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Electron —hydrogen-atom ionization collisions at intermediate (5Io —20Io)
and high (~ 20Io) energies
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Triple-differential cross sections for ionization of hydrogen atoms by electrons have been calculated
both for small- as well as large-momentum-transfer cases at intermediate (5I0—20I0) and high {& 20I0)
energies (I0 being the ionization potential) following a method which uses a final-channel three-particle
wave function determined by one of the authors. This wave function resulted from an analysis of the
three-particle wave equation in momentum space and is correct to the first order in the interaction po-
tentials. Incidentally, it is also the first-order Faddeev wave function. The wave function has been suit-
ably normalized before it is used. The computed results are generally good. The small-momentum-
transfer results are in nice agreement with the experimental data except for a certain angular region
which includes the recoil peak. The domain over which the present results agree in trend with the ex-
perimental measurements is somewhat larger than that for the distorted-wave-Born-approximation cal-
culation. Large-momentum-transfer results are also in qualitative agreement with experiments. There
are indications that quantitatively the present results may be better there. Total-ionization cross-section
results are also in excellent agreement with experiment above 200-eV energy. These facts together with
the simplicity of the calculation establish that the present method has certain advantages over other ex-
isting methods. The present calculation may be the starting point for a more elaborate calculation which
will take into account more accurately the correlation and higher-order effects in the final-channel
three-particle wave function.

PACS number(s): 34.80.0p

I. INTRODUCTION

Studies, both theoretical and experimental, of the
differential cross sections for electron-atom ionization
problems, during the past two decades, have revealed
many interesting aspects and mechanisms of the ioniza-
tion of atoms. Results of these studies also indicate
inadequacies of the different existing theories in explain-
ing all the details of the ionization problem. References
[1—7] and [8—20] deal with the relativistic and the non-
relativistic domains, respectively. Even the simple case
of electron —hydrogen-atom ionization collisions proves
to be quite difFicult to describe correctly with respect to
its various aspects.

In the nonrelativistic studies of triple-differential cross
sections (TDCS) for electron —hydrogen-atom ionization
collisions, there are two different kinematic regions of
great interest. One of these is the Ehrhardt asymmetric
kinematic region [8] corresponding to very-small-
momentum-transfer cases and the other is the region in-
vestigated by Weigold and associates [13,14] correspond-
ing to large- and intermediate-momentum-transfer cases
at intermediate (5I~ —20I~) and high ( &20I&) energies,
Ip being the ionization potential. At present there exist
absolute measured value of the TDCS for different sma11-
momentum-transfer cases at 150 and 250 eV energies be-
longing to the intermediate-energy range. For large-
momentum-transfer cases there exist only some relative
measurements for different energies such as 100, 113.6,
and 250 eV in the intermediate-energy range and for
somewhat larger energy of 413.6 eV, and for various

scattering and ejection angles, the scattering being copla-
nar.

Among the existing theories of ionization, distorted-
wave impulse approximation [13,14] (DWIA), distorted-
wave Born approximation [14,16] (DWBA), coupled
pseudostate calculation, and the calculation due to
Brauner, Briggs, and Klar [11]are noteworthy. DWIA is
computationally simple but the results may not be very
accurate, particularly for small-momentum-transfer
cases. DWBA and the pseudostate calculations are more
involved. The asymmetric small-momentum-transfer
cross-section results of these calculations are of compara-
ble accuracy. The calculation of Brauner, Briggs, and
Klar, which uses a three-particle wave function that is ex-
act in the far asymptotic region, gives results which agree
qualitatively best with the experimental results. Quanti-
tatively, however, the results may be substantially less
than the experimental values in some cases, by about
30%%uo or more, particularly in the binary-peak region. It
may be noted here that the binary-peak region gives the
most significant contribution to the total cross-section re-
sult. Except in one case of the DWBA calculation, these
methods have not been tested over wide kinematic condi-
tions. The calculation [14] in which DWBA has been ap-
plied for a few large-momentum-transfer cases at a high
energy (viz. , 413.6 eV) gives a good qualitative descrip-
tion of the experimental results. However, concerning
the quantitative agreement, the situation is not that clear,
particularly in view of the fact that the results presented
there for a small-momentum-transfer case do not agree
with the results presented later by McCarthy and Zhang
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[16]. DWBA is suitable for the investigation of the
TDCS over wide kinematic conditions and also of a
variety of other results, such as the single- and the
double-differential cross sections and the total cross sec-
tions. Total cross-section [17] results obtained by this
method are generally good at energies above about ten
times the ionization potentials. For double-differential
cross sections, discrepancies are noted [18], up to 100%
in some cases, for helium.

Now, the distorted-wave-Born-approxiination [16] T
matrix element for hydrogen,

(XI (pl)X2 (p2) ~ Vf Uf ~+QXQ (~Q) ~

may be viewed as an approximation to the exact result

T=(@f '~ Vf —U~~ql', '), (la)

where 4I+' is approximated by the product +~o+'(p; ),
%'o being the atomic wave function and go+' being the
single-particle scattering wave function for an elastic-
channel optical potential.

Here, Vf is the interaction between the projectile and
the atom and Uf is the potential used to calculate the
final-state wave function Nf ', where

@(—) —+( —
)(p )y(

—
)(p )

and y& and y2 are the scattering states of the electron-ion
subsystems (i.e., Coulomb waves).

An alternative expression for T is

where V; is the interaction in the initial channel, 4; is the
unperturbed initial-channel wave function, and 4f ' is
the exact final-channel three-particle continuum wave
function. Depending on (lb), an approximate calculation
method may be obtained by approximating 4f ' in some
way. The calculations of Brauner, Briggs, and Klar [11]
and the present calculation follow this line. The wave
function used by Brauner, Briggs, and Klar is correct in
the far asymptotic region The cross-section results indi-
cate that the wave function may not be that good in the
near region.

The wave function we use here is exact to the first or-
der in the interaction potentials and is generally good ex-
cept in the far asymptotic region, as indicated from the
cross-section results presented in Sec. III. The calcula-
tion may be improved further, say, by including in the
calculation the term I'4o of Das [21]. The ultimate goal,
however, will be to approach the exact wave function
qy(

—)

Eq. (lb) to get an approximate expression for the T-
matrix element. Scattering amplitudes and cross sections
are then obtained. Details are given below.

A. T-matrix element and the approximate
wave function

The (direct) T-matrix element for ionization of a hy-
drogen atom by an incident electron is give by Eq. (lb),
where

4;(r„r2)=p,z(r, )e ' 'j(2m)

V, (ri r2) =1/'ri2 1/~2

and +f ' is the solution of the wave equation

(2b)

—V', /2 —V' /2+
~&2 l'2

E4'—'=0, (3)f

@(—) @0(—) ~@(—) ~@(—)f f f

where r& and r2 are the coordinates of the two electrons,
r2 corresponding to the incident electron. Momenta of
the ejected, the scattered, and the incident electrons are

p„p2, and p; and their energies are E„E„and E, , re-
spectively. In our present calculation we use the wave
function of Das [21], which is correct to first order in the
interaction potentials. This wave function was obtained
from a momentum-space analysis of a three-particle wave
equation. It is interesting to note that this first-order
wave function agrees with the first-order Faddeev [22]
wave function. The second-order correct result obtained
by Das, viz. , E4o of Ref. [21], is also obtainable from Fad-
deev equations, viz. Eq. (39) of Ref. [22] after replacing
T23 T31 and T&2 in the kernel by U23 U31 and U12

spectively, and replacing +(",4' ', and 4 by corre-
sponding first-order results. However, their integral
equation (39) is basically diff'erent from the integral equa-
tion (7d) of Das [21]. For the long-range potentials, con-
sidered here, these integral equations should be con-
sidered as formal integral equations which may give im-
portant informations about the scattering-state wave
functions but do not possess all the nice properties of a
Fredholm integral equation with a square-integrable ker-
nel. The above first-order wave function does not satisfy
the normalization condition at infinity. We multiply it by
a suitable normalization constant X and take it as an ap-
proximation for the final scattering state and denote it by
@0(—)f ~

Thus in our present case

II. THEORY AND CALCULATION

The present theory, as indicated above, uses a first-
order three-particle wave function for the final scattering
state. The wave function was obtained by Das [21] from
a momentum-space analysis of the corresponding wave
equation and is exactly the same as the first-order Fad-
deev [22] wave function. The wave function, however, is
not correct in the far asymptotic region and needs further
normalization. The normalized wave function is used in

where

' (r„r2)

and where

(4b)
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r=(rz —r, )/2, R=(rz+r, )/2,

p=(p2 —pi» P=(p2+p)) .

Here, (p( '(r) is the Coulomb wave given by

'(r)=e '~ I (I +i a)e'~' )F )( ia—, 1, i—[qr+q. r],

where a = 1/p1 for q= pi, a = 1/p2 for q= p2, and
a= —1/p for q=p. The normalization constant N de-

I

pends on p, and p2. We will indicate in Sec. II C below
how we determine this normalization constant. Now we
discuss the accuracy of this wave function.

B. Accuracy of the wave function

It will be interesting to see how accurately the above
wave function ~Ii/( ' satisfies the wave equation (3). For
this we substitute the above ansatz in the left-hand side of
Eq. (3) and get

(H E)q—)/' '(r, , r2) = V, /2 V2—/2+ ——— qpo (
—)f

2

1 1

r12

1 1

r12

&p('p([ ( ) &p2'pp

r1 r2
iP R[ ( —)(r) iP r]

P
(2ir)' .

1 1

r12 r2
(H E)&Ii'—f lp2 12

e

X [(p~ '(r, ) —e ' ']/(2') (7)

When p„p2, and p =
~pz

—p, ~
all become large, then

Coulomb waves in Eq. (6) approach plane waves in any
bounded domain of the coordinate space and the right-
hand side of Eq. (6) becomes small. [Keeping r fixed, if
we let p~ 0(&, then (p),(r)~e')", while keeping p fixed, if
we let r +(&o, then (p' —)(r)~e'~'. ] In the limit, the wave
equation is exactly satisfied. However, for any finite pi,
pz, and p, the wave function (4) may not be valid in the
far asymptotic region. But this region is not that impor-
tant, except in determining the normalization of the wave
function. The normalization problem will be considered
in Sec. II C. Even when one of the momenta, say, p2, is
large and the other one is small, one has approximately

I

responding computed results may not be good.
We next indicate a method of determining approxi-

mately the normalization constant N in Eq. (4) which is
used in our present calculation.

C. Normalization of the wave function

The exact wave function 4f '=+' ' satisfies the nor-
Plp P2

malization condition

(9)

Since an approximate wave function cannot, in general,
satisfy the normalization condition (9) exactly, one can
only satisfy it approximately. Thus we determine the
normalization constant N =N(p), pz) in the approximate
wave function &P&' '=qi' ', given by (4a), from the re-

quirement

(10)

This may be compared with the corresponding result for
the final unperturbed state that is used in the Born-
approximation calculation:

(H —E)[q&z '(r, )e ' '/(2~) ]

'
'q~, )(r, )/(2~)' . (8)

The right-hand side of Eq. (7), which contains a factor
that is the difference of a Coulomb wave and the corre-
sponding plane wave, will, in general, be small compared
with that in Eq. (8). So in the asymmetric kinematic con-
ditions of Ehrhardt also, the wave function (4) generally
satisfies the wave equation better than that used in the
first Born calculation. When p1 will be very close to p2,
which is not true in any of the cases considered here, the
wave equation will not be satisfied accurately and the cor-

This, on integration over q, and q2, gives

f o( —) q(o( —
d q d q —1pl, p~ ql, q~ 1 2

Then one has

I&p(pq, pz&II = J(d'~ ~ I@'z,~ d'q, d'q, . (&2&

The right-hand side of this relation involves 16 integrals,
of which seven may be evaluated exactly. Five of the
remaining integrals contain factors of the form

f (((&~ )(p, )d q), where (p~ '(p, ) is the Fourier transform
qi 1 (q

of the Coulomb wave function (p( '(r). The remaining
q)

four integrals are of the form

q
*

q 1 y ' '
P2

—q 1 d q 1 d q 1

Numerical evaluation of these integrals is again
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difficult. However, these two types of integrals may be
evaluated quite accurately by making use of the observa-
tion that the Fourier transform q&„' '(t) satisfies the nor-

PI
malization condition

fq ' "(t)q ' '(t)d't=&(qi —pi).

Now,

fy~ '*(t)d t=&p~ '(o)=e ' I (1 ia—, ),

Consequently,

f y' "(t)y' '(t)d't d'q, =1 . (15)

where o., = 1/pj and so

f y' '(p, )d'q, =1/y' '*(o) .

Since &p' '(t) is highly peaked, approximately as a 5
Pl

function, at t= pi, one can approximate (15) by

Similar techniques may be used to evaluate integrals of
the type (13). The final result for the normalization con-
stant is then

l~(pi, pz) I

'=7 —2[ki+ Az+ A3] —[2/X i+2/Az+2/A3]+ [A i/kz+ ki/A3+ Az/X3+ Az/Xi+ A3/&( i+ f3/Az] =Me",

(18)

say, where

Ai=e ' I (1 ia ),—a, = 1/p,

I

the above two integrals to the form
1J =C dx x' '(1 —x) ' ~P(x) .

0
(22)

is

D. Calculation of the T-matrix element

The approximate T-matrix element in our present case

Az=e ' I (1 —iaz), az= 1/pz

A3=e" I (1 —ia), a= —1/p .

Since the relation (10) is not exact, a contribution to the
integral (11) also arises from nonneighboring elements.
Consequently, one has a nonzero phase factor with the
right-hand side of Eq. (18). Numerical results in all cases
show that this phase e is small and may be neglected.
The smallness of the value of e also partly justifies the ap-
proximations used. The absolute value of the right-hand
side of Eq. (18) is then taken as an estimate of
&(pi pz)

For numerical computations it will be convenient to
rewrite it as

J=Cf dx x' (1—x) ' [~I'(x) —%(o)]/x
0

+CI (ia)I (1 ia)%(o—) . (23)

f (p, ,pz)= —(2') T/;, (24a)

and the exchange amplitude g(p„pz) is approximated by

g(pi&pz)=f(pz&pl) . (24b)

The triple-diff'erential cross section is finally given by

Such integrals have been numerically evaluated using the
Gauss quadrature formula. For the present computation
a 40-point formula proved to be sufficient.

The direct scattering amplitude f (pi, pz) is then deter-
mined from

(19)
dO

d Aid Q2dEi
(25)

dx x' '(1 —x)' ' 'e"'
I (a)I (c —a) o

(20)

in the expression for the Coulomb wave function,

'*(r)=e I (1 ia)e 'i"—iFi(ia, l, i (pr +p.r)) .

(21)

Making use of Lewis's [23] integral result, one can reduce

Except for two, all integrals in this expression may be
evaluated exactly. These two remaining integrals can be
reduced to one-dimensional integrals. For this we use the
integral representation of the conAuent hypergeometric
function,

,F, (a, c,z)

III. RESULTS

Figures 1 and 2 display certain small-momentum-
transfer coplanar-scattering cross-section results for the
incident-electron energy E,. =250 and 150 eV, respective-
ly. Figure 1 displays three sets of results corresponding
to (a) Ei =5 eV, Hz=3; (b) Ei =5 eV, Hz=8, and (c)
E, = 14 eV, 02= 8 . These results are compared with the
DWBA results and with the results of Brauner, Briggs,
and Klar [11]only. The experimental results we compare
with are the relative measurements of Lohmann et al.
[24] normalized to a point of the second Born results in
each case and the absolute measurements of Ehrhardt
[25] in cases (a) and (b). Figure 2 displays five sets of re-
sults for the coplanar scattering corresponding to (a)
E, =5 eV, Hz=4'; (b) E, =5 eV, Hz=10; (c) E, =5 eV,
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suits and with the plane-wave Born approximation with
exchange (PWBE) [13] included. The results are also
compared with the relative measured values of Weigold
et al. [13]. Qualitative agreement between the present
results and the measured results of Weigold et al. is very
good, often better than those with PWBE results, but are
similar to those with DWIA results. Quantitatively,
however, the present results are about four times the
DWIA results and are close to the PWBE results.

Figure 4 displays the large-momentum-transfer cross-
section results corresponding to 250-eV energy of the in-
cident electron. The two outgoing electrons have ener-
gies of 50 and 186.4 eV, respectively. The figure displays
five sets of results corresponding to 02=15', 20', 25', 30,
and 35' and 0& to the range 20 —100', in a three-
dimensional form. Here, y&

—
y2 =~. Here, also, we

compare our results with the relative experimental results
of Weigold et al. [13] and with the theoretical results of
DWIA [13] and PWBE [13] approximations. As before,
qualitatively the present results are similar to the DWIA
results and the experimental results. But numerically
these are about four-and-a-half times the DWIA results
and are closer to the PWBE results.

Figure 5 shows results for incident-electron energy of
113.6 eV, while the two outgoing electrons have equal en-
ergies of 50 eV. Here two sets of results are presented
corresponding to 02=35' and 45' and y, —rp2=m. These
are compared with DWIA results [13], PWBE results
[13] and with the relative measurements of Weigold
et al. [13]. The results of the present calculations
correctly reproduce the peaks, the peak positions as well
as the relative peak heights. Here the results are much
better compared to the DWIA results and the PWBE re-
sults. Numerically the present results are about six-and-
half times the DWIA results and are closer to the PWBE
results.

Figure 6 displays coplanar-scattering cross-section re-
sults for incident-electron energy of 413.6 eV, scattering
angle 02=30, and for two different values of ejected elec-
tron energy (a) E, =SO eV and (b) E, =100 eV. The
above scattering parameters correspond to relative mea-
surement of McCarthy et al. [14]. Here we compare our
results with the above measured values of McCarthy
et al. and with the theoretical results of second Born ap-
proximation, DWBA [14], and DWIA [14] approxima-
tions. Except for B2 cross-section curves, the other
theoretical cross-section curves are very similar in shape.
The B2 cross-section results grossly disagree with the ex-
perimental values. Our results are closer to the DWBA
results and are considerably larger than the DWIA re-
sults. Rembering that the energy 413.6 eV is a relatively
high energy, the above closeness between our results and
the results of DWBA goes in favor of the above calcula-
tions and goes against the DWIA calculation. However,
still, there are large differences between the DWBA and
the present results, and some absolute measured results
are necessary for further discrimination.

IV. CONCLUSIONS

1'0
40 60 100

FIG. 6. TDCS for ionization of hydrogen atoms by electrons
at E; =413.6 eV for (a) E& =50 eV, 02=30 ' (b) E& =100 eV,
82=30, y&

—f2=m and 0& variable. Theory:, present
calculation; ———,DWBA [14]; —.—.—., DWIA; ———,
B2. Experiment: f, McCarthy et al. (normalized at a single
point in each case).

The present calculation, which uses the three-particle
continuum wave function of Das [21] and incidentally
which is the same as the first-order Faddeev wave func-
tion, after a proper normalization, describes satisfactorily
the measured cross-section results of Ehrhardt [2S] for
small-momentum-transfer cases except for a (certain) re-
gion which includes the experimental recoil peak and
which becomes unimportant with the increase of the
momentum transfer. The calculation also describes the
large-momentum-transfer cross-section results qualita-
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tively. The agreement of the present results with the cou-
pled pseudostate calculation and with the DWBA calcu-
lation is quite remarkable. In fact the total cross sections
calculated by the present method and by the DWBA
method are of the same order of accuracy. For 250 eV,
for example, the present calculation gives a value which
is only 5% less than that of experiment, while the DWBA
result is 5% greater than the experimental value. Now
for larger-momentum transfer cases there are large
differences in quantitative results of these two calcula-
tions [see Figs. 1(c) and Fig. 6] but qualitatively these are
very similar. Since the present calculation is expected to
be more accurate for larger-momentum-transfer cases, its
results may be favored by experiments. The present cal-
culation takes the electron-electron correlation in the
final channel symmetrically and exactly to the first order.
There is scope for inclusion of higher-order effects in the
calculation. So the present calculation may be considered
as the first step in a systematic improvement of an ioniza-
tion calculation. The present calculation is also simple.

Here, the scattering amplitude contains several terms.
Each involves integration with one Coulomb wave only,
the result ultimately depending at most on a single in-
tegration over [0,1] of a smooth function. The form of
the scattering amplitude may help in an analysis of the
scattering mechanism for any particular kinematic condi-
tion. For example, the dominance of a particular term
will indicate which physical effect is the most important
there. Single- and double-differential cross sections are
also easily obtainable from it. The calculation may be
generalized for application to the ionization of other
atoms and ions.
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