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Multichannel quantum-defect approach for two-photon processes
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We present a method which allows the efficient calculation of the amplitudes for two-photon processes
based on variations of the eigenchannel R-matrix method and of the multichannel quantum-defect

theory (MQDT). This method contains the fiexibility to describe structure due to intermediate- as well

as final-state Rydberg series, autoionizing series, and continua. Because the method is based on MQDT,
we would be able to describe easily two-photon processes in negative ions as well as in any of the situa-

tions previously described by the generalization of MQDT in one-photon processes. We present calcula-

tions for two-photon absorption from the ground state of Mg and Ca.

PACS number(s): 32.80.Fb, 32.80.Rm, 32.80.Dz

There has been growing interest in describing multi-
photon processes in multielectron atoms [1—11]. The
common desire of these studies is to completely and
correctly describe the atomic physics while using lowest-
order perturbation theory to describe the change in atom-
ic dynamics due to the laser field. In effect, the goal is to
develop theoretical tools to describe experiments which
use multiphoton processes to probe atomic dynamics usu-
ally inaccessible to a one-photon probe. Resonant pro-
cesses are ruled out due to the use of perturbation theory
(weak-field resonant processes are the easiest processes to
describe). The major difficulty involved in this problem is
the summation over the infinite number of many-electron
intermediate states. There are basically two types of ap-
proaches to this problem. The first includes various types
of L -basis techniques [1—6]. The second is to solve the
Dalgarno-Lewis differential equation [7,8]. Both
methods have had some success in describing processes in
which the intermediate photons can probe only up to the
first few bound states. It is well known, however, that the
differential equation method has the drawback of being
unstable near intermediate resonances [7,8] and the L-
basis techniques are cumbersome to use if one of the in-
termediate photons can put the system into the continu-
um [above-threshold ionization (ATI) processes] [9].
Furthermore, neither of these methods is suitable in prac-
tice for describing processes in which the intermediate
photons can put the electrons right in a high Rydberg
series where the fast variation of cross sections as a func-
tion of energy can only be described by applying mul-
tichannel quantum-defect theory (MQDT) to the effective
intermediate states. Such an application of MQDT has
already been proposed by Fink and Zoller [11]. This pa-
per describes how to wed their procedure to ab initio cal-
culations obtaining a procedure as accurate as those of
previous workers but without some of the constraints im-
posed by the L, -basis technique.

The method for calculating two-photon processes
which we will describe in this paper was chosen to exploit
the power and stability of computer codes used for atom-
ic photoionization. Namely, we have adapted the eigen-
channel R-matrix techniques of Greene and co-workers

to this problem [12]. We also utilize the adaptation of
MQDT that Fink and Zoller [11] have described for
two-photon processes. It is well known that the com-
bination of these two procedures (R-matrix and MQDT}
provides accurate, stable, and efficient ab initio calcula-
tions of atomic photoionization. We show how these two
approaches can be linked to provide an accurate and au-
tomated approach to two-photon processes. The possibil-
ity of using (Wigner-Eisenbud) R-matrix techniques to
solve the Dalgarno-Lewis differential equation has al-
ready been discussed and implemented [10] but only
when the first photon cannot excite the atom to large dis-
tances. We circumvent this difficulty by using MQDT for
the Dalgarno-Lewis function. A brief report of this in-
vestigation has been given elsewhere [13].

INHOMOGENEOUS SOLUTION

The two-photon amplitude for going from state %0 to
state +f is

where D is the dipole operator (we will always use the
length gauge) and co is the laser frequency. We solve Eq.
(1) by the procedure of Dalgarno and Lewis [14], setting

T& '0 =
&f~D~A &, with A the solution of the inhomo-

geneous equation

(E H)A~ =D+o, —

where E =Eo + co and the limit 7) —+0+ in Eq. (1)
translates to imposing outgoing-wave boundary condi-
tions on A in the open channels. A is the physically
relevant inhomogeneous solution; for ease of calculation
we will introduce other solutions of (2} with different
asymptotic boundary conditions. 4'o is the initial-state
wave function.

Equation (2) is ripe for a MQDT-type treatment: all of
the complicated dynamics occur in a small region near
the nucleus. In this spirit we solve Eq. (2) disregarding
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the boundary conditions at large distances from the nu-
cleus. This solution, which we denote A„will diverge in
the closed channels and have nonzero amplitude for in-
coming waves in the open channel. We obtain the solu-
tion of (2) which has the correct boundary conditions by
adding to A, a finite amount of the homogeneous solution
i/, which we calculate from

fj(r)~(/2/k, csin . k r+ lnr +rlZ
k. (5)

the radial Schrodinger s equation with a Coulomb poten-
tial which are regular and irregular (respectively) at
r~0. The asymptotic forms of fj and g. are known
analytically,

(E H)QJ—. =0 .

We write the solution of Eq. (2) which has the correct
boundary conditions as A =A, +g f AJ, where the
summation over j is from 1 to X, with N being the num-
ber of channels included in the calculation. The A are
determined by an inhomogeneous matrix equation con-
taining information on the boundary conditions on A .
We will describe this matrix equation in the next section.

MQDT FOR THE INHOMOGENEOUS FUNCTION

gj(r)~ —&/2/kj. n cos k r + lnr +gZ
k

for the open channels E —E.=k. /2 ~ 0, and

fz(r)~[(D 'r 'e ' )sinP

Z/K ~ K ~ T—(Dr 'e ' ) cosP ]/+~a.
Z/K K. l'

g/(r)~ —[(D 'r 'e ' ) cosP

+(Dr 'e ' )sinP ]+A~

(6)

(5')

(6')

The solution of Eq. (2) has particular boundary condi-
tions. Namely, A is finite everywhere and, for the chan-
nels in which the electron can escape, A can only have
outgoing waves (this condition arises from ii~0+ ). The
structure of Eq. (2) implies that its solution is ripe for a
MQDT-type treatment. All of the complicated dynamics
are concentrated at short range while the long-range
force felt by the electron has a simple form and thus its
dynamics is subject to analytic treatment. The MQDT
parameters vary slowly with energy because the forces
near the nucleus, where the complicated dynamics take
place, are strong. The possibility of adapting these ideas
to the Dalgarno-Lewis function A was first discussed by
Fink and Zoller [11];in this section we rederive their re-
sults from a slightly different viewpoint and with different
notation. Before describing the adaptation of MQDT to
the inhomogeneous problem, we give a brief account of
the ideas and notation for applying the usual MQDT
ideas for the wave function.

Outside of a core region, the potential is almost purely—Z/r and it is possible to describe the wave function us-
ing only a small number of parameters which only have a
slight energy dependence. This is possible because the
complicated dynamics near the core is dominated by
large field gradients while only a few angular momenta
are relevant. For an ¹ hannel problem we can write the
X linearly independent wave functions as [15]

i/k =~ g p/[f)(r)&, k g&(r)&jk ], —
J

(4)

where K.k is the real-symmetric reacting matrix, A is the
antisyrnmetrization operator which has no practical
effect since the electrons are in different regions of space,
and P are the target functions which depend on all of the
variables except the outer electron's radius. E is the
amount of energy in the target function P. and thus the
amount of energy available to the outer electron in chan-
nel j is E, =E E. The power of MQD—T comes from
the realization that Eq. (4) is true even for the closed
channels, (i.e. , those with E (E ) whose f and g are
diverging at r +~. The fJ an—d gJ are the solutions of

pj =m(Z/aj. —l~) .

All of the rapid energy dependence evolves from super-
posing the different QJ so that the resulting functions con-
verge to zero at large distances in the closed channels.
Another important point is that the dipole matrix ele-
ments of the functions Eq. (4), (i/t. ~D~qlo), also vary
slowly with energy because %0 is limited to a restricted
region of space near the nucleus.

We now describe how to apply these ideas to the inho-
mogeneous solution of Eq. (2). Outside the core region,
the right-hand side of Eq. (2) is exponentially small and
can be set to zero without introducing any practical er-
rors. Therefore A has the same form as the homogene-
ous function in this region of space because at r ~ r, they
solve the same differential equation. We express Ap as

A„=A g P, [f, (r)AIf' —
g, (r)A, '~'], r ~ r, .

J
(9)

In the open channels A must go asymptotically to
exp(ik r) We substitu. te Eqs. (5) and (6) into Eq. (9) and
find the coefficient of the exp( ik r) term—to. be
iA. '. '+A, ' ', which must be set equal to zero. Similarly,
for the closed channels we substitute Eqs. (5') and (6')
into Eq. (9) and find that for A„ to converge at large dis-
tances then A, '. 'sinP, . +A, ' 'cosP, . =O in all of the closed
channels. These two sets of equations completely deter-
mine A .

The best way to obtain the solution to Eq. (2) with the
correct boundary conditions is to use any solution of Eq.
(2) (which in general will not have the correct boundary

for the closed channels E —Ej Kj/2 ~0. The impor-
tant parameter for the closed channels is the ratio
fJ /g& ~—tanp as r ~~. In these equations Z is the
charge of the ion and the phase parameters rl [of Eqs. (5)
and (6)] and pj [of Eqs. (5') and (6')] depend on the energy
as

l~ LZ
ln(2k ) — +argI l+1—

J 2 J
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conditions) and then add to it a finite amount of the
homogeneous solutions. By modifying the coefficients of
the homogeneous solutions we can obtain the correct
boundary conditions. Specifically,

This choice is consistent with the philosophy of MQDT,
which treats all channels as open until a later step, where
one analytically closes the channels for which the elec-
tron has negative kinetic energy.

A =A, + g ir'j, A),
J

(10) R MATRIX FOR THE INHOMOGENEOUS
FUNCTION

where A, is a solution of Eq. (2) with unphysical bound-
ary conditions. A, does not usually vary rapidly with en-

ergy. It has the asymptotic form

From Eqs. (10) and (11) it is easy to see that
k'. '=k', ~+ A and A, '.~'=A, 's'+gkK k Ak. We now apply
the boundary conditions

(12a)

i x'f'+ x'&'= o
JP JP

if j is a closed channel

(12b)

if j is an open channel

(13)

to obtain the inhomogeneous matrix equation for the
coefficients 2,

It is obvious that Eq. (2) can be solved by slightly
modifying any of the standard ab inI'tio techniques of
atomic physics. Our familiarity with the eigenchannel
R-matrix procedures leads us to adapt that method to our
purposes. We also have great confidence in its accuracy
dating from the success it has produced in photoioniza-
tion calculations of complicated atoms [12]. We will
show that the inhomogeneous R-matrix equation can be
streamlined using the same methods as Ref. [16] to facili-
tate calculations.

The eigenchannel R matrix is a variational principle
for the logarithmic derivative of the wave function at the
reaction surface. We look for exact wave functions at a
fixed energy which have constant normal derivatives
satisfying r)QF /Bn +b (E)gF =0. The R-matrix equation
for b (E) is

B
b (E)f dS P,'=2 f dV Q, (E H)P, —f—dS g,

A, =A g P (f + ig~ )A,,,
J

Consequently, Eq. (13) for A reduces to

A= —(K+B ) '(i +B )A,

(14)

(13')

where B is a diagonal matrix with components tan/3, if
the j channel is closed and i =&—1 if the j channel is

open. 8 contains all of the rapid energy dependence re-
sulting from the application of boundary conditions at
large distances. Note that A diverges when det
(L+B)=0. This possibility only arises when all of the
intermediate-state channels are closed; the zeroes are ex-
actly at the bound-state energies of the intermediate
state.

These equations are exact, but in a sense the A, are not
very useful for interpolation. In the usual MQDT the im-

portant parameters are practically energy independent
over large ranges of energy due to the strong forces near
the nucleus [15]. For our case it is true for the homo-
geneous solution, but it is meaningless to interpolate the
parameters which depend upon the inhomogeneous solu-
tion A, since it is any solution of Eq. (2). So for the pur-
poses of interpolation we define boundary conditions for
A, that do not depend on whether the channel is open or
closed at large distances but will be sufficient to complete-
ly determine A, . A standard parameterization also facili-
tates the characterization of the dynamics.

We choose the smooth inhomogeneous function to
have outgoing waves in all of the channels, whether open
or closed. By outgoing waves in closed channels we mean
the solution f +ig The resulting .A, has the asymptotic
form

where g, =f+o. In practice g, is expanded in a linear
superposition of basis functions y, not all of which have
the same logarithmic derivative on the boundary. The
variational procedure becomes a matrix equation of the
generalized eigenvalue type [12]

bpo Cp= I Cp,

where

By
&k, =2f dV yk(E —H)y —f dS yk Bn

and

CTkj
= f dS yky~

(16)

(17)

(18)

The symbol Jd V indicates integration over the R-matrix
volume, which is usually defined to be r, ~ r, (i.e., all elec-
trons confined to radii distances less than r, ), and JdS
indicates integration over the surface of the R-matrix
volume. Equation (16) determines b and C and thus the
value and derivative of the wave function at the reaction
surface: g(r, )=g Cy and P'(r, )= —bg(r, ). The
eigenchannel R matrix works well for both single-channel
and multichannel situations.

For the inhomogeneous function the variational princi-
ple for the logarithmic derivative is meaningless. This
difficulty arises because it is always possible to add some
of the homogeneous solution to A„spoiling the varia-
tional properties. The analog of Eq. (16) that we use for
A=+ y CJ& is
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where Z = (y IDI +o& and I and cr are as defined in Eqs.
(17) and (18). The value and derivative of A at the R-
matrix boundary are A(r, ) =g~y~(r, )C.i. and BA
(r, )IBn = b—&A(r, ). Equation (9) has two unknowns:
bi. and Ci.. In practice we obtain a solution to Eq. (19)by
choosing an arbitrary bi. giving Ci, =2(I —bzo ) Z.
Any bi will suffice as long as (I' —birr )

' is nonsingular.
Because we also use the homogeneous solution, we first
solve Eq. (16) to obtain b& and C&, we only need to
choose b& different from all of the b&'s to make C& finite.

Equation (19) can be streamlined in a manner similar
to the procedure of Ref. [16]. The basis functions y" are
called closed if y "(r,)=0 and open otherwise. As in
Ref. [16], the closed functions are automatically orthogo-
nal to each other and the open functions are Gramm-
Schmidt orthogonalized to the closed-type functions and
each other. We order the basis functions so that the
functions 1 to N, are the closed type and the functions
N, + 1 to N, +N, =N„, are the open type. We now label
the I matrix by blocks

I cc I co

I oc I oo (20)

(I "—b 0 ")C'+I "C' =2Z',

I coCo + I CCCC 2ZC

(2 1)

(21')

We solve Eq. (21') for Ci. and then substitute Ci. into (21)
to obtain

Cc [I cc]—i( rcoCo 2Zc)

(roo roc[rcc] —lrco b oo)Co

(22)

=2(z —r"[r"]-'z') . (23)

Although these equations do not appear to be a big im-
provement over Eq. (19), they really allow the practical
implementation of the R-matrix method This is because
I "=2(E H"); by usin—g closed basis functions which
diagonalize H" (this diagonalization needs to be carried

and similarly for o., C, and Z. In the matrix 0., only the
block o." is nonzero. We now rewrite (19) as two equa-
tions:

A, =A„—g f, (K + i);„'(A.'„q'+, i A'jf„' ), .
j,k

The A. , are

(24)

=—[A,„'+A„ l (L l )(K+l ) (A, „s +l'A, „')]
(25)

We would now like to repeat the point made above. The
A, and A,, are useful only in the MQDT sense; they do
not vary rapidly with energy and are therefore useful for
the purpose of interpolation and for parameterizing the
dynamics near the nucleus. For atoms which are LS cou-
pled, we do not need to worry about interpolation be-
cause the streamlined 8-matrix calculation, Eqs.
(19)—(23), is fast enough that we can calculate A at
thousands of energy points.

CROSS SECTIONS AND ANGULAR RECOUPLING

In all that follows, we will focus on the formulas
relevant for atomic dynamics in LS coupling; we com-
pletely ignore spin-orbit effects. It appears to be straight-
forward to incorporate spin-orbit effects for atoms as
heavy as Ba by applying the LS-to-jj frame transforma-
tion to the A, of Eq. (14)~ However, the resulting formu-
lation of multiphoton absorption for jj-coupled atoms is
complicated and beyond the scope of this paper.

To get the total cross section from Eq. (1), one needs to
sum over the magnetic quantum numbers mf and m; .
Explicitly, we have

out only once), inverting I "becomes trivial because it is
diagonal. The number of open basis functions is usually
about an order of magnitude smaller than the number of
closed basis functions, which means it is much faster to
solve Eq. (23) than Eq. (19).

The resulting inhomogeneous function A„ is real every-
where and therefore does not correspond to the inhomo-
geneous function A, of Eq. (14). For purposes of interpo-
lation we need to convert A, to A, by adding to it some
of the homogeneous solution. The asymptotic form of A„
is A„=g P (f.A. 'P —g AI.„"'). We find

I Tf 0 I

— 2 D (LfLI )D*(LfLi )I'q'q(Lf LILILO ) (26)
Lf mf, mo

where

I
Lf, LI, LI

D (LfLI ) = ( pf (Lf )
I ID I I Ap (Ll ) &

= g J «& clif
I IDI IE &(Eo+~—8+irI) '& sl IDI lqio&, q) 0+ (27)

is the reduced dipole matrix element between the final state of angular momentum Lf and the inhomogeneous function
of angular momentum LI and Pqq contains the dependence on the polarization and is the summation of four 3-j
coefficients over all magnetic quantum numbers:

L 1 L01 Lz L1 L0 Lf
—mf q' mr —mr q m0

Lf
P, (L L L'L )= —1 '

q'q f I I o ~ —m q' m —m q m 0
(28)

In Eqs. (26)—(28), q, is the polarization of the first absorbed photon and q is the polarization of the second absorbed
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photon. For most experiments q =q'; q (q') =0 for linearly polarized light. Equation (28) can be reduced to

1 0 1 1 0 1 1
qq

1 1 1 1 1 1

( —1) 'Pq.
q
= —. I

3 Lf Lr Lr L Lr Lr 2 Lf Lr Lr Lo Lr Lr

2 1 1 2 1 1
+ —,(3q —2)(3q' —2) (29)

where s =Lo+Lr+Lr+Lf
Pqq For unpo 1arized 1ight,

(
—1) 'P„=—.

0

f I

1 0

Lo

1 1 1 2 1 1 2+—
Lr Lr 6 Lf Lr Lr Lo Lr'

(30)

by using Eq. (6.2.8) of Ref. [17]. None of the operations q~q', Lr,~LI, or LI+ Ll' change
we average over right- and left-handed circularly polarized light to obtain

The total generalized cross section can now be compactly expressed as

D (LIL, )D*(L/LI )P (L/LILIL() ) (cm W '),
0 I

L~, LI, L

(31)

where co is the laser frequency in atomic units, the re-
duced dipole matrix elements D are also in atomic units,
and where P can be obtained from Eqs. (29) or (30), de-
pending on whether or not the light is polarized. To ob-
tain the measured cross section in units of cm multiply
Eq. (31) by the laser intensity in units of W/cm2.

REDUCED DIPOLE MATRIX ELEMENTS

The calculation of the reduced dipole matrix element
of Eq. (27) can be accomplished by dividing it into three
steps. The first part of the calculation restricts all of the

I

radii to distance less than the R-matrix box radius. This
piece is calculated numerically and we call it
D (L&,LI )b,„. There are two contributions to the reduced
dipole matrix element when one of the electrons is out-
side of the box; there is no contribution to the dipole ma-
trix element when two electrons are outside of the box be-
cause the wave function is assumed to be zero in this
case.

One contribution to the dipole matrix element (when
one of the particles is outside the R-matrix volume) con-
sists of the dipole matrix elements between core states
multiplied by the overlap of Coulomb functions outside
the box:

D(LI,LI),„, , =( —1) ' 5s s [LI][LI]g( —1) ' (p;[(D((p, )5(), '

17J I c

X I dr (f +, II g„+, J/)( f—, A Jp~' g, A ~~ps'), — (32)

where L~ is the total orbital angular momentum of the core state PJ. in Eqs. (33), the symbol [L]=U'2L + 1, and where
outside the R-matrix volume

A (LI)= g (P, Y, ;) '[f,;(r)A,I~/' —g, ;(r)A, I ]~g, r ) r, (33a)

1/Jf(Lf )= g (p, YI, ) [f,;(r)II—g;(r)J(f ], r ) r,
t

(33b)

L
with s, =Er +co E, . The symbo—l (P, Y, ;)

' is meant to
indicate that the total orbital angular momentum of the
core state i, L,', is coupled to the orbital angular momen-
tum I' of the outer electron to give total orbital angular
momentum Lr. Finally, S is the total spin, which cannot
change during photoabsorption processes (if the atom is
LS coupled). The geometric (6-j) factor results from the
uncoupling of the angular momentum of the core from
the angular momentum of the outer electron. This opera-
tion is necessary to obtain the matrix element of a tensor
operator which only acts on a piece of the wave function.
This is a well-known relationship found in any of the

books on angular momentum [e.g., Eq. (7.1.7) of Ref.
[17]]. This contribution to the dipole matrix element is
essentially the same as the total transition matrix element
probed by isolated core experiments [18].

Special difficulties arise when co=~E, E, ~, i.e. , whe—n
co+a;=a~ in Eq. (32). In this case, the overlap of the
Coulomb functions increases rapidly as c approaches 0
from below and diverges when c. ~0. This divergence
occurs because we are not even close to correctly describ-
ing the physics using perturbation theory. When
co —~E, EJ ~, the core states —should be a dressed mixture
of P,. and P.. Interesting physics occurs where the per-
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turbation theory breaks down. A possible two-color ex-
periment might be to tune a strong laser to a dipole-
allowed transition of the core and scan the frequency of
the second (weaker probe) laser near the thresholds of the
dressed core states. The coupling between the dressed
channels can be controlled through the choice of intensi-
ty and detuning of the first strong laser. Wang and
Greene [19] have discussed the qualitative evolution of

I

the spectra of interacting channels when one has one tun-
able parameter available; experimentally, the detuning of
a laser can be controlled better than the intensity.

The other contribution to the dipole matrix element
(when one of the particles is outside of the R-matrix
volume) consists of the overlap matrix elements between
core states multiplied by the dipole integral of Coulomb
functions outside the box:

D«f LI)..t, 2.=( —I) ' [Lf HLER] &(—I) ' [I')[I']&4;i4,-& '

l,j I

l' 1 lj
0 0 0

x f "dr(f, + I;f g, +
—J;f )r(f, A, ',

~' g, A, ',
—s') . (34)

The geometric (six-j) factor arises from the same sort of
recoupling described above [see Eqs. (33) above and Eq.
(7.1.8) in Ref. [17]],while the 3-j factor stems from the
reduced matrix element of Y&m. Equation (34) represents
photoabsorption by the continuum electron outside of the
R-matrix volume. Essentially, this gives the amplitude
for the outer electron to absorb a photon leaving the core
unchanged. The integral over the Coulomb functions
present special difficulties when in the continuum.

In both D(Lf, LJ),„, elements, we must evaluate in-
tegrals from r, to infinity of the product of two Coulomb
functions. These integrals cannot be evaluated in a brute
force manner if we hope to evaluate then quickly and
efficiently. To evaluate these integrals, we use an asymp-
totic expansion. To see how we generate the terms of this
expansion, we introduce two generic functions F, and F2,
which are solutions of difFerent Schrodinger's equations;
F,"=—2(E,. —V;)F, or H, F, =E,F, , wh. ere 2H,
= —8 /Br +2 V~(r). The first useful relationship is

~FiF2= —
—,'(FlFz —FiFz)'

where co=E, —E2 —V, + V2. The second relationship is
more complicated but crucial to the evaluation of the
Coulomb integrals:

co(FIF2 F,F2 ) ——,'(F)Fq )—

+2[(Ei
—Vi +E2 —V2 )Fi F2 ]'

new integral (whose integrand is a function multiplied by
F,F2). This procedure can be repeatedly iterated; how-
ever, after a few iterations the surface terms begin to
grow with each iteration so that the series we obtain is
strictly an asymptotic series. When we use this pro-
cedure to determine the integrals in Eqs. (32) and (34) we
set the terms from the upper limit of integration (i.e.,r~ oo ) equal to zero. The resulting solution works when
~l~(1~+ I)—1'(I'+ 1 )~ &&2cor, and 2' r, ))1. For two-
photon processes and neutral atomic systems these re-
strictions are always satisfied because when co is too small
to satisfy these restrictions it is also too small to excite an
electron to distances larger than the R-matrix radius; in
this case, A is very nearly zero outside of the reaction
zone. This procedure is very efficient where it can be ap-
plied because each term in the expansion involves F; and
its first derivative [which are needed anyway to determine
Eqs. (33)] and simple functions of r, .

RESULTS

In Figs. 1 —6 we plot our calculated two-photon cross
sections for Mg and Ca as a function of laser frequency.
Our calculations agree with previous calculations within
the 50% we could read oA the previous results; the
shapes are also in good agreement. In all of these plots

104
+(V, + V2)'F, F2 . (35')

102

E 100
I

C3

—210

10 4
I I I I I I I I I I I I I

0.15 0.20 0.25
~(a.u. )

0.30
Integrate the right-hand side of Eq. (36) by parts to ob-
tain the integral of F,F2G as a sum of surface terms and
an integral of a new function (6/co)' multiplied by
F',F2 F,F2. We use Eq. (35—') for this new integral,
again integrating by parts to obtain surface terms and a

FIG. 1. Total two-photon ionization cross section for Mg
from threshold to just above the frequency needed for one-
photon ionization. co is the frequency of the laser which is as-
surned to be linear1y polarized.

Equations (35) and (35') are both generated in the same
manner; for example, (E& E2 )F&F2 = (H&F—

&
)'F2

F', (H2F2 ). The—asymptotic series can be generated in a
straightforward manner from Eqs. (35); for example, we
can use Eq. (35) to find the integral of F,F2 multiplied by
any function 6 in terms of the derivative of G and the
Wronskian of F, and Fz as

l'ff F&F26 dr = —
—,
' f (6/co)(F&F2 F&F2 )'dr . (36)—

f'p rp
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FIG. 2. 'S (solid line) and 'D (dot-dashed line) contribution
to the total two-photon ionization cross sections. The Rydberg
series are Anal-state autoionizing resonances attached to the 3p
threshold.

we assume that both absorbed photons are linearly polar-
ized in the same direction. The ground state of these
atoms is ns 'S (with n =3 for Mg and 4 for Ca), which
means the intermediate states can only have 'P' symme-
try; I.I =1. The final state can have 'S or 'D symmetry
['P' symmetry is forbidden for two linearly polarized
photons, see Eq. (28)]; L&=0 or 2. In Figs. 2 and 5 we
plot the 'S and 'D contributions to the total cross section
separately to show that at most energies the 'D symmetry
dominates the total cross section.

One striking difference between one- and two-photon
cross sections is the overpowering role played by reso-
nances; there is essentially no continuum background for
two-photon ionization. This fact is not obvious when the
cross section is plotted on a log scale and may explain the
lack of enthusiasm for experimental studies of non-
resonant multiphoton ionization. Another difference is
that Rydberg series of resonances can arise during the ab-
sorption of the first or second photon; however, it is usu-
ally fairly easy to disentangle these effects. For example,
in Fig. 1 the Rydberg series attached to the threshold at
co-0.28 a.u. is from the 3snp 'P' intermediate-state reso-
nances of Mg, while in Fig. 4 the Rydberg series attached
to the threshold at co-0.22 a.u. is from the 4snp 'P'

FIG. 4. Same as Fig. 1, except for Ca.

intermediate-state symmetry of Ca. All of the other Ryd-
berg series of resonances are from the even-symmetry
final-state autoionizing resonances.

In Figs. 1 —3 we plot the two-photon ionization cross
section of Mg. The spectrum plotted in Fig. 1 is not very
interesting; almost all of the visible structures above
10 cm' /W are due to the 3snp 'P' intermediate state
resonances. In Fig. 2 we show a blowup of the 'S and 'D
cross sections between the 3s 3p 'P' and 3s4p 'P'
intermediate-state resonances. There are three clear au-
toionizing series; they have the character 3pnp 'S (solid
line), 3pnp 'D, and 3pnf 'D The jp.np 'S series is sharp
because it can only decay to the 3ses 'S continuum,
which is propensity unfavored [19]. The other sharp au-
toionizing series is the 3pnf 'D, which has a hard time
decaying because it can only decay to the 3scd 'D contin-
uum, which is propensity unfavored (in fact, these reso-
nances are so narrow only the lowest one at ~=0.206
a.u. can be clearly seen). The broad series is the 3pnp 'D,
which quickly decays to the 3scd 'D continuum. In Fig.
3 we show a blowup of the region near m-0. 16 a.u. The
autoionizing resonance shown here is the 3p 'S reso-
nance. This region was studied experimentally by Bon-
nano, Clark, and Lucatorto [20]; they were able to ob-
serve this resonance. The position of our resonance was
only slightly shifted from the measured position. The
calculated shape did not rnatch the experimental
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FIG. 3. Total two-photon ionization cross section as a func-
tion of laser wavelength. The resonance is from the 3p 'S au-
toionizing state.

FIG. 5. Same as Fig. 2, except the Rydberg series are at-
tached to the 3d threshold of Ca.
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FIG. 6. Total two-photon ionization cross section near the
3d 5p 'P' intermediate-state autoionizing resonance. The
3d Sp 'P' resonance is the broad structure stretching from
co-0.237 to 0.247 a.u. The superimposed sharp structures are
due to final-state autoionizing resonances attached to the 4d
threshold at -0.242 a.u. and to the 5p threshold at -0.250 a.u.

shape very well; 20 A to the blue of the peak, the experi-
mental cross section is the same height as the resonance
(the 3s3p 'P' intermediate state resonance is to the blue).
We did not obtain agreement with the experimental re-
sults even after we used experimental energies for our cal-
culated 3s3p 'P' intermediate state and our 3p 'S reso-
nance in Eq. (1). We do not know the reason for this
discrepancy. Moccia and Spizzo [2(b)) have also calculat-
ed the two-photon cross section in this energy range.
Our cross sections need to be multiplied by the factor
(co/coo)4. 347X10 ' Ws, where coo is the atomic unit of
frequency, to compare with their results. The two calcu-
lated cross sections agree with each other on the whole.
Our peak height is 1.6X10 cm s, compared with
Moccia and Spizzo's height of 1.8X10 cm s. The ra-
tio of the peak height near 292 nm to the minimum near
290 nm is 3.2 for our calculation, 2.3 for Moccia and
Spizzo, and 1.5 for the experiment. Moccia and Spizzo
have calculated the ratio to be 3.8 if only the 3s3p 'P'
state is retained in the resolvent, which should be a good
approximation. The 3p 'S resonance played a role in the
multiphoton experiments of Hou et al. [21]; their fourth
photon was in resonance with this state.

In Figs. 4—6 we plot the two-photon ionization cross
section of Ca. The spectrum plotted in Fig. 4 is much
more interesting than that plotted in Fig. 1; we expect the
two-photon cross section for Ba to be the most interest-
ing of the alkaline earths. The Rydberg series attached to
the threshold at co -0.22 a.u. is from the 4snp 'P'
intermediate-state resonances. The Rydberg series at-
tached to the threshold at -0.143 a.u. are from two-
photon absorption to states of 4pnp and 4pnf character.
The Rydberg series attached to the threshold at -0.17
a.u. are from two-photon absorption to states of 3dns and
3dnd character. The cross section is dropping strongly at
the two-photon ionization threshold because the 4s4p 'P'
state is nearly in resonance at threshold. In Fig. 5 we
show a blowup of the frequency region near the two-
photon ionization threshold. . There are three clear aution-
izing series attached to the 3d threshold; they have the

GENERALIZED MQDT

We have described two-photon processes for the in-
teraction of a laser field with a neutral atom. However,
the generalized version of MQDT allows the immediate
application of the methods described above to any dy-
namic system for which the wave function is known
analytically. We can study multiphoton processes for
positive or negative ions, for neutral or ionic species in
electric fields, for molecules, and for intermediate-Z
atoms with non-negligible spin-orbit interactions.

HIGHER-ORDER PROCKSSKS

The application of this method to higher-order pro-
cesses should be straightforward. For example, the
third-order transition matrix element to go from state %o
to state qif is written as [22] T& '0=(,+f ~D~A' ') with
A' ' the solution of the inhornogeneous equation

(E H)A' '=DA'"—
and with A'" the solution of the inhomogeneous equation

(37)

character 3dnd 'S (solid line), 3dns 'D, and 3dnd 'D. The
intensities of these states are magnified by the intermedi-
ate state resonance 4s4p 'P' at m-0. 108 a.u. , and ac-
cordingly it may be possible to experimentally observe
these resonances. The quantum defect for the 3dnd 'S
states varies strongly due to the presence of a 4pnp 'S
perturber near 0.139 a.u. It is easy to see from Fig. 5 that
the relative positions of the 'S and 'D Rydberg states
change near threshold. The effective quantum number
(n —p) for the 'S states near 0.122, 0.130, 0.134, and
0.136 a.u. are 3.45, 4.39, 5.27, and 5.98. In Fig. 6 we
show the two-photon cross section near the lowest
intermediate-state autoionizing resonance (3dsp 'P'); the
3d Sp 'P' resonance is the broad structure stretching from
e-0.237 to 0.247 a.u. There are several final-state au-
toionizing Rydberg series superimposed on this structure;
they are attached to the 4d threshold at -0.242 a.u. and
to the 5p threshold at -0.250 a.u. We do not think that
this structure will ever be observed experimentally be-
cause of the high frequency needed to reach it and its
small cross section. However, we are encouraged by this
calculation to hope that it will be possible to observe
enhancement of the two-photon ionization cross section
in a more favorably placed autoionizing state in a
different atom or ion. An autoionizing state can be con-
sidered a bound state embedded in a continuum (call it
continuum 1); by assuming that the dipole matrix ele-
ment connecting this bound state to the higher continua
is much larger than the dipole matrix element connecting
continuum 1 to the higher continua, one can show that
aII intermediate state autoionizing resonances connected
optically to the initial state will contribute peaks to the
two-photon cross section independent of their profiles in
the one-photon cross section. However, window reso-
nances in the one-photon cross section will probably not
enhance the two-photon cross section nearly as much as
resonant peaks in the one-photon cross section.
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CONCLUSIONS

where E2 =ED+2~ and E, =ED+co. Both Ap are finite
everywhere and have only outgoing waves in the open
channels. However, unlike two-photon processes the fre-
quency range over which the method we have described
will work is limited. Namely, the frequency cannot be
greater than that needed by one photon to excite an elec-
tron out of the ground state to distances larger than r„
the method we have described cannot be used when A'"
in Eq. (37) extends outside the R-matrix box. For neutral
species this restricts the photon frequency to less than ap-
proximately 5 eV for three-photon processes. We feel
that the method outlined in Ref. [23] can possibly be
adapted to handle this difficulty.

This iterative procedure can be applied to even-
higher-order processes. In practice we only expect
reasonable accuracy up to at most fourth-order processes
due to accumulation of errors. For example, the errors in
A'" are passed through Eq. (37) to A' '. A variational
method which used the A" to calculate the nth-order
matrix element would greatly increase the accuracy of
high-order matrix elements. However, generalizing Ref.
[24] to multielectron atoms has not yet been accom-
plished.

We have presented the tools which would allow a per-
turbative calculation of two-photon processes. The
method uses a variant of the eigenchannel R-matrix pro-
cedure to solve for the short-range dynamics by brute
force. We match this brute-force solution to Coulomb
functions and use a variant of MQDT [11]to solve for the
dynamics outside of the reaction zone. We have applied
this method to the calculation of the two-photon ioniza-
tion cross section of Mg and Ca. We have made a realis-
tic calculation of the effect of an intermediate-state au-
toionizing resonance (Fig. 6) on the two-photon ioniza-
tion cross section. By using MQDT it is possible to solve
for the two-photon dynamics in any of the long-range
fields for which the generalized version of MQDT has al-
ready been applied (in one-photon processes).
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