ratio of Jacobians appears in the semiclassical
wave function as an amplitude 4,(q), and represents the
divergence of adjacent trajectories in time. As this ratio
decreases, the probability density of the wave function is
spread out over a larger area. Near caustics or foci,
where trajectories converge on one another, the ratio of
Jacobians increases and becomes infinite at the singular
point. At these points the semiclassical approximation
fails.

Here we will calculate the Jacobian by evaluating the
expression

J()= d(x,y,z)

RN (.20

electron. As the electron propagates into the external re-
gion, the symmetry is broken by the laboratory fields and
a different set of coordinates becomes more convenient.
In particular, {t,\/ 2¢,@} become the natural variables by
which to express the motion. The intrinsic coordinates to
the Lagrangian manifold are now taken to be
{t0,V2¢,9], and again ¢, is the same for every point on
the sphere. For this reason we reexpress the Jacobian in
the following way:

31,V 2e,9)  3d(x,y,z)

J(1)= vz
O (1, 0o D1,V 26, 0)

(3.21)

Writing out the derivatives explicitly, we have

50.0 ~ g

40.0

30.0

20.0

circular energy ¢ (scaled units)

10.0 ’,

0.0 1 1 1
0.0 24.0 6.0

12.0 .3
total energy E (scaled units)

FIG. 11. The heavy curves are the maximum and minimum
allowable values of the circular energy (¢) for a given E. For to-
tal energies less than approximately 9.5 there is one closed orbit.
The value of g, as E varies is given by the curve labeled j =0.
At an energy of approximately 9.5, the first boundary energy,
we see the creation of a new orbit. This coincides with the first
caustic coming tangent to the origin. As the total energy is in-
creased, we see this orbit separate into the curves labeled
j=Wa) and 1(b). For energies above 9.5, but below
E'®?=~29.5, there are a total of three returning orbits. At the
second boundary energy, the process repeats itself, with the ad-
dition of two new orbits labeled j=2(a) and 2(b). The dashed
curve is the curve upon which new orbits appear. In this figure
we use scaled units.
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ax  ax  ax
at V2 g
9 _d 9y
ot 9V2e dp
8 oz &
ot a\/Z_e a@ det

The quantity g(g, ) is the first determinant in Eq. (3.21).
It is a geometrical factor and is independent of the time.
Since the Jacobians always appear as ratios, this factor al-
ways cancels, so we are spared the necessity of evaluating
g(e,@p). The determinant given in Eq. (3.22) is evaluated
using Eqgs. (3.2) and ten sheets of paper. The result is

J(t)=g(e, @) (3.22)

J(ny=gt L2

.t t
Zsm? 2(e—py0 —%)cos;

Z0
_ _ 291720 L
2[2e (py0+1)] sin—

(3.23)

This is the Jacobian for any trajectory at any arbitrary
time (the trajectory is not necessarily a closed orbit).

For returning orbits the momentum in the z direction
is zero. If t =t (initial time) or ¢t =t (return time), then
x is small, and with this in mind we write

1 2—. —1

7(fik) =¢;—p, —7 . (3.24)
[Here the quantity #k is understood to be the dimension-
less “primed” initial kinetic momentum, transformed
from its initial form by Eq. (3.7a).] Equation (3.24) allows
us to rewrite the Jacobian in the following way:
2 ¢ t

! 2sin5 (#ik )*cos—

J(t)=gt 2

20
— _ 2917245 L
2[2¢g; (pyo-i-l) ] sm2

(3.25)

Equation (3.25) is the Jacobian evaluated at either t =¢,
ort=t,,.

C. The ratio of Jacobians and 4(q)

Let us construct the ratio of Jacobians for t=¢, and
t=t.,. Consider the Jacobian when ¢ =t¢, with ¢, small.
In this case, expanding the trigonometric functions of Eq.
(3.25) and keeping only the lowest order,

Vv 2¢,;
J(ty)=g L2(#ik )? . (3.26)
Zo0
If t=t, we have from Eq. (3.11) that
tet = —2¢+(2j+1)m, and so
Lret _ i . Lret _ P
cos— =(—1)sing, smT—(—l)fcoqu . (3.27)

Additionally, from the remark below Eq. (3.13) we have

the expression .., =2[2¢;—(p;+1)*]'/%. Substituting in
the definitions for sin(¢) and cos(¢) we have that the
Jacobian at t =t is given by

(2€;)? p;,+1 )2
J(tret)=g J — —j——__'
£ ‘/281
+1
Vg A PRI T R (3.28)
\/281- 2g; \/2£]~

Using Egs. (3.26) and (3.28), we have that the ratio of

Jacobians, for returning orbits, is given by
J(ty) W V0513 (#ik )?

Jte)  (eF/wp)? 4(1—72)[v;(1+73)—2%,]

, (3.29)

and we have made use of the following dimensionless
variables:

_ (eF/COB)
Vo=m———,
! \/2meej
(3.30)
1 eF
v,=———e— |p,+—
7TV 2m e, Pi @p

The quantity ¥, is the drift speed divided by the circular
speed, and v; is the initial y component of velocity in the
drift frame divided by the circular speed. We have also
come out of scaled variables.

There is no simple interpretation to Eq. (3.29). We re-
peat that this ratio gives the classical density at the origin
for a returning orbit, which is related to the amplitude of
the returning quantum wave.

D. The Maslov index

Caustics and foci are singular points where the Jacobi-
an goes to zero and hence the coefficient 4(g) goes to
infinity. As the electron passes through either a caustic
or focus, the Maslov index increases by one.

From the time dependence outside the brackets in the
Jacobian of Eq. (3.25), we see that the function goes to
zero when t =2k, with t less than or equal to 7. As
we already learned, t =2k 7 is a multiple of the cyclotron
time, and the electron is passing through a focus located
along the negative y axis. The Jacobian is also zero when

— R
£ p}"() 2

[2e—(p, +17]'2°

t
—= 3.31
tan > ( )

and these are the times when the electron passes through
a caustic.

Given the total energy E, there are two closed orbits
for each j of Eq. (3.14). The circular energies of these or-
bits are designated by the variables €, and €;(;). Anim-
portant question to ask is: given g;,) and €;.), how
many caustics and foci has the electron passed through
upon its return to the origin? Equation (3.31) helps to
answer this question.

The return time for the jth closed orbit must be greater
than 2j but less than (2j +2)w. Using the dimensionless
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parameters defined by Eq. (3.30), we rewrite Eq. (3.16) in
the following way:
2,
V= > (3.32)
1+,

As the total energy E increases, the boundary orbit
separates into two orbits having circular energies g;(,
and €;(,). These energies diverge from the curve defined
by Eq. (3.32), with one moving above and the other drop-
ping below. We have
2v v
Vi = —gz_’ ’
1+v;

> (3.33)
1+%

Vit Z
and therefore @;(,) = ;). Consequently, #;(,) = ;)

From the preceding arguments, 2jm<t;,) St
<(2j-+2)m. We are also able to conclude that the orbits
labeled j (a) pass through (2j + 1) caustics and foci, while
orbits labeled j(b) pass through 2j caustics and foci.
This result is consistent with the pictures of the trajec-
tories (Figs. 3-9).

E. The classical action

The classical action S(q) appears in the phase of the
semiclassical wave function and is defined in Sec. II, Eq.
(2.27). The action is equal to

S(q)=fq2p-dq s
d
S(q)=fq‘(‘)p-7;1dr

S is an arbitrary phase factor which is taken to be zero.
The integrals are evaluated using Egs. (3.2) and (3.9). A
long but straightforward analysis gives

S(E)=S(t,,,)

(3.34)

2
1
m,wp | Wp ; V;
(3.35)
J
s 6m,wp P "?
O . ot—0 -
U0 S | (F Jwp) |k | (1= v (147 —2%,]
2
X sin L Ry N
#fim,0p | wp ~]2. 4

For the angular factor, the geometry of the returning or-
bits requires that 6,,,=0.,=7/2 and ¢,,,= — ... This
allows us to write for various linear polarizations

1
Xx ( eout’ ¢out )X; ( eret’ ¢ret )= ECOSZ( ¢0ut ),

|
X}’ ( gout? ¢out )X;( grev ¢ret ) = Z;Slnz( ¢out) ’

Xz(Oouts out )X 7 (Orers Dre) =0 .

(4.2)

With z-polarized light, there is no outgoing wave in the
x-y plane, so the returning orbits have no effect, and the

cross section should have no oscillations.
The angle ¢, is the outgoing direction of the orbit in
the rest frame of the atom; through Egs. (3.9) this can be
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Again, there is no simple “intuitive” explanation. This
formula gives the phase of the returning wave. We also
note the theorem from classical mechanics which asserts
that 0S(E)/dE =t ,, so S is a monotonic function of E.

IV. THE PHOTODETACHMENT CROSS SECTION

Now we combine the results of the preceding sections
to obtain the photodetachment cross section in crossed
fields. Let us summarize the important previous results:

(i) The photodetachment cross section is given by Eqgs.
(2.3)-(2.5); it is the no-field cross section plus a sum of os-
cillatory terms. Each oscillatory term arises from a
closed orbit.

(ii) At low energies there is one closed orbit, and at
each of a set of boundary energies a new closed orbit is
created. Above the boundary energy the orbit splits into
two. The boundary energies are given approximately by
Eq. (3.19). One can also use numerical methods to calcu-
late the exact value of the boundary energies. Using Egs.
(3.15) and (3.16), one solves for g, in terms of E'®. Sub-
stituting this result into Eq. (3.14), one can numerically
solve for the boundary energies.

(iii) Each closed orbit is labeled by an index j(a) or
j(b). It is characterized by the parameter €, which
represents the circular kinetic energy of the electron on
that orbit. The value of € is obtained by numerical solu-
tion of Eq. (3.14); by convention €;,) = €; ).

(iv) The ratio of Jacobians is given by Eq. (3.29).

(v) The Maslov index for the j(a) orbit is 2j + 1, while
for the j(b) orbit it is 2j.

(vi) The classical action on each orbit is given by Eq.
(3.35), where we have made use of the parameters ¥; and
v; that are defined in Eq. (3.30).

(vii) For H ™~ the radial dipole integral was given in Eq.
(2.17), and the angular distribution of outgoing waves was
given in Egs. (2.12), assuming linearly polarized light on
the x, y, or z axis.

Now we combine these results into a single formula for
the oscillatory part of the cross section:

172

(X0 P )X * (Blety b))

4.1)

expressed in terms of Py, and then reexpressed in the pa-
rameters ¥; and v;:
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Hence we obtain the recurrence amplitudes

B 3 m,#eF | v (1—v2) |12
CHE)=0y |2~ — : , (4.4
2 (Kik) w; || v;(1+%))—2¥;

m, #ieF v, 172
CHE)=—0o |2 2 L J
(V]—Vj)z
— s 4.5)
(1—v2)}72
CHE)=0. (4.6)

In Figs. 12(a) and 13(a) we show a numerical calcula-
tion, derived from a purely-quantum-mechanical treat-
ment of the photodetachment cross section. Such treat-
ment was first developed by Fabrikant [7] and is further
discussed in the following paper. The range of E is from
0.0 to 4.0X 1077 a.u. The light is linearly polarized, and
we have chosen the magnetic field strength to be 2 T, and
the electric field strength to be 18 V/cm. We see that the
cross sections are smooth, rising functions (no-field cross
section), superposed upon which are oscillations. The
curves are well behaved with no divergences. We wish to

0.0006 (a) H,=3/5T ; F=18 V/cm
—
o
© {
w—- 0.0004 -
o
j23
=
c
2
x
© 40002 -
1
\
0.0000 o . —
0.00000 0.00001 0.00002 0.00003 0.00004
total energy E (a.u.)
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—
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B
[2]
=
=4
3
2
e
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total energy E (a.u.)

FIG. 12. Photodetachment cross section calculated from the
quantum-mechanical method discussed in the following paper.
The cross section is a smooth, rising function of energy (the no-
field cross section), superposed upon which are oscillations.
The oscillations are small, but near threshold they are a sub-
stantial fraction of the background. (a) x-polarized light. (b) y-
polarized light.
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compare this result to the result obtained from the semi-
classical analysis.

To calculate the semiclassical cross section for the pa-
rameters shown in Fig. 12(a) [or Fig. 13(a)] we use the fol-
lowing algorithm. For a given energy E we first deter-
mine the number of returning orbits for that energy. Us-

3 iy
o | =0 N

t?x J=1(a) /\/\/\/\/\/\/\/\/\/V\/\/V\/\/\A/V\/\A/\/\/\/\/\NVV\NVV\A/VV\AN
L
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total energy E (a.u.)
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® _
0.00000 0.06002 0.06004 0.06006 0.00008
total energy E (a.u.)
FIG. 13. In the top graph we redisplay Fig. 12, the

quantum-mechanical oscillations. We have subtracted out the
no-field cross section and multiplied by a scaling factor. The
graph immediately below this is the semiclassical oscillations
derived from Eq. (4.8). Oscillatory contributions from each or-
bit are displayed separately. There is a very nice agreement be-
tween the two approaches. For energies less than the first-
boundary-orbit energy, the sum in Eq. (4.8) involves only one
term, j =0(a), associated with the balloon-shaped orbit. For en-
ergies between the first- and second-boundary-orbit energies,
there are three returning orbits, and hence three terms to the
sum of Eq. (4.8) [ =0(a), j=1(a), and j=1(b)]. The j=1
terms are associated with the heart-shaped orbits in Fig. 6. For
energies above the second boundary energy and below
8.0X 1077 there are five orbits. The two new orbits are associat-
ed with the double-heart-shaped orbits of Fig. 9. Notice the
singularity at both the first and second boundary orbits in the
semiclassical oscillations. For x-polarized light (a), each oscilla-
tion decreases with increasing energy, while for y-polarized
light (b), each oscillation increases. End points of orbits move
from the x axis to the y axis.
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ing the scaling transformation Eq. (3.7b), we have that
the total scaled energy is given by

1 [eF ||

E'= E . 4.7)
m @Dp

e

From Table I, or for the higher energies, the approxima-
tion given by Eq. (3.19), we can determine the number of
closed orbits. For example, with the fields as chosen
above, and taking E =4.0X 1077 a.u., the total scaled en-
ergy is approximately 21.8. From Table I we see that this
scaled energy lies between the first and second boundary
energies. For scaled atomic energies less than 10.133
there is one closed orbit (see Fig. 3 or Fig. 4), and hence
one term in the sum of Eq. (4.1). For energies between
10.133 and 29.85 there is a total of three closed orbits,
and so at the energy of 4.0X 107> a.u. there will be three
terms associated with the sum of Eq. (4.1).

Second, for a given E we calculate ¢; for each return-
ing orbit by solving Eq. (3.14). Therefore, if we consider
E=4.0X10"7 a.u., we will need to determine the various
values for €; —o(4), €j=1(q) and €; (). With this done we
use Eq. (3.16) to calculate Dj» and therefore evaluate the
two ratios ¥; and v; [Eq. (3.30)]. Using these values for
v; and v; we obtain a value for the cross section at the
energy E by evaluating Eq. (4.1), using Egs. (4.3) and
(4.4).

It is useful to write the photodetachment cross section,
for x-polarized light, in the following manner:

(E)3? 9x "%

. X Ve
= = - ?CJ(E)sm[tbj(E)] . (4.8)

A similar equation holds for y-polarized light. We have
subtracted out the no-field cross section, leaving only the
oscillatory part of the spectrum. Dividing by o, and
multiplying by the factor (E)3/2 merely changes the am-
plitude of the oscillations. Following the algorithm de-
scribed above, the right-hand side of Eq. (4.8) was calcu-
lated for the range of atomic energies 0.0-8.0X107°
a.u., giving the semiclassical results in Fig. 13.

The topmost graph shows the oscillations obtained
from the quantum-mechanical calculation shown in Fig.
12(a). The semiclassical oscillations are displayed im-
mediately below this. For energies less than the first

TABLE I. The total energy and circular energy for a given
boundary orbit are listed here. The units of energy are the
scaled units as defined by Eq. (4.7).

Boundary orbit EWw g
1 9.633 11.05
2 29.35 30.82
3 58.96 60.44
4 98.43 99.92
5 147.8 149.3
6 207.0 208.5
7 276.1 277.6
8 355.0 356.5
9 443.9 4454

10 542.6 544.1
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boundary energy, the oscillations of the semiclassical re-
sult are due to the single closed orbit j =0, the balloon-
shaped orbit shown in Fig. 3 or 4. For energies between
the first and second boundary energies, two additional or-
bits contribute, the heart-shaped orbits of Fig. 6. These
two orbits have similar return times, and the two result-
ing oscillations produce beats.

For energies above the second boundary energy, two
additional orbits have appeared (Fig. 9), again the oscilla-
tions produce beats, and again they are plainly visible in
the quantum calculation. At the boundary energies, the
semiclassical approximation diverges, because a caustic
has touched the atom.

Just below each boundary a caustic is close to the
atom, but the atom is on the classically forbidden side of
the caustic. The new, about-to-be-created returning or-
bits carry returning waves close to the atom, but the or-
bits pass slightly below the atom, and the waves miss.
However, the waves spill over slightly into the classically
forbidden region, so these orbits produce small oscilla-
tions just below their boundary energy. This effect is
plainly visible in the quantum oscillations. A uniform
semiclassical calculation (using an Airy function near the
caustic) can also describe this.

The amplitude of the oscillations for x-polarized light
are greatest near the boundary energy and then decrease
with increasing energy. This effect is seen most clearly in
the decreasing amplitude of the oscillations of the
j=2(a) and 2(b) orbits shown in the lower part of Fig.
12(b). This can be explained in the following way. The
coefficient for x-polarized light is proportional to
cos*(dy,). When the total energy is at one of the bound-
ary energies, ¢, is at a minimum for that orbit. The tra-
jectory of the boundary orbit leaves and returns primarily
oriented in the x direction, and consequently the ampli-
tude of the oscillations is at a maximum. As the total en-
ergy increases, ¢, increases and the amplitude de-
creases: the returning trajectory is aligning itself with the
y axis. (Compare Figs. 3 and 6.)

For y-polarized light, the opposite happens [see Figs.
13(a) and 13(b)]. The angular factor is proportional to
sin*(¢,, ), so the amplitude of the oscillations increases
with increasing energy.

The results for the semiclassical analysis can be used
for other values of field strengths as well. Specifically, if
we change wp and F in such a way as to keep the drift ve-
locity (F/wp) constant, then since the scaled energy is
fixed, from Sec. III we know that the number of returning
orbits in the interval of E will not change. The amplitude
of the oscillations will scale like the electric-field strength
F, while their wavelength will scale like wp. In Sec. III
we found that it was possible to scale the Hamiltonian in
such a way that the dependence upon the fields was elim-
inated. It is this fact which allows us to use one set of pa-
rameters to describe results for other field strengths.

Taking this a step further, it would be useful to consid-
er the oscillations of Eq. (4.8) as a function of the scaled
variables defined in Sec. III. The cross section becomes a
function of the total scaled energy, the magnetic-field
strength (proportional to wp), and the electric-field
strength F. It is true that the coefficient and phase of the
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semiclassical cross section depend upon the parameters in
a complicated way; however, if we hold the total scaled
energy fixed, the number of returning orbits does not
change as we vary the field strengths, and the values of ¥;
and v; do not change. Therefore, matters are quite
simplified. In particular, each term of the sum of Eq.
(4.8) is an amplitude times a pure sinusoidal oscillation,
whose Fourier transform is a single peak located at the
return time for that particular orbit.

The scaled energy can be held fixed in a number of
ways. We might consider fixing the total atomic energy,
and varying both wg and F in such a way as to keep the
drift velocity (F/wg) a constant. Then if we plot the
left-hand side of Eq. (4.8) versus 1 /wg, the result will be a
sum of pure sinusoidal oscillations with an amplitude
which scales like the electric-field strength (F).

A second possibility is to hold the electric field con-
stant, varying both the total atomic energy and the mag-
netic field in such a way that the scaled energy remains
fixed. If we plot the left-hand side of Eq. (4.8) with
respect to (1/wp)?, we will again obtain pure sinusoidal
oscillations. The amplitude of the oscillations is a con-

stant and is proportional to the electric-field strength.
The wavelength is proportional to the constant (1/F)2.

A final alternative is to hold the magnetic field fixed
while varying the total atomic energy and the electric-
field strength in order to maintain a fixed scaled energy.
Plotting the left-hand side of Eq. (4.8) as a function of F?
will give a pure sinusoidal oscillation. The amplitude of
the oscillations scales like F, while the wavelength is pro-
portional to the constant (1/wp)’. Finally, we note that
although the oscillations are small, they might be made
detectable by repeated rotation of the plane of polariza-
tion, observing (o,—o,), (0,—0,), or best of all
(0y—0,).
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