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Analysis of the first Feshbach resonances in electron collisions in rare gases
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In this paper we present an analysis of the Feshbach resonances located below the first inelastic
threshold in helium, neon, argon, krypton, and xenon. The measurements were made with an electron-
scattering spectrometer called MAPDESS capable of simultaneous measurements at up to 19 angles,
ranging from 18' to 162'. Data are analyzed using single-phase-shift formalism to evaluate the angle-
dependent form factors of the resonances, describing the interference of the resonant amplitude with the
nonresonant one. For each gas, the use of data at many angles enables a precise evaluation of the first
three or four phase shifts and the resonance width. In some cases, the agreement of the analyzed experi-
ment and theory is not perfect at small and large scattering angles.

PACS number(s): 34.8O.Bm

INTRODUCTION

Since 1963, when Schulz [1] observed the e-He reso-
nance near 19.36 eV, much experimental and theoretical
work has been done on the study of electron-atom- and
electron-molecule-scattering resonances. Descriptions of
the first Feshbach resonances with classical scattering
theory using Fano's approach have given very good re-
sults in past years. With this approach, the phase shifts
at resonance energy and the natural width of resonance
are the only data needed to describe the observed struc-
ture. Thus, by properly analyzing these phenomena, one
can accurately deduce these quantities. Until now, the
techniques that have been used to analyze resonances did
not fully exploit the angular behavior of cross-section
measurements. In this paper, we present an approach
that enables one to deduce phase shifts from the angular
dependence of resonance profile shape parameters and to
obtain a precise value for the natural width using the rel-
ative strength of a resonance as a function of the scatter-
ing angle. This method is then applied to the study of the
first Feshbach resonances in rare gases using data ob-
tained with a multidetection electron spectrometer.

EXPERIMENT

The measurements of resonance profiles at various an-
gles have been performed using a nonconventional
electron-scattering spectrometer featuring multiangle
parallel detection, the MAPDESS. This spectrometer
has been fully described elsewhere [2] and we just briefly
describe its main features. It is based on a truncated
spherical mirror analyzer that can simultaneously select
scattered electrons at 19 angles from 18' to 162' with an
angular resolution of +3'. A monochromatic beam of
electrons is focused at the collision center near the exit of
a hypodermic needle from which the target gas is intro-
duced in the vacuum chamber. From this point, the scat-
tered electrons reach the analyzer entrance and are ana-
lyzed. The present work represents the first systematic
measurements that were made with this spectrometer.

Some measurements (in argon) were made when only ten
detectors were operational.

For measurements related to the first Feshbach reso-
nance in a rare gas, the incident-electron energy does not
allow inelastic collisions; thus the analyzer can be operat-
ed at poorer resolution in order to increase transmission.
However, for measurements in helium, one can benefit
from analyzer selection in reducing the thermal broaden-
ing effect at large angles [3]. The electrons are collected
at the exit of the analyzer by 19 electron multipliers.
Pulses are amplified, filtered, shaped, and then counted
using a homemade data-acquisition system specially
designed to handle parallel counting of events. This sys-
tem sweeps primary electron energy while accumulating
data. A custom highly interactive software which adds
ease of use to performance has proved to be very helpful
in spectrometer tuning and running.

Data presented in this work have been measured using
an incident energy resolution in the range 30—50 meV.
With this resolution, incident currents over 10 nA have
been achieved. In these conditions, it was possible to ob-
tain a very good signal-to-noise ratio at all scattering an-
gles with runs of less than 24 h. In view of the method of
analysis, this approach was preferred to the use of a
higher resolution that would have cost an important de-
crease in signal intensity for which an increase in accu-
mulation time could hardly compensate. The measure-
ments as such are not presented in this work; however,
the curves for the cases of helium and neon were shown
in our previous work [2].

METHOD OF ANALYSIS

In the partial-wave formalism, the description of the
differential cross section depends on whether or not spin
effects have to be taken into account [4]. In both cases, it
is possible to establish relations between general cross-
section equations and a Fano profile expression, knowing
that in the vicinity of the resonance one of the potential
scattering phase shifts 5I changes rapidly with energy E
according to
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5L =6L —arctanc

with

E —E„

where E, is the resonance energy, I is the natural width
of the resonance, and l =L corresponds to the partial
wave in which the resonance occurs.

For spin-independent scattering, as in the case of heli-
um, the cross section o (E, O) is given by Eqs. (3)—(5):

o.(E,O)= A +8
00

g (2l + 1 )(cos25I —1)P&(cosO),
2E 1=0

1B = g (2l+l)(sin25I)P&(cosO),
2K I

(3)

(4)

where the parameters are given by

X =a +b + t +2t (a cos25L+ 5 sin25L ), (7)

4t (a cos25I +b—sin25I )

X
4t (a sin25L bcos25L —

)Z=
X

with

1 g (2l+1)(cos25, —1)P,(cosO)
2K &~L

1

2K
(2L + 1)PL (cosO),

b = g (21+1)(sin25I)PI(cosO),1

2K l~L

and

1

2K
(2L + 1)PL(cosO) . (12)

From these equations, one can see that if the values of X,
Y, and Z are known from experimental data for many
scattering angles, it is possible to deduce values of phase
shifts that best describe these observations. Thus the first
step of the analysis is to obtain precise values for the X,
Y and Z parameters from experimental resonance mea-
surements at several angles. The same procedure is used
to obtain similar equations in the case of spin-dependent
scattering.

Of these three parameters X is the most difficult to
measure since it represents the constant signal strength

where K is the electron momentum and PI(cosO) are the
Legendre polynomials.

In introducing Eq. (1) in these expressions, one can ob-
tain the Fano profile expression that we write using sym-
metric and antisymmetric terms [5,6]:

r

cr(8)=X 1+ +a+1 c. +1

off resonance. The values of Y and Z can be obtained
with precision from experimental data if one knows the
exact value of the natural width of the resonance. Since
this is not the case, we must choose a parameter that does
not depend strongly on the natural width assumption to
obtain the values of phase shifts. The shape factor q used
in the well-known Fano expression exhibits this behavior.
Its value can be obtained from experimentally fitted pa-
rameters Y and Z through

Y+(Y +Z )'

Z
(13)

The second step of the analysis consists of fitting the
values of phase shifts to the experimenta1 q obtained at
various angles. Since we get up to 19 profile indexes, it is
possib1e to fit the first three or four phase shifts. Higher
partial waves are approximated by [7]

maK
(2l —1)(21+1)(21+3) (14)

For the third and final step of the process, the measured
amplitude is compared to the assumed amplitude and the
natural width is corrected since an error in this value
causes (with a good approximation) an inversely propor-
tional error in the fitted amplitude.

Since this method relies on the accuracy of the initial Y
and Z parameters, the experimentaj data must be ana-
lyzed by properly taking into account broadening effects.
The broadening is mainly caused by the energy distribu-
tion of incident e1ectrons and by the thermal velocity of
target atoms (also known as Doppler broadening). Be-
cause of the high signal-to-noise ratio of our experimental
data, the numerically simulated model must well describe
the experimental conditions in order to achieve a good fit
for each resonance. For this reason it is necessary to take
into account the fact that the electron energy distribution
is not quite symmetrical. This is simulated by using two
half-Gaussian curves with slightly different widths. On
the other hand, at the collision center, electrons are
mainly scattered by the incoming gas from the needle.
These atoms are preferentially oriented, thus reducing
the effective velocity spread in the scattering plane. Since
all atoms are not immediately pumped, a certain amount
of gas stays in this area after the entrance in the vacuum.
These atoms produce a second scattering source with a
larger velocity spread. Those two sources have been tak-
en into account in the fitting process.

The experimental data show that signal intensity

where a is the dipole polarizability of the atom. The
number of terms is chosen large enough so that with a
larger number of terms the change of the phase shifts ob-
tained is not significant. In general 11—15 terms were
used.

At this point we get phase shifts that we use to corn-
pute theoretically predicted relative total amplitude (or
strength) of resonance R. This factor represents the total
amplitude of resonance divided by signal strength outside
the resonance and is given by

R =(Y +Z )'
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FIG. 1. Y, Z, and q parameters as a function of the scattering
angle, deduced from data for helium S resonance. The solid
line is calculated with the phase shifts determined.

FIG. 2. Resonance relative amplitude as a function of the
scattering angle, deduced from data for helium S resonance.
The solid line is calculated with the phase shifts determined.

changes with electron energy because of the physical pro-
cess and of the evolution of the incident electron beam in-
tensity with energy. This was simulated in the fitting
process by adding a second-order polynomial to the
profile. The energy position of each resonance has been
obtained in the past and we did not try to determine it
absolutely. The exact position of the resonance is fitted
in the process in order to compensate correctly the error
in the estimation of energy scale.

The numerical algorithm can be summarized in the fol-
lowing steps: (1) to evaluate the sum of Doppler-
broadening Gaussians for incoming and diffuse gas; (2) to
compute a theoretical Fano profile with trial X, F, and Z
values; (3) to evaluate the electron energy distribution; (4)
to convolute the Fano profile, the Doppler-broadening
distribution, and the electron energy distribution; (5) to
compare the simulated profile with the measured one; (6)
to correct parameters.

The process is repeated until a good fit is obtained ac-
cording to the standard g test (y is defined as the sum,
over the set of data, of the squares of the differences be-
tween the measured and the calculated data, relative to
the latter). Technically, this simple procedure is more
complicated because of the small natural width of the res-

onance. The experimental energy step between each data
point is kept small (2.5 or 5 meV) in comparison to the
width of the observed structure. But this energy interval
is far too large to represent the neon (I =1.3 meV)
profile properly, for example. For that reason we com-
pute the theoretical curve using a variable energy interval
between points. In the vicinity of the resonance, the fre-
quency of computed points is increased to define the
physical phenomenon correctly. Far from the resonance,
the cross section varies slowly with energy and the
theoretical curve is computed only in correspondence
with the experimental points. When computing y, only
the points with correspondence in both sets of data are
taken into account. Other aspects of the analysis pro-
cedure will be discussed in the last section.

HELIUM

Of all the first Feshbach resonances in rare gases, the
helium ( ls2s ) S resonance at 19.366 eV is the only one
that has been measured with a resolution better than its
natural width. Using electrons produced by photoioniza-
tion as an electron source, Kennerly, Van Brunt, and
Gallagher [8] measured the natural width of this reso-

TABLE I. Phase shifts of He at 19.37 eV (T: theoretical work; values in parentheses: estimated er-
ror on last figure).

Nesbet (Ref. [9])
Golden et al. (Ref. [10])'
Kennerly et al. (Ref. [8])
Williams (Ref. [11])
Williams (Ref. [11])'
Williams and Willis (Ref. [12])
Andrick and Bitsch (Ref. [13])
Cvejanovic et al. (Ref. [14])
Gibson and Dolder (Ref. [15])
Present work

1.796
1.83(4)
1.813( 17)
1.794(25)
1.822(9)
1.852( 19 )

1.81(9)
1.85(5)
1.937
1.778

0.319
0.354( 12)
0.307( 14)
0.312(4)
0.310(5)
0.309(8)
0.325(40)

0.297
0.317

0.059
0.066(7)

0.058(5)
0.061(2)
0.066(7)

0.052
0.076

'Extrapolated using change rate obtained by Williams (Ref. [11]).
"Interpolated from Table I of Ref. [11].
'From resonance study.
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TABLE II. Natural widths of the first Feshbach resonance of
helium (T: theoretical work).

Burke et al. (Ref. [16])
Foster et al. (Ref. [17])
Hazi (Ref. [18])
Junker (Ref. [19])
Hata (Ref. [20])
Barden et al. (Ref. [21])
Berrington et al. (Ref. [22])
Bain et al. (Ref. [23])
Wickmann and Heiss (Ref. [24])
Sinfailam and Nesbet (Ref. [25])
Temkin et al. (Ref. [26])
Kennerly et al. (Ref. [8])
Brunt et al. (Ref. [27])
Roy et al. (Ref. [28])
Cvejanovic et al. (Ref. [14])
Cxolden and Zecca (Ref. [29])
Cjibson and Dolder (Ref. [15])
Andrick and Ehrhardt (Ref. [30])
Simpson and Fano (Ref. [31])
Present work

I (me V)

11.72
11.0
11.5
11.72
34
8.0

15.3
12
22
15
14
11.0+0.5
9.0+1.0
8—10
9+1
8+2
8

15-20
10
10.3

T
T
T
T
T
T
T
T
T
T
T

nance and obtained 11.0+0.5 meV. We measured this
resonance at the 19 angles and used the fitting algorithm
to obtain F and Z parameters assuming I =10.5 meV.
At that stage, all the spectra were treated separately.
The data from the 162' detector were not considered be-
cause of a large background signal. From that point, q
and R values have been computed. Results are presented
in Fig. l. The third point (34 ) exhibits a nonregular be-
havior. The corresponding detector is responsible since it
caused a spurious background signal. The fit of the q
values with phase shifts gives 5O=1.778, 5, =0.317, and
52=0.076 and corresponds to the solid line in Fig. 1.
These values are compared with previous works in Table
I.

Using these phase shifts, the anticipated R values are
computed. The results are shown in Fig. 2 with the ex-
perimental values. The fact that experimental R values
are smaller than the anticipated ones indicates that the
natural width had been overestimated. Using the R
values obtained for the angles between 50 and 130, we
corrected the I value and obtained I =10.3 meV. The R
values at low and large angles cannot be perfectly fitted
by the used model. Increasing the apparent polarizability
in the computations affects mainly low-angle resonances
and could not explain the present results. In the analysis
by Kennerly, Van Brunt, and Gallagher [8], the results
obtained at 22 were not used to compute the phase shifts
and the natural width. Using results at 90' and 135, they
concluded that the measure at 22 was in fact the behav-
ior expected at 18. The accuracy of our results will be
discussed in the last section. Previous results are shown
in Table II. This analysis of the helium resonance shows
that the technique used to exploit multiangle data leads
to consistent results.
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FIG. 3. F+, Z+, and q+ parameters as a function of the
scattering angle, deduced from data for neon P3/2 resonance.
The solid line is calculated with the phase shifts determined.
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FIG. 4. Y —,Z —,and q
—parameters as a function of the

scattering angle, deduced from data for neon P, ~& resonance.
The solid line is calculated with the phase shifts determined.

In the case of neon two resonances are observed [27],
separated by only 97 meV, the first one being at 16.111
eV. These two profiles are fitted in the same computation
to take correctly into account the overlap of the observed
resonances. The first resonance corresponds to the for-
mation of a P3/2 ion state and is denoted by +, while
the second corresponds to the formation of a P]y2 state
and is denoted by —.A natural width of 1.3 meV was as-
sumed in the computations. The data obtained at 162'
are rejected because of a large background signal.

The results of the fits are presented in Figs. 3 and 4.
The profiles measured at 90 are very nearly symmetrical.
In these conditions, absolute q values are very large and
nonprecise. Thus we did not use those values in the
phase-shift determination. Since the energy interval be-
tween the two resonances is very small, we kept the phase
shifts constant for the two resonances. This enables us to
fit the three first phase shifts with 34 q values. We get
5O= —1.027, 5,= —0.349, and 52=0. 175. As in the case
of helium, 50 and 5, are in good agreement with values
from other works but 5z is higher (see Table III for de-
tails). When the phase shifts are considered independent
for the two types of coupling, but neglecting the
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TABLE III. Phase shifts of Ne at 16.16 eV (T: theoretical work).

Williams (Ref. [11])
Register and Trajmar (Ref. [32])
Thompson (Ref. [33])
Peach (Ref. [34])
Dasgupta and Bhatia (Ref. [35])
Present work

&0

—1.035( 17)
—1.031
—1.036
—1.033
—1.055
—1.027

—0.351(4)
—0.347
—0.336
—0.350
—0.363
—0.349

0.150(5)
0.149
0.165
0.150
0.139
0.175

T
T
T

difference caused by the energy interval, we get
5O = 1.032 5] = 0.358 5) = 0.348~ 62+ =0. 175
and 62 =0.175. Adding those two parameters gives an
improvement of six units in y (from 37 to 31). For the p
wave, the gap between 5&+ and 5& is approximately five
times larger than the difference caused by the energy
change, assuming the change rate deduced from
Williams's data [ll]. This gap is greater for the p wave
than for the d wave, as predicted theoretically by Fano
and Rau [36].

The relative amplitude of the resonances is compared
in Fig. 5 to the one obtained from the derived phase
shifts. The two first angles were suffering from spurious
signal (seen with no gas after the measurement and due to
refiected electrons) and were not used in the I determina-
tion. It can be seen that the second resonance is nearly
vanishing around 135 . Comparing measured to predict-
ed amplitudes, we get no significant correction to the
I =1.30 meV trial value. This value is compared with
previous works in Table IV.

ARGON

The argon resonances are similar to the neon reso-
nances. They are located [27] at 11.098 and 11.270 eV.
In this case, the measurement has been performed with
only ten detectors and the results of the fits are presented
in Figs. 6 and 7 for the first and second resonances, re-
spectively. The natural width is assumed to be 2.5 meV
for the fits.

As in the case of neon, the energy interval between the
two resonances is small and we suppose that the phase

3

shifts are the same at the two energies. The values of q at
82' are not used because the resonances at this angle are
very weak and the value of q changes rapidly at this an-
gle. At 90' the observed profiles are nearly symmetrical
as in neon and these data are not used in the phase-shift
determination. As given in Table V, the results are
60= —1.220, 5& = —0.568, 62 = 1.016, and 5& =0.122.
No significant difference is found between phase shifts for
independent coupling.

The relative amplitude of the resonances is compared
in Fig. 8 to the one obtained from the derived phase
shifts. To correct the trial value of the natural width, the
very low R value of the first resonance at 82 is not used.
The 114' values are not used either since the R value is
changing rapidly at this angle and the angular acceptance
of the analyzer is not good enough to neglect neighbor
contributions. Using all other data, one gets I =2.3
meV. This value is compared with previous works in
Table VI. The value of Weingartshofer, Willmann, and
Clarke [39] is estimated from a 90' symmetrical profile
approximated by a triangular shape. This technique
leads to systematic overestimation of tr/2 for the natural
width.

KRYPTON

The energy of the two first Feshbach resonances of
krypton are 9.47 and 10.107 eV. The energy position of
the second resonance is therefore higher than the first ex-
citation level of the atom so that the negative temporary
state formed in the resonance process can decay via this
channel. This affects the observed profile [39]. We per-
formed the measurement of the first resonance and as-
sumed I"=4.0 meV in the fits. The results are presented
in Fig. 9. Three q values are rejected for the phase-shift
determination: at 82 the observed resonance is too weak
to be considered, at 74 the fits give nonrealistic electron
source parameters, and at 122 the value of q is changing
too rapidly. Using the 15 remaining q values, we get

2

TABLE IV. Natural widths of the first Feshbach resonances
of neon.

0
0

I ' I ' ' I ' 1 ' ' I

30 60 90 120 350 180
Angle (deg)

FIG. 5. Resonance relative amplitudes as a function of the
scattering angle, deduced from data for neon P3/2 and P

& &2

resonances. The solid line is calculated with the phase shifts
determined.

Brunt et al. (Ref. [27])
Roy et al. (Ref. [28])
Ehrhardt et al. (Ref. [37])
Simpson and Fano (Ref. [31])
Present work

I (me V)

1.3+0.4
1.4—1.8

1.4
&1
1.30
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FIG. 6. Y+, Z+, and q + parameters as a function of the
scattering angle, deduced from data for argon P3/2 resonance.
The solid line is calculated with the phase shifts determined.

FIG. 7. Y —,Z —,and q
—parameters as a function of the

scattering angle, deduced from data for argon P, ~, resonance.
The solid line is calculated with the phase shifts determined.

5o = —1.108, 5
&

= —0.603, 52 = 1.072, and 53=0. 187 (see
Table VII). The 54 value is fixed at 0.0675 in the compu-
tations, as suggested by Fon, Berrington, and Hibbert
[51].

Figure 10 shows the relative amplitude derived from
the phase shifts compared with the measured one. To
find the correction to the natural width, four values were
eliminated. At 82' the resonance is too small, at 74' the
fits give nonrealistic parameters, and at 114 and 122 the
R value is changing too rapidly. Using all other data we
obtained I =3.6 meV. This value is compared with pre-
vious works in Table VIII. The value determined by
Weingartshofer, Willmann, and Clarke [39] is overes-
timated as in argon.

I =4.5 meV. Results are shown in Fig. 11. For the same
reasons as in the other gases, data at 82, 90', 98', and
122' are not used for the determination of the phase
shifts. The resu. its are 60= —1.14, 5, = —0.73, 52=1.26,
and 53=0.26 (see Table IX). The value of 54 is fixed at
0.077 from the works of McEachran and Stauff'er [52]
and Sin Fai Lam [50].

Figure 12 shows the relative amplitude derived from
the phase shifts compared with the measured ones. The
expected behavior is not confirmed by the experimental
observation, especially at large angles. Using the data be-
tween 18 and 66', we obtain I =3.6 meV, which is in fair
agreement with the only available value of 4.5 meV (see
Table X).

XENON ERROR ESTIMATION

As in krypton, only the first Feshbach resonance of xe-
non is at an energy below the first excitation level. It is
located at 7.77 eV, about 1.27 eV below the second one.
The P3/2 resonance has been measured and fitted using

There are two main sources of error in the method
used for data analysis. The first one arises from error in
the expression for the differential cross section itself. The
second one comes from error arising within the fitting al-

TABLE V. Phase shifts of Ar at 11.18 eV (T: theoretical work).

Srivastava et al. (Ref. [38])
Williams (Ref. [11])
Andrick and Bitsch (Ref. [13])
Williams and Willis (Ref. [12])
Weingartshofer et al. (Ref. [39])
Thompson (Ref. [33])
Pindzola and Kelly (Ref. [40])
Yau et al. (Ref. [41])
Amusia et al. (Ref. [42])
O' Connell and Lane (Ref. [43])
Bell et al. (Ref. [44])
Dasgupta and Bhatia (Ref. [45])
Sienkiewicz and Baylis (Ref. [46])'
Sienkiewicz and Baylis (Ref. [46])
Nahar and Wadehra (Ref. [47])
Present work

'Relativistic treatment.
Nonrelativistic treatment.

—1.272
—1.173(21)—1.224
—1.220( 50)
—1.29
—1.234
—1.409
—1.164
—1.199
—1.234
—1.260
—1.222
—1.245
—1.255
—1.351
—1.220

—0.448
—0.587( 16)
—0.617
—0.609(20)
—0.61
—0.605
—0.764
—0.523
—0.585
—0.600
—0.658
—0.595
—0.629
—0.626
—0.730
—0.568

0.991
1.091(92)

0.983
1.092(20)
1.17
1.086
0.642
1.486
0.943

0.777
0.876
1.049
1.058
0.841
1.016

0.178
0.107(25 )

0.114
0.112(18)
0.10

0.030
0.144
0.129

0.109
0.115
0.108

0.097
0.122

T
T
T
T
T
T
T
T
T
T
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FIG. 8. Resonance relative amplitudes as a function of the
scattering angle, deduced from data for argon P3/2 and P&/2
resonances. The solid line is calculated with the phase shifts
determined.

FIG. 9. F+, Z+, and q+ parameters as a function of the
scattering angle, deduced from data for krypton P3/2 reso-
nance. The solid line is calculated with the phase shifts deter-
mined.

gorithm as, for instance, an error coming from an im-
proper modeling of the incident-electron beam or an
inadequate ratio of contributions from the direct gas
source and the diffuse source. We will first discuss the
first one.

Actually, the expression used as a starting point to de-
scribe the measurements is not given exactly by Eq. (6)
but by

I =ao+a&Xc.+X 1+ +Y ZE,

1+6, 1+6,
(16)

The term a,Xc was added to describe the variation with
energy of the nonresonant cross section (in fact an a2XE
term was also considered but its effect is negligible for
our purpose here). This variation comes from the energy
dependence of the nonresonant scattering, and also from
energy-varying electron optics properties. The constant
ao describes an instrumental background contribution
arising, for instance, from the dark count rate of the elec-
tron multiplier or from electrons detected but not origi-
nating from scattering events at the collision center. This
term is assumed independent of energy. It is clear that a
more meaningful description would be given by

a 0
=ao (exact),

X'=X(1—a, Z),
Y'= Y+a&Z(1+ Y),
Z'=Z+a, (Z —Y),
a', =a, (1+a~Z) .

(18a)

(18b)

(18c)

(18d)

(18e)

As an example, suppose that we have a, =0.001. This
means that the relative variation of the nonresonant cross
section on a 1-eV energy interval is given by a, b, c.=0.2
in the case of helium with I =10.3 meV [following Eq.
(2)), i.e., a variation of about 20%%uo in this interval. This is
significantly greater than the values normally encoun-
tered. Thus, as a rule, we can state that the measured
variations on the nonresonant background with energy
imply that a& is smaller than 0.001. This is still more
true if the width I is smaller than for the helium case.

Since these two equations are aimed at a description of
the same experimental curve, we can equate Eqs. (16) and
(17) to find the correspondence between the two descrip-
tions. In the limit (to be justified below) where the slopes
a& and a& are small, one finds

I' =a +OX'(1+a I E ) 1+ +Y' Z'c
1+v. 1+v

(17)

In this expression, the variation of X with energy is scaled
directly by multiplication. Unfortunately, the fitting al-
gorithm necessitates a great number of convolutions; it is
thus much faster to deal with sum of terms as in Eq. (16)
rather than a product as in Eq. (17).

One has to evaluate the error made on the evaluation
of the X, Y, and Z by using Eq. (16) rather than (17).

4

2

TABLE VI. Natural widths of the first Feshbach resonances
of argon.

I" (meV)

0 ~ I ' I ~ ~

0 30 60 90 120 l50 180
Angle (deg)

Brunt et al. {Ref. [27])
Weingartshofer et (tl {Ref. [39]).
Present work

2.5+0.5
3—4
2.3

FIG. 10. Resonance relative amplitude as a function of the
scattering angle, deduced from data for krypton P3/2 reso-
nance. The solid line is calculated with the phase shifts deter-
mined.



2900 D. DUBE, D. TREMBLAY, AND D. ROY 47

TABLE VII. Phase shifts of Kr at 9.47 eV (T: theoretical work).

Weingartshofer et al. (Ref. [39])
Heindorff et al. (Ref. [48])'
Srivastava et al. (Ref. [38])
Yau et al. (Ref. [41])
Sin Fai Lam (Ref. [50])
O' Connell and Lane (Ref. [43])
Fon et al. (Ref. [51])
McEachran and Stauffer (Ref. [52])
Present work

—0.91
—1.317
—1.313
—1.317
—1.254
—1.242
—1.245
—1.240
—1.108

—0.60
—0.734
—0.591
—0.611
—0.708
—0.687
—0.732
—0.692
—0.603

1.40
0.980
0.947
1.339
1.148
0.921
0.961
1.256
1.072

0.17
0.142
0.230
0.213
0.159

0.130
0.160
0.198

T
T
T
T
T

'Deduced from Holtsmark (Ref. [49]).
10 eV.

qYq'=q +a
&

1+ (19)

Then in most cases, a
&

is considerably smaller than 0.001.
If one defines q' as in Eq. (13) but with Y' and Z' re-

placing Y and Z, and in the same way one defines R"
from Eq. (15), Eqs. (18) yield

real ones and that the apparent X" is greater than the
real X value. This has no consequence on the evaluation
of the q value [see Eq. (13)] since it depends only on the
Y/Z ratio, which is the same as Y"/Z". On the con-
trary, the apparent relative intensities will then be [see
Eq. (15)]

and

R'=R (1+a)Z) . (20)

2 2 1/2
( Yii2+Zii~)tn (Y +Z )

1+ao /X
R

1+ao /X

(23)

fl II

1+v. 1+v,
(21)

with

X"=X(1+ac/X), (22a)

YI I Y
1+ao/X ' (22b)

This means that the more realistic q' and R' that one
would get from Eq. (17) instead of (16) are close to the q
and R values obtained from (16), taking into account the
smallness of a&. The consequence of all this is that the
error made by using Eq. (16) instead of (17) is not
significant in comparison with the other sources of errors.

Now, let us evaluate the effect of the instrumental
background on the results. For simplicity, we set a& =0;
one can then rewrite Eq. (16) as

We have stated above that the value of q is not sensitive
to a particular choice of I . Now we see that q is totally
insensitive to an error in the evaluation of the back-
ground ao. We can thus state with confidence that the
variations of q with angles reported here can be trusted
more than the Y and Z dependences, being much less sen-
sitive to systematic errors (like erroneous assessments of
I and ao). Phase shifts deduced from q factors are thus
thought to be very precise. Note that the precision on
the exact values of X, Y, Z, and R is directly dependent
on proper estimation of the instrumental background
[Eq. (22)].

From results shown in Figs. 2 (He), 5 (Ne), 8 (Ar), 10
(Kr), and 12 (Xe), we see that measured R values are in
general smaller at small and large angles than those ex-
pected from the phase-shift analysis. The contribution

Z"= Z
1+ao/X

(22c)

4

F+
Z+
q+

I

Xe

Suppose that one erroneously assumes that ao is zero.
The fitting algorithm will give values for X", Y", and Z"
instead of the real X, Y, and Z. Equations (22) tell that
the apparent values of Y" and Z" are smaller than the

0

+

g+py+4~ I
~ g

TABLE VIII. Natural widths of the krypton P3/2 first Fesh-
bach resonance.

I (me V)

-2
0

I ' ' I ' ' I ' ' I ' ' I

30 60 90 120 150 180
Angle (deg)

Swanson et al. (Ref. [53])
Weingartshofer et al. (Ref. [39])
Present work

3.8 —6.0
8
3.6

FIG. 11. Y+, Z+, and q+ parameters as a function of the
scattering angle, deduced from data for xenon P3/2 resonance.
The solid line is calculated with the phase shifts determined.
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TABLE IX. Phase shifts of Xe at 7.77 eV (T: theoretical work).

Heindorff et al. (Ref. [48])
Yau et al. (Ref. [41])
Sin Fai Lam (Ref. [50])
O' Connell and Lane (Ref. [43])
McEachran and Stauffer (Ref. [52])
Czuchaj et al. (Ref. [54])
Present work

—1.048( 19 )
—1.238
—1.231
—1.310
—1.318
—1.292
—1.14

—0.707( 55 )—0.661
—0.722
—0.743
—0.756
—0.760
—0.73

1.306( 11 )

1.632
1.221
0.169
1.521
1.500
1.26

0.083(7)
0.353
0.232

0.241
0.229
0.26

T
T
T

T

2.0

I

Xe

from an instrumental background is at least partly re-
sponsible for that. Experience tells us that the back-
ground is greater at small and large angles. Is the back-
ground contribution large enough to account for the ap-
parent discrepancy between the theoretical model and the
measurements? The background intensity is very difficult
to estimate. When the gas is cut ofI; the count rates at
the detector become negligible, except sometimes at the
smallest angles (18 and 26') where one can detect a con-
tribution coming directly from the incident-electron
beam, in cases where the electron optics settings are
inadequate. This is not the case at the other angles. The
background contribution has a component proportional
to pressure and this one is very difFicult to estimate. This
makes it difFicult to decide whether or not this can ex-
plain the observed discrepancies found at small angles.
Discrepancies observed at the largest angles can also be
explained by some peculiar electron optics properties at
the analyzer level observed at these angles. This point
was discussed in detail in a previous work [55].

We now consider errors arising from the deconvolution
process. In this study, the three steps of the analysis pro-
cess generate errors. In the first step, experimental reso-
nance measurements are fitted to obtain Y and Z values.
Using the model described before, observed spectra are
very well fitted and a reduced y approximately equal to 1

is achieved. Using a standard statistical criterion, the
precision on Y and Z values is found to be better than 1%
for almost all measurements. This error is higher on very
weak resonances and corresponding data are eliminated
in the next steps. On the other hand, the numerical er-

rors were limited by using high-precision computation
and increasing the density of simulated points around
narrow shapes. Tests were conducted to assure that this
type of error is not significant.

The last type of error arises from the imperfection of
the model used to describe the conditions of the collision.
For example, the energy distribution of the incoming
electrons is described by an intuitive model using two
half-Gaussians. To estimate roughly the error which
could be induced by this approximation, we used a
theoretical resonance profile (I =10 meV) which we fold-
ed with a pure Gaussian distribution (width=30 meV).
We then fitted this profile with a parameter-adjusted reso-
nance folded with a triangular distribution. In these con-
ditions the Y and Z parameters are modified by 0—1%%uo.

This value is a little larger for narrower resonances. The
same results are obtained for nonsymmetric distributions.
This situation is certainly worse than the representation
actually used and consequently the error must be of the
order of 1%. The experimental data do not allow an im-
provernent in the simulation of the collision conditions
since nearly all spectra were fitted up to the statistical
limit. This cannot be achieved if one uses a symmetrical
energy distribution for the electron beam or only one
broadening source. We also checked that the ratio of the
contributions from the direct gas beam to the dift'use
(background) gas had only minor infiuence on the evolu-
tion of X, Z, and q, as far as realistic ratios are used.

Combining these errors we roughly estimate that the
error on Y, Z, and R is of the order of 2%%uo and of the or-
der of S%%uo on q. Errors on phase shifts were not comput-
ed. Using these error estimations and adding the statisti-
cal fIuctuations of the ratios of the expected R to the
measured ones, we get an estimation of the accuracy of
the natural widths. These values are summarized in
Table XI.

CONCLUSION

1.0 It is known that the details of angular distributions are
more difBcult to calculate from a theoretical point of view
since interference terms between partial waves have a de-

0.0
0

I ' ' 1 ' ' I ' ' I ' ' I

30 60 90 120 150 180
Angle (deg)

TABLE X. Natural widths of the xenon P3/2 first Feshbach
resonance.

1" (meV)
FICx. 12. Resonance relative amplitude as a function of the

scattering angle, deduced from data for xenon P3/2 resonance.
The solid line is calculated with the phase shifts determined.

Heindorff et al. (Ref. [48])
Present work

4.5+1.0
3.6



2902 D. DUBE, D. TREMBLAY, AND D. ROY 47

Helium
Neon
Argon
Krypton
Xenon

10.3+0.3
1.30+0.15
2.3+0.2
3.6+0.4
3.6+1.0

TABLE XI. Summary of the natural widths of the first Fesh-
bach resonances in rare gases with the estimated accuracy.

I (me V)

at small and large angles. This could reveal that the
theoretical model is not totally adequate. However, we
can conclude that the agreement of the analyzed experi-
ment and theory is not perfect at some angles, given the
complexity of the data analysis and the fact that back-
ground contribution and electron optics characteristics
certainly can partly account for this deviation at extreme
angles.

cisive influence. Total cross section is less dificult since
interference terms cancel out. However, the results re-
ported here about the variation of the q shape factor with
angles, especially when one compares results for neon, ar-
gon, krypton, and xenon, show systematic trends: near
90' and 125 the asymmetry factor varies very rapidly.
On the other hand, one notes that the angular depen-
dences of R, the relative strengths of the resonances,
show in most cases discrepancies with theoretical curves
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