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The problem of the choice of a trajectory in the time-dependent semiclassical treatment of nonadiabat-
ic molecular collisions is reconsidered. The purpose of the work is to improve the semiclassical descrip-
tion of vibronic transitions in conditions where quantal calculations are hardly feasible. In order to
bring out our proposal, the investigation is carried out in the framework of the infinite-order sudden ap-
proximation where quantal calculations are tractable and thereby provide a reliable testing ground. The
way in which a classical trajectory emerges when deriving the time-dependent equations from the quan-
tal ones is reexamined. Specific features are pinpointed which draw one’s attention to the idea of a mul-
titrajectory approach. A proposal is formulated and applied to vibronic charge transfer in the H* +0,
collision. The proposed multitrajectory treatment is found to be superior to the other semiclassical

treatments based on a simple common trajectory.

PACS number(s): 34.10.+x, 34.50.—s, 34.70.+e¢, 82.30.Fi

I. INTRODUCTION

The past decade has witnessed the emergence of a new
generation of experiments in the field of vibronically
nonadiabatic atom-molecule collisions [1]. An important
concern of these experiments has been the acquisition of
state-specific dynamical information and angular distri-
butions of the products. These experimental trends have
been accompanied by an intense theoretical activity [2].
Though theory has achieved nice successes in explaining
and reproducing many features of the experimental
findings, detailed agreement is still not always met.
Weaknesses of the theory lie either in the approximations
made to obtain relevant potential-energy surfaces and re-
lated couplings or in the simplifying assumptions which
make the dynamics tractable. The present contribution is
concerned with a specific issue in the latter category of
problems.

It is well known that a full quantum-mechanical treat-
ment of the dynamics of nonadiabatic atom-molecule col-
lision is prohibitively burdensome, especially at extra-
thermal energies. This situation owes particularly to the
large number of open rotational states involved [2(a),3].
Invoking the shortness of typical collision times as com-
pared to characteristic molecular rotation periods, two
theoretical approaches have been proposed [2,3]. Both
approaches are based on a sudden approximation vis & vis
the molecule rotation: the molecule orientation enters
the theory only as a fixed parameter. One theoretical ap-
proach makes use of the infinite-order sudden approxima-
tion (IOS) [2(a),2(c),3]. It assumes that all rotation
motions are so slow that there is virtually no difference
between the space-fixed reference frame and the body-
fixed frame that accompanies the tumbling of the atom-
molecule system as a whole. In this case, assuming that
the molecule orientation remains fixed amounts to hold
the relative angle ¥ =(r,R) fixed; r is the molecule bond
vector, R the relative atom-molecule vector (7, R, ¥ form
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a set of internal Jacobi coordinates). The second theory
makes use of the fixed-rotor approximation whereby the
molecule orientation is held fixed in the space-fixed refer-
ence frame [2(a),2(b),3]. One advantage of the IOS ap-
proach is that it lends itself to a quantal treatment of the
collision. However, inasmuch as it constrains the scatter-
ing to be governed by spherical potentials and couplings
for each y value [3], it forces the collision system to “see”
the same interactions in the incoming and outgoing
stages of the encounter. This constraint somewhat spoils
the description of the actual anisotropy of the problem.
The fixed-rotor approximation is more realistic in this
respect. Yet, the corresponding quantal treatment is still
prohibitively burdensome. This owes to the proliferation
of the number of coupled equations one needs to treat in
order to describe the coupling of relative angular momen-
ta arising from the anisotropy of the potential [4]. This
difficulty has been circumvented by using a semiclassical
approach whereby the relative motion is treated classical-
ly and evolves along a trajectory R(¢), whereas vibronic
motions are treated quantally and obey a time-dependent
Schrodinger equation [2(a),2(b),3]. We have recently
shown in this context that the fixed-rotor picture pro-
vides a valid approximation at low extrathermal energies
down to =1 eV/amu [5]. A problem that still remains
open in the vibronic semiclassical treatment of nonadia-
batic molecular collisions is the choice of the trajectory
which is not precisely defined by the theory. Possible
choices are the following.

(1) The trajectory deriving from the entrance [3,6] vib-
ronic potential-energy surface.

(2) The trajectory associated with an arithmetic or
geometric average of the involved potential surfaces [7].

(3) The trajectory obtained by weighting each potential
by the instantaneous probability that the system be in the
corresponding vibronic state [8].

(4) The SCECT (semiclassical self-consistent energy-
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conserving trajectory) associated with the instantaneous
expectation value of the quantal vibronic Hamiltonian

[9].

The latter three choices attempt to force in the fact that
in a nonadiabatic process the system evolves simultane-
ously on several potential-energy surfaces. Obviously, for
potentials having similar shapes and lying close to one
another [Figs. 1(a) and 1(b)] any of the above suggestions
is acceptable. This is particularly the case for pure vibra-
tional excitation problems:

AT +BC(v)—>At+BC'"),

where the potential-energy surfaces correlating with each
state v’ of the BC vibrational manifold remain nearly
parallel, except possibly near potential walls [3]. The suc-
cess of semiclassical calculations, in the IOS framework,
in reproducing quantal results for pure vibrational excita-
tion in the H' +0, collision provides a nice illustration
of such a case (see Sec. III below). Yet, it is well ac-
knowledged that for potentials having quite different
shapes as those schematized in Fig. 1(c) the choice of the
trajectory is an uncertain issue, especially at low energies

(@)

|

1v
v
73
5 (®)
=
43)
=
]
L2
o
A,
o 20"
=
o
= "
= 2v
>

©)

.

1v

2v'

R

FIG. 1. Typical shapes of potential-energy curves involved in
vibronically nonadiabatic transitions. (a) and (b) illustrate cases
of vibronic potential-energy curves that correlate with a pair of
vibrational levels belonging to a common electronic state [e.g.,
A*Y+BC(v) and A4 +BC*(v"), respectively]. The energy
curves in (a) or (b) are nearly parallel and lie close to each other.
For each case a common classical trajectory is valid and may be
found easily. (c) illustrates the case of potential-energy curves
having different shapes and correlating with vibrational levels
that belong to different electronic states [say, one state of (a) and
one state of (b)]. The present article addresses the problem of
finding appropriate classical trajectories for the three cases (a),
(b), and (c) simultaneously.
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[7(),8]. This is actually the case for the H™ +O,
charge-transfer collision. In a previous work [3] semi-
classical calculations have been carried out for this pro-
cess, in the IOS framework, using either the SCECT or
the trajectory deriving from the entrance potential (see
Sec. IIIC). Though often recommended in the litera-
ture, the SCECT calculation did not reproduce satisfacto-
rily the quantal differential cross sections for charge
transfer. The trajectory deriving from the entrance po-
tential was more successful in this respect; still, inspec-
tion of the impact-parameter dependence of state-to-state
transition probabilities revealed a clear dephasing of in-
terference structures when compared to the correspond-
ing quantal results. These shortcomings have led us to
investigate, in the work reported below, whether better or
optimum choices of the trajectory can be made. This
quest has been undertaken in the IOS framework where
quantal calculations are feasible and provide testing
grounds for an eventual prescription. Our goal is of
course not to build the nec plus ultra semiclassical treat-
ment of the IOS approximation but to export the sought
prescription to another context, namely, the fixed-rotor
approximation. The objective is to increase the reliability
of semiclassical calculations in a context where, as al-
ready mentioned above, quantum-mechanical calcula-
tions are not yet tractable.

The outline of the paper is as follows. In Sec. II we
briefly recall how the notion of a classical trajectory
emerges when one proceeds to derive the semiclassical
equations of motion from the quantal ones [7]. This en-
ables us to pinpoint specific features, already noted by
others [7(a)], that draw one’s attention to the idea of a
multitrajectory approach. A proposal is thereafter made
to obtain scattering amplitudes for vibronically nonadia-
batic processes. In Sec. III the method is applied to the
case of vibrational excitation (VE) and vibronic charge
transfer (VCT) in the HT 40, collision at a center-of-
mass energy, E =23 eV, where quantal IOS calculations
are available. Our conclusions are presented in Sec. IV.

II. THE PROPOSAL OF A MULTITRAJECTORY
APPROACH

A. The passage from a quantal to a semiclassical treatment

As is well known ([2(c),3] the IOS approximation
amounts to performing vibronic close-coupling calcula-
tions for central potentials and couplings parametrized by
the relative angle y. Except if stated otherwise, this pa-
rameter will be kept implicit in all the foregoing deriva-
tions and discussions. Without loss of generality we
choose to expand the total wave function of the collision
system in a vibronic basis describing the molecule’s vibra-
tion and all electronic degrees of freedom. The quantal
equations of relative (atom-molecule) motion thereafter
become formally the same as those encountered in atom-
atom collision problems. After effecting a partial-wave
expansion [11] one arrives at a system of coupled second-
order differential equations for each relative angular
momentum /:
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1 d? 1(14+1)
— +E—¢,—H;(R)———~ | F,
2% 4R e, —H;(R) WE Fa(R)
= 3 Hy(R)F;(R). (1)
J (i)

u is the reduced atom-molecule mass, R the relative dis-
tance, and E the total energy; i is a vibronic state and ¢;
the corresponding internal energy at infinite atom-
molecule separation. At this point we only need to know
that H;(R) is a potential term and H;;(R) a coupling be-
tween two vibronic states; more explicit definitions will
be given in Sec. III A. We elect throughout to work in a
diabatic representation [10] and thereafter H;(R) is a
scalar operator. Both H;(R) and H;(R) tend sufﬁmently
fast to zero as R — [11]

Following the usual procedure [12], the F;(R
tions are sought in the form

) func-

Fa(R)=[ky(R)]"*{a; (R)exp[ —i&y(R)]
—a;f (R)exp[i®y(R)]} , (2a)
a+n2 11"
ku(R)= 121 | E —e; = Hy(R)= ——2— : (2b)
- R ' s T
&,-,(R)—L K(RNAR'+ 7 . (20)

k;(R) is seen to take into account Langer’s substitution
of [(I+1)by (I +%)2 [11(b)]. The lower bound of the ac-
tion integral [Eq. (2¢)] is usually taken, according to the
JWKB approximation [11(b),13], to be the turning point
R defined by

ky(R™=0. 3)

The 7 /4 term then arises from the connection of the elas-
tic solutions in the classical and nonclassical regions of
motion. Here, we do not specify the lower bound of this
integral to provide some freedom in the foregoing discus-
sions; the 7/4 term is retained for convenience. It is
worth mentioning that, unlike some earlier works
[11(b),12(c),12(e),12(f)], we do not impose from the outset
a common wave number in the above expressions as this
procedure does not specify the way in which the common
wave number is to be chosen. The form of wave func-
tions in Eq. (2) conveys the idea that “one may attempt to
describe inelastic scattering of heavy particles using a su-
perposition of elastic-type JWKB wavelets in each chan-
nel i weighted by proper probability amplitudes” a;(R)
[2(a)].

The replacement of each F;(R) function by two un-
knowns a;(R) gives the freedom to impose an arbitrary
condition between the latter two; for convenience one
chooses [7(b)]

i da;
lesb,](R )] dR

One then plugs these relations in Eq. (1) and makes use
of the following approximations.

(1) The JWKB approximation [11(b),13,14]

da,l
exp[i&;(R)] IR = exp[ — 4)
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k;(R)>>1, (5a)
d2 ki (R) —1/2

[k,.,<R)]—3/2—[’dR—2] «<1. (5b)

(2) The high-frequency approximation: owing to the
importance of k;(R) (>>1), terms involving
exp{*i[$;(R)+8;(R)]} (Vi j) phase factors oscillate
much faster than those involving
exp{+i|8;(R)—&;(R)|} factors and have comparatively
negligible contributions. This leads to

daj(R) H;(R)
R

lj R
dR jé,.)“[k,.,m)k (R)]172 aji (R)

SAR} . (6

X exp{*i[§;(R)—

It is usually at this point that a common classical tra-
jectory is introduced in order to arrive at the correspond-

ing semiclassical time-dependent equations
[2(a),2(b),3,6-9,11,12]
idCiI(t)
T: 2 H,’j(R)Cﬂ(t)
Jj (D
X exp {—i [ [e;+H}(R)
—e;,—H;(R)]dt' | . (7

In that treatment the coefficients c;(¢) represent, for each
partial wave /, the probability amplitude to find the sys-
tem in state j [2(a),2(b),3,6~9,11,12]. The new variable ¢
arises from a prescription for a classical trajectory estab-
lishing a relation between R and ¢. Once this is done, the
remainder of the procedure consists of identifying

(t <0) and c,(t >0) with aj (R) and aj *(R), respec-
tlvely

For each i, j pair of states, it is immediately seen that
two definitions of a classical trajectory suggest them-
selves:

o ky(R)k;(R)]'?

Ri!= [kl ROk (R)] ) (8)
u

R‘A”—————m—k( ) K (R) ) ©9)
2u

The way in which the geometric mean velocity (G)
comes about is obvious from the comparison of Eqs. (6)
and (7). The appearance of the arithmetic average (A4)
velocity is somewhat more subtle [7(a)]. If some common
trajectory exists it assumes a common lower bound R,-]TI
for the integrals defining §;(R) and &;;(R); this yields

R ka,(R’)—k,%(R’)

&jz(R)'&l(R):fRUﬂde

R ’
~— fR.ﬂ[ej+Hjj(R )—¢;
ij

dR’
Rl
Ry

—Hy(R")]25— (10)
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A choice of R different from Ii,-(j’”l in Eq. (9) is thereby
likely to produce an incorrect dephasing of interference
structures in the impact-parameter dependence of the
nonadiabatic transition probabilities. As recalled in Sec.
I this is precisely the shortcoming of the common trajec-
tory deriving from the entrance potential. These remarks
suggest that the appropriate trajectory would be the one
associated with the average potential V/*(R)
=[H;(R)+H;;(R)]/2 which yields, when taking the
centrifugal term (I1+1 )2/R2 into account, the classical
radial velocity R LA

Inasmuch as there is one trajectory of this sort for each
pair of states 7, this prescription implies, for a total num-
ber of states N, the use of N(N —1)/2 trajectories. The
proposed semiclassical multitrajectory description thus
descends from the quantal one following a well-
established procedure. Its newness lies in the use, for
reasons just stated, of R 4 instead of a common R in Eq.
(10).

B. The scattering matrix

The asymptotic behavior of Eq. (2a) when R — o can
be set in the form

711(R)~L a__(R)eA"(ﬂﬂJfij —Imr/2)

172 | %l
kj
_aj?_(R)ei(‘r]ﬂ+ij —17/2) ’ (11a)
= lim [8;(R)=k;R +17/2]
R R
=f( )kﬂ(R')dR’—fb Ky (R')dR' (R—>)a , (11b)
J

b, =(1+1)/k; ,

®) 5 (l+_;_)2]]1/2
Kj(R)= |2 .

BT

The comparison of Eq. (11) with the required asymp-
totic behavior,

1 —i(kgR —17/2) i(k;R —Im/2)
IR~ K172 {501 —Sojre ’
(12)
yields the 0— j scattering matrix element:
+
So. = aj (R—+oo)ei(1,ﬂ+nm)
P ag(R— )
calt—+ o) ;(p
— i e’(’711+"701) . (13)

COI(t—>'_°O)

The phase difference defining 1, [Eq. (11b)] may be
handled in the same way as done in Eq. (10). With the
approximation that the lower bound of the integral
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defining §;(R) and the impact parameter b; lie close to
each other one readily gets

R Kj(R)—KkH(R")
"f"fyzrk.,(k')ﬂ.(zz')dR (R—c0)
dR’
_“f THJJ(R S0 (R—w), (14)
Jl
k(R)+K,(R)
RPR)= LTI (15)
2u

The outcome of the above treatment is that in order to
set the JWKB-type phase shift 7, in the well-known
time-dependent form H ;(R)dt one should

use the classical trajectory 7{3"( ) which according to
Egs. (14) and (15) is associated with the potential
Vij*'=H;(R)/2 and not H;;(R) as one could have ex-
pected intuitively.

It is thus seen that in addition to the N (N —1)/2 tra-
jectories required to determine the probability amplitudes
ajf(R — ), or equivalently c;;(t—=+c0) (Sec. ILA), one
needs to introduce N trajectories obeying Eq. (15) to ob-
tain the JWKB-type phase shifts in Eq. (14). Then Eq.
(13) reads

(t—>+oo)
Soj1= (o) exp[—tf H,(R{(1")
+ H o (RN '))d:'}
=C;(1— oo; b)CXp[—lf TH (R ))dr ] (16)
with

Ci(t;b)=c;(t )exp[-i-lf H (Rt ’))dt'l, 17)

b=b;=b, .

(18a)
(18b)

C. Recapitulation

The described multitrajectory procedure follows the
same general lines as those enabling one to derive the
time-dependent semiclassical close-coupling equations
from the quantal ones. Likewise, it is primarily based on
the conditions of validity of the JWKB approximation.
The derivation thus requires that the local wave number
in each channel be large and that the difference between
two channel wave numbers be small compared to some
common average wave number. Because interference
patterns are sensitive to the actual path followed by the
system, we have come to the conclusion that the relevant
choice of trajectory should be made when passing from
phase factors of the form exp{i(&;(R)—&;(R))} to the
form
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exp|—i [ [H;(R)+e,—H,(R)—¢;1dr" | .

In doing so, we admitted, as also done in the usual
derivations [7(b),11(b)], that the actual turning points lie
close enough to a common turning point. This gives rise
to a set of pairwise trajectories Ri(jj‘})(t) along which the
coupling terms H;;(R) and energy differences
H;(R)+e;—H;;(R)—¢; are calculated when solving the
set of time-dependent coupled equations [Eq. (7)]. The
elastic JWKB phase shifts needed to derive elements of
the scattering matrix from the probability amplitudes
have also been inspected in the same spirit. In order to
set those phase shifts in the familiar time-dependent form
a new trajectory ﬁ;f’)( t) has to be used for each channel.

J

. o

ic,, =
v’ (Fv)
" 2 o

n" (#n),v"

with [2(b),3]

o " =gy | Ho (R,1,7)=8,, U, (Plg, ),  (20a)
L@y lle Y=en lg, ) (20b)
2m dr? n Vn nv, 1Sv,
U,(r)= RlExlenn(R,r,y) , (20c)
H,,(R,r,y)={(n|Hylm) . (20d)

H, is the electronic Hamiltonian for a fixed geometry
of the nuclei, r is the molecule bond distance, and m its
reduced mass. Once again, the electronic states are as-
sumed to be diabatic [10] and thus

(n
Two types of terms are distinguished in the right-hand
side of Eq. (19). One term corresponds to intramanifold

transitions v —v’, i.e, transitions between different vibra-
tional states associated with the same electronic state

dq

m)zo, a=rRy . @D

" Lt
H”.C, .exp|—i [  [H +e,
nn nv — » n'n n-v
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III. APPLICATION TO THE SEMICLASSICAL
TIME-DEPENDENT TREATMENT
OF THE H* 4+ 0, COLLISION

A. Reduction of the number of trajectories

When addressing the problem of vibrational state-to-
state excitation and charge transfer in an ion plus mole-
cule collision it is convenient to characterize each chan-
nel by a pair of indices (nv) instead of the single index i of
Sec. II: n labels a reactant or product electronic state of
the system and v designates a corresponding vibrational
state of the molecule. We may thereafter rewrite the sys-
tem of equations (7) using Egs. (18) in the form

, Lt - ,
nv 2 H:ﬁ Cnu' €xp [—-l f_m[Htl:nv +£nv’—Hrlljz—snv ]dt ]

—HE et | 19

r

tion enables us to exploit the property of vibrational
states belonging to a common manifold to have closely ly-
ing and nearly parallel energy curves [Figs. 1(a) and 1(b)]
in order to reduce the number of trajectories that appear
when using the multitrajectory treatment of Sec. II.
Indeed for intramanifold transitions at collision energies
E >1 eV/amu Eq. (9) becomes, according to this proper-
ty,

k2(R)+k(R) K, (R)
2u e
where K, ;(R) is a common local wave number charac-
teristic of the vibrational manifold n. Likewise, we have
for the JWKB phases [Eq. (15)]
Hlaw_ k) (R)+ky(R) - H(R) Vo . (23)
nl 2“ U ’
Similarly, for intermanifold transitions we may intro-
duce another common wave number characteristic of the
pair of electronic indices:

ky(R)+k!. (R) K, . (R)

3 (Ao’
nn,l

Yo,v', (22)

] " ”,1 "
(n=n’). The other term corresponds to intermanifold R '("f)"," = 2 ~—"% , Yo' (24)
transitions n—n'’, v—v’ which change both the elec- ' (o K
tronic and vibrational states of the system. This distinc- For the following processes:
J
H*+0, (X3, ,0=0)—>H"+0,(X 3,0’ <14) [vibrational excitation (VE)] (25)
—H+0; (X?I,,v"" <14) [vibronic charge transfer (VCT)], (26)

the above properties reduce the total number of trajec-
tories needed in the multitrajectory method to five (in-
stead of 465): two trajectories of type Eq. (22), two of
type Eq. (23), and one of type Eq. (24). In the calcula-

r

tions reported below these trajectories were chosen to
correspond to Egs. (22)—(24) with v =v'=0 and v"' =2.
In the foregoing discussions n =1 and 2 will be used,
wherever needed, as electronic labels for the direct and
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charge-transfer channels [Egs. (25) and (26)], respective-
ly.

B. Technicalities

The H’, matrix elements in Egs. (19) and (20) are the
same as those used in Ref. 3. According to the above, the
classical trajectories are determined by solving
Hamilton’s equations with the respective spherical poten-
tials: HX(R;v), HZ(R;v), HS(R;y)/2, H3(R ;v)/2,
and [HY(R;y)+H3%(R;y)]/2 for each fixed angle y
and impact parameter b [Eq. 18(b)]. These equations are
actually solved in the conserved plane of the trajectory in
fixed space. Aside from the calculation of five trajectories
instead of one, the differences between the earlier compu-
tation algorithm [3] and the present one just lie in the in-
terpolation of the H!". matrix elements between tabulated
points. At each integration step, instead of interpolating
all matrix elements at a common point R (¢), five sets of
matrix elements have to be interpolated at the point
reached along the corresponding trajectory. With the
calculated scattering matrix [Eq. (16)] one easily obtains
the sought differential and total cross sections [see Egs.
(20) and (21) in Ref. 3].

C. Results

Figure 2 recalls a result obtained in Ref. 3 for y=15°
when the HYY" couplings are switched off, thereby
preventing charge transfer to occur; in this case only vi-
brational excitation can occur [15]. The semiclassical
(n =1, =0)—(n =1,v'=1) vibrational excitation prob-
ability Py ; in this figure was obtained using the com-
mon trajectory associated with the H{%(R ;15°) potential.
The nice agreement between the semiclassical and quan-
tal results supports a claim made in the Introduction as

S L A S y—r—r—w—r—r‘—w—y—y—\

L

f=
~

Probability

)

f=4
[3S)
—

1 2 3 4 5 6 7
b (units of 2 )

FIG. 2. Impact-parameter dependence of quantal (full lines)
and semiclassical (dotted lines) IOS transition probabilities
P11 for ¥y =15 obtained by switching off the H!?" couplings
(pure vibrational excitation). The shapes of the vibronic
potential-energy curves are those schematized in Fig. 1(a). This

result was obtained in Ref. 3 using the common trajectory asso-
ciated with the H{J(R ;15°) potential.
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to the validity of the common trajectory for closely lying
and nearly parallel energy levels; it also demonstrates the
cogency of Eq. (22).

Figure 3 shows a comparison of quantal and multitra-
jectory semiclassical (MTSC) results for sample vibration-
al excitation: (n =1,v =0)—(n =1,v'=0,1) and vibron-
ic charge transfer: (n =1,0 =0)—(n =2,v"'=2) transi-
tion probabilities versus impact parameter for y =45
For this orientation the couplings between direct and
charge-transfer channels are close to maximum [16].
Generally, impact parameters b > 2a, show close agree-
ment between quantal and MTSC results. Smaller impact
parameters show some discrepancy in the amplitudes of
the weakest transition probabilities. The origin of this
feature has not yet been elucidated.

Figure 4 illustrates the degree of improvement of the
present multitrajectory semiclassical calculation upon
that based on the common trajectory associated with the
entrance H(R ;45°) potential.

Figure 5 compares VE and VCT differential cross sec-
tions summed over all final vibrational states and aver-
aged over the parameter . For the vibrational excitation
process [Fig. 5(a)] the cross section is not very sensitive to

Probability

0.1 |
0.08 |
0.06 |

0.04

0.02 T4l
O b .-‘.{J 1 L 1
1

3 4
b (units of ay)

1
-

N,

5 6 7

FIG. 3. Comparison of MTSC and quantal results for the
impact-parameter dependence of IOS transition probabilities
Py, (Y =45°). Full lines: quantal calculations of Ref. 3; dots:
present MTSC results. The P,q o (elastic, v'=0), Py, (VE
v'=1), Py (VCT v"=2) probabilities appear successively
from top to bottom.
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various treatments of the trajectory problem. Yet it is
noticeable that among all the reported semiclassical cal-
culations the multitrajectory result is the closest to the
quantal one. The superiority of the multitrajectory calcu-
lations upon those based on a common trajectory, the
SCECT one or that deriving from the entrance potential,
is clearly seen for the vibronic charge-transfer process
[Fig. 5(b)]. As mentioned in Ref. 3 and recalled in Sec. I,
the SCECT treatment yields the poorest agreement with
the quantal calculation. Though much more successful,
the other common trajectory treatment attenuates the
rainbow structure in the vibronic charge-transfer cross
section [3] as a result of an imperfect shape at large
scattering angles 13°<© =<20°. These results definitely
lend support to the present multitrajectory proposal.

IV. CONCLUSION

The multitrajectory method (MTSC) constitutes an
effective means to solve the problem of choosing a trajec-
tory in the time-dependent semiclassical treatment of
nonadiabatic collisions. The method depends on the
same conditions of validity as the well-known common
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FIG. 4. Comparison of MTSC and common trajectory results
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dashed lines: common trajectory calculations of Ref. 3. The
PlO,lO (elastic, v'=0), PIO,H (VE v'=1), P10,22 (VCT v"'=2)
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trajectory method. Yet, it introduces a new trajectory
each time a difference of two action integrals appears.
Basically, both the multitrajectory and common trajecto-
ry approaches require the closeness of the relevant local
wave numbers to an assumed mean. Still, the MTSC tries
to be more accurate in the evaluation of accumulated
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FIG. 5. Differential IOS cross sections, summed over all final
vibrational states, for the H" +0, (X 32;, v =0) collision at
E =23 eV. Full lines: present MTSC results; closed squares
and short-dashed lines: quantal results of Ref. 3; open triangles
and long-dashed lines: common trajectory results of Ref. 3;
closed circles and dotted line: SCECT results. (a) VE cross sec-
tions and (b) VCT cross sections.
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phase differences during the collision. It is also worth
pointing out that, as formulated in Sec. II, the MTSC ap-
proach obeys microreversibility; this is a feature that
some common trajectory prescriptions fail to account for.
In conclusion, the success of the MTSC approach in
reproducing quantal results in the IOS context consti-
tutes a strong incitement to further its use in a context
where quantal calculations are still not feasible, namely
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the fixed-rotor approximation. Work in this direction is
progressing.
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