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Closed expressions for partial-wave photoelectron spectra and angular distributions:
A ground-state hydrogen atom struck by a temporal §-function pulse

K. G. Kim, C. C. Widmayer, and M. D. Girardeau
Department of Physics, Chemical Physics Institute and Institute of Theoretical Science,
University of Oregon, Eugene, Oregon 97403
(Received 5 November 1992)

A method of dealing with hypergeometric functions to obtain closed expressions for partial-wave com-
ponents of photoelectron spectra in terms of elementary functions is presented through an example of a
hydrogen atom struck by a temporal 8-function pulse. Based on this method, angular distributions of
photoelectrons with various energies are presented for a wide range of field strengths from a perturbative
(field strength ~0.05 a.u., 1 a.u.=5.14 X 10° V/cm) to a superintense regime (field strength~ 5 a.u.).

PACS number(s): 32.80.Fb, 32.80.Rm, 42.50.Hz

I. INTRODUCTION

Owing to the rapid development of laser techniques,
very intense fields of strength comparable to that of the
atomic field can be provided to investigate atomic
response to strong radiation, especially photoionization.
Since the observation of the phenomenon of so-called
above-threshold ionization (ATI) by Agostini et al. [1],
much work, both theoretical and experimental, has been
done on this strong-field area, leading to the discovery
and prediction of novel effects such as peak suppression
[2,3], subpeak structure within a single ATI peak [4,5],
high-order harmonic generation [6,7], and stabilization
against ionization [8,9] under superstrong fields.

It is well known that one can obtain pure atomic
response (photoelectron spectra) experimentally by using
a short-pulse laser (on the order of femtoseconds, prefer-
ably) rather than a long, monochromatic one, since in the
former case one can minimize the effect of final-state
scattering inside the focusing region, the so-called pon-
deromotive scattering, on photoelectron spectra. Howev-
er, due to the finite temporal profiles of pulses and their
significant effects on the above-mentioned phenomena,
especially those of turning on and off of pulses [10], one
does not expect a purely analytic explanation or predic-
tion for such phenomena by finding the exact time evolu-
tion of electronic wave functions under both atomic and
laser fields. Thus, one of the most popular methods in
this strong-field area, which takes into account the
influence of the envelope function for the temporal varia-
tion of the laser intensity, is a direct numerical integra-
tion of the time-dependent Schrodinger equation (TDSE),
usually employing some technique such as the Kramers-
Henneberger transformation [11] at the early stage of cal-
culations.

On the other hand, in our previous paper [12], we
developed a useful representation called “impulse repre-
sentation” for obtaining the time evolution of a single-
electron wave function of an atom subjected to intense,
ultrashort laser pulses. Although we expect that numeri-
cal calculation will be required at some stage of the calcu-
lations for a realistic laser pulse, we demonstrated there
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the effectiveness of the representation especially for ul-
trashort pulses by obtaining exact results for survival, ex-
citation, and ionization probabilities, and photoelectron
spectra of the ground-state hydrogen atom struck by a
temporal 8-function pulse. In this paper, we present
closed expressions for partial-wave components of photo-
electron spectra in that case with a demonstration of
some techniques to deal with the relevant hypergeometric
functions. After a few fundamental remarks on the
derivation of the ‘“doubly differential cross section”
(DDCS, see the content for its definition) in Sec. III, we
show the angular distributions of photoelectrons generat-
ed for various field strengths (0.05-5 a.u.) with tables of
relevant data in Sec. IV. We would like to point out the
fact that many authors have recently reported measure-
ments or calculations [13,14] of angular distributions for
photoelectrons since the comparison of theoretical calcu-
lation to experimental data can provide one of the good
bases for testing the validity of a theory.

The techniques in Sec. II can reduce computational
times as compared to the direct use of any package which
recognizes hypergeometric functions, and further, we be-
lieve they can be extended to other problems related to
nonrelativistic hydrogenic wave functions in connection
with optical processes, e.g., explicit evaluations of dipole
or multipole matrix elements, especially for continuum-
continuum transitions [15]. Although the §-function
pulse is not realistic in the sense that it contains the en-
tire range of frequencies with equal amplitudes, the data
we present can shed light on the understanding of atomic
response as laser-pulse intensity changes from a very per-
turbative value to a superatomic one.

II. METHODS OF OBTAINING CLOSED
EXPRESSIONS FOR PARTIAL-WAVE
COMPONENTS OF PHOTOELECTRON SPECTRA

Although the following procedure is applicable to any
initial state of a nonrelativistic Coulombic system, we will
confine ourselves here to the case of a hydrogen atom ini-
tially prepared in the ground state W,yy(r), struck by a 8-
function pulse E(#)=F&(¢) for the sake of concrete
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demonstration of the procedure. According to the for-
malism developed previously [12], the wave function in
momentum space right after the pulse at time t=0" is
given by

@(p,0")=®,0(p+F), (1)

where @,y is the ground-state wave function in momen-
tum space. In coordinate space,

W(r,0M)=2m) "% [ d’p e P d(p,0")
=e“"F"(277')*3/2fd3p’eip"r<l>‘00(p')
:e_iF.r\l,loo(r) . (2)

The transition amplitude C;,, to a continuum state
specified by a set of quantum numbers (k,/,m) is given by

Crim = f d’r ¥, (0¥(r,0") . (3)
Using the formula for partial-wave expansion of the plane
wave e ‘FT

e Fr= 3 (=i} 2l +1)j,(Fr)P/(cos) , 4)

1=0

and the continuum wave function of the form [16]
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with
— (D (2kr)'
Ru=C i+
Xe ~kr B (ik ~14+141;21 +2;2ikr) , (6)

one can easily perform the angular part of the integration
(3). Here j, and P, are, respectively, the spherical Bessel
function and the Legendre polynomial, and F,(a;5;X)
and C{" are, respectively, the confluent hypergeometric
function and the k-normalization factor for continuum
states, which are given as

p— w Lla+n)0(B) x"
Fila= 3 [t

_pax  alat+) ¥
et eern 2t @

and

172 172
C]((l)z ! 1+52k2 ’ .
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Then we have

|
(21 +1)172
Chim = Cr10dm,0=8m,ol —1 )lzlﬂmcfc”kl
X fdrr’”e““"”‘)'j,(Fr) Fi(—ik ~1+ 141520 4+2; —2ikr) . )

It should be noted that we have chosen to change repre-
sentation from momentum space to coordinate space in
order to facilitate the evaluation of the integral in Eq. (9).
The coordinate-space bound state wave function includes
the factor e ~’/", which assures rapid convergence [17] of
integration. Several steps of calculation with the aid of
the integral table [18] yield the following expression for
Criot

(21 +1)172

Crio=—IiC}, 210 QEYF(—1)Z,—ZF]
W RUEAD2
K iy 2 KF

Im(Z;) for even /
X (10)

i Re(Z;) for odd I,
where

Zl=zz—(1+2)

L (I+nl—n+1)
XE n!

n=0

. n

izy

2F ]

X F ik +14+1,1—n +2;21 +2;2ikz; ') ,
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with z,=1+4i(k —F) and ,F(a,B;y;X) being the ordi-
nary hypergeometric function.

The expression (10) is sufficient to perform numerical
evaluations of photoelectron spectra using a commercial
mathematical package such as MATHEMATICA, but it
would be preferable to express it in terms of elementary
functions rather than the summation over hyper-
geometric functions. In order to do this, we can use the
following properties of hypergeometric functions includ-
ing a recursion relation and differential equation [19],
which relate hypergeometric functions of different argu-
ments:

Fila,B;v;x)=1 if one of a and B is zero , (12)
2Fi(a,Byvsx)=,F (B,asv3X) (13)
JFila,BBx)=(1—x)"%, x#1, (14)
JFila,By;0)=1, (15)

[2B—y +(a—B)x].F(a,B;7;X)
+(y—B)Fi(a,—1;7;X)
+B(x—1),F(a,f+1;v;x)=0, (16)
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4 (1= )BT, F (@, By v5x)]
dx
(y—a),(y—B), .
:L_OCY—B(I_X)GH,» Y "2F1(0,3;7’+”;X),
(7))
(17)
JFila, ;20 =(a— 1) Iy [ (1—y) " V=17, (18)
where
B 1 if n=0
(O, = C(C+1)---(C+n—1) otherwise . (19)

Here Eq. (18) is derived from Eq. (16) by setting =1 and
v =2 with help of Egs. (12) and (14). In our present case,

a=ik '+I+1 and X=2ikzz_1, which can be derived
from Eqgs. (17) and (18) as

JF ik TV 14+1,1;20 +2;2ikz5 )

= _p—u+n__(2L+1) 22+
]
IT (1+s%?)
s=0
NN i B P A
Z, = m! z, ’

(20)

where z;=1—i(k +F). In this case the recursion rela-

we need an expression for ,F(a,1;2/+2;x) with tion of Eq. (16) becomes
J
FyGk 1+ 1,0 —n +2;20 +2;2ikzy )= — 2B ELZE) g =t 11— n 41520+ 2;2ikz5 )
(I—n+1)z,
(I+n+1)z,

+ (I—n+1)z,?

Now we can express the finite sum of Eq. (11) over the
running variable n in terms of two hypergeometric func-
tions having values of the second argument 3 equal to O
and 1, whose explicit expressions are known from Egs.
(12) and (20). Although it is not necessary in obtaining a
final form of the expression, one can easily show that the
quantities relevant to the final result are the first term in
the curly bracket of Eq. (20) and its overall coefficient to
be obtained after the reduction mentioned above. The
reason for this is that the terms other than those, upon
reduction, become pure real (imaginary), while we need
only the imaginary (real) part of Z; for obtaining Cy,, [see
the second expression for Cy,, in Eq. (10)]. This fact can
save much computational time, especially in symbolic
calculation using MACSYMA or MATHEMATICA.

Finally, using the polar form for the variables z; and
zy, z;=rexp(—i6;), we can convert the factor
(z, /z2 ik in Eq. (20) which appears to be multivalued,
into the following form:

—i/k

Z —(0,—6,)/k —iln(r,/ry)/k
- =e 1~ "2 e 1772

’ (22)

Zy
where

ri=[1+k+F)?2"2, r,=[1+(k—F)?]'? (23)
and

6,=tan Yk +F), 6,=tan” Y(F—k)

with —12’—591,925% .4

The reason for choosing the principal branch for the an-
gles 6, and 6, is that in using formulas (14), (17), (18), and

Fi ik '+14+1,1—n;21+2;2ikz5 ") . @1

(20) we need to select a single value since a hyper-
geometric function permits only one functional value for
given arguments and variables. Furthermore, one can
easily show that this branch is correct by using formula
(14) or (18) with the definition of a hypergeometric func-
tion as an infinite series. Then the whole procedure can
be programmed in a high-level code like FORTRAN, PAS-
CAL, C,. .., etc., using elementary functions for numeri-
cal calculations as well as in a batch file for a commercial
mathematical package for symbolic computations. We
obtain the closed expression for the transition amplitude
to continuum states with quantum numbers k, [, and
m =0 as follows:

4k 172

—2n/k

Ck]():( —1 )[I/z]il ‘
1—e

—(6,—6,)/k
e ! 2
X

172

1
F'+1r1r2 (H (1+s2%k?)
s=0

X[S;(k,F)]"%sin[a,(k,F)+B(k,F)], (25

where 6,, 6,, r;, and r, are defined in Eq.
4), B(k,F)=k In(r,/ry), a;(k,F)=tan"'[N,(k,F)/
D,(k,F)], and Ny, D,;, and S, are polynomials of finite or-
der in k and F which depend on /. In the Appendix, we
show some of them obtained from symbolic computation
using MACSYMA. From those expressions, one can easily
deduce the analytic behavior of Cj; in limiting cases
such as k << F and k >>F, for given F or k.
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III. DOUBLY DIFFERENTIAL CROSS SECTION

We now turn our attention to the angular distribution
of photoelectrons and briefly review the derivation of the
differential cross section (DCS) for photoionization. The
result gives the correct angular distribution for a system
whose wave function is known (either by direct numerical
integration of the TDSE or by some other means) im-
mediately after a finite width pulse. Assuming that the
pulse terminates at time O, denote it by
Y, (r)=W¥(r,t=0").

The relevant experimental apparatus is assumed to
consist of a detector subtending the solid angle d Q locat-
ed at radius r from the interaction region, which will be
taken to approach infinity. The distribution of photoelec-
trons is then obtained by considering the total probability
that photoelectrons cross the detector after the passage of
the pulse. This is given by [20]

do= lim fof dt j(r,t)-d A= lim fo"j dt P q(r,1)dQ ,
(26)

where j . 4(r,?) is the radial component of the probability
current evaluated at position r and time ¢. It can be ex-
pressed in terms of the wave function as

, 1 d
],ad(r,t)=5 ‘I/Z(r,t)—a—r—‘llc(r,t)—c.c. , 27)
with W (r,¢) taken to be only the continuum portion of
the whole wave function ¥(r,¢), which can be expanded

in terms of a complete basis of Coulomb wave functions
as

\I/(l',t )= 2 Cnlme-iEntd’nIm(r)

nl,m

+3 [ 7 dk Cume T, (1) . (28)
I,m

Here one needs to pay attention to the fact that the con-
tinuum basis functions are regular solutions of the
Schrodinger equation, which are standing waves rather
than outgoing waves. However, it can be shown [21] that
one can use the same coefficients Cy;,, in Eq. (28) in ex-
panding ¥ .(r,?) in terms of outgoing waves rather than
standing waves, even though the outgoing waves are ir-
regular at the origin. Now, by expressing the basis func-
tions in spherical polar coordinates in their asymptotic
form [22] as r— « and performing the ¢ integral, one of
the k integrals, and one of the summations over / and m,
the following expression is obtained for the DCS:

%= [ dklfeo.0)2, (29)
with
Fi(8,6)=3 Ciu Vi (B, 4 177 (30)
ILm

where 8, is the Coulomb phase given by
8y =argl(I+1—ik ™). 31)
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The DDCS, defined to be the probability that the atom is
photoionized with the photoelectron’s momentum value
lying in the range k to k +dk and its direction lying in
the solid angle d{) about (6,4), is the integrand of Eq.
(29):

d%o
dkd Q)

These results were derived long ago by Mott and Massey
[23] using a different argument.

For a linearly polarized field, the expansion coefficient
Ciim has the form

Cram =Cikodm,0 > (33)

=|fc(6,9)]% . (32)

where §8,, is a Kronecker delta. Since
Y,o=[(21 +1)/(47)]'/2P,(cos6) and e~ ""2=(—i)}, we
have in this case

[1(6,0)=f(6)

=3 =i
1

2/ +1
47

172 5
Cue MP/cos) .  (34)

The explicit expression for the Coulomb phase shift can
be decomposed as

8y =80 +8Y, (35)
with 8’ independent of / since [24]
argl(I+1—ik " Y)=argl'(1—ik ~1)

!
+ S tan™!
2 tan | —

n=1

(36)

In actual evaluations of f,, we always need to truncate
the summation in Eq. (34) at a finite value of /. Denoting
this maximum value of / by /_,,, we obtain the final ex-
pression for f; as

i 172
a_,.) i8(0) max 2/ +1
fim™(@)=e * 3 (=1 = Cu
1=0 4m °
LT
XP(cos®) [Te “, 37
n=1
where
—tan—! | =L 38)
O,,=tan ok (

IV. RESULTS AND DISCUSSION

In a previous paper [12], we presented photoelectron
spectra for field strengths F=0.5, 1.0, and 2.0 a.u. in-
cluding partial-wave contributions up to /=4 (g wave).
Using the method developed in Sec. II, it is possible to
evaluate the transition amplitudes to partial waves of
large [ rapidly, which enables us now to include partial-
wave contributions of angular momentum quantum num-
bers up to /.., as shown in Table I to obtain the angular
distributions of Fig. 1. We choose field strengths ranging
from 0.05 to 5.0 a.u., and use the formula given in Eq.
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(37) with the procedure in Sec. II. We can estimate the
relative error involved in each curve of Fig. 1 looking at
Table I. One might be misled by Table I to conclude that
the perturbative regime extends to field strengths approx-
imately around 1.0 a.u. since it shows the dominant con-
tribution for photoionization to be the p-wave up to that
field strength. That is not correct: for example, for
F=0.05 a.u., the s- and d-wave contributions are about
10 times less than the p-wave contribution in absolute
value of transition amplitude, and those of higher-/ waves
fall very rapidly as / increases. On the other hand, for
F=0.5 a.u., the other partial-wave contributions become
quite comparable to that of the p wave for various ranges
of the photoelectron’s momenta—those of the s and d
waves for k 0.3 a.u. are, respectively, about 1 and % of
that of the p-wave, that of the d wave for 0.4<k <1.5
a.u. is about J of that of the p wave, that of the f wave
for 0.5<k =<1.0 a.u. is about % to that of the p wave, and
so on. This indicates that the perturbation calculation,
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especially the lowest-order one, cannot be applied at this
value of field strength. See also Table II.

The inapplicability of perturbation theory at high-field
strengths is qualitatively evident in the polar plots of Fig.
1. The angular distribution for F=0.05 displays a rela-
tively high degree of symmetry about 6=90°, suggesting
the dominance of the p-wave contribution, as would be
expected from the lowest-order perturbation theory. For
the higher values of field strength, however, the distribu-
tion of photoelectrons is localized in the direction anti-
parallel to the applied field, a result which is easily under-
stood on classical grounds.

Note that the DDCS predicts, for a given polar angle,
a continuous range of photoelectron momenta. Further-
more, the most probable momentum measured will, in
general, also vary as the angle changes. This
phenomenon, which is most evident in the polar piot for
F=1.0, is due to the pure atomic response and is not an
effect of ponderomotive scattering of the photoelectrons

TABLE 1. Maximum angular quantum numbers /,, and absolute value of transition amplitudes |Ckmax| to be used to obtain Fig.

1 using Egs. (25) and (37). Also shown is the maximum transition amplitude |C,; * | for each value of field strength F and momentum
k, where I* is the angular quantum number to give the maximum value of |Cy,| for given F and k. The number in the square brack-

ets indicates the exponent of basis 10.

F koooa* C,sl lnae  1Cu__| F k I* C, sl lnae G|
001 1 0006246566 4  127[—7] 001 1 0056817831 7 3.07(—7]
005 1 0013906714 4  3.08[—7] 005 1  0.126674607 7 7.54[—7]
0.1 1 0019400951 4 435-7] 0.1 1 0.177502408 7 1.664[—6]
03 1 0029219018 4 1.206[—6] 03 1 0278728974 8  3.076[—6]
005 04 1 0030079851 4 1.580[—6] 05 05 1 0296669593 10  1.056[—6]
0.5 1 0.029278098 4 1.863[—6] 0.7 1 0266381708 11  8.36[—7]
0.7 1 0.024931825 4 1.948[—6] 10 1 0189582762 11  8.51[—7]
10 1 0017010391 4 1.344[—6] L5 1 0090104564 11  3.07[—7]
20 1 0003951453 4 176[—7] 20 1 0043026235 10 251[—7]
001 1 0068853320 7 1.086[—6] 0.1 0 0083781897 7 435(—7)
005 1  0.153891646 7 2.821[—6] 05 0 0188549989 10  1.164[—6]
0.1 1 0217323717 8 1.036[—6] 10 1 032496810 13 2.268[—5]
03 1 0369621357 9  3.259[—6] 1.3 1 041012522 17 4.901[—5]
0.5 1 0453599126 11 2.298[—6] L5 1 04492418 18 1.353[—4]
10 07 1 0483515065 13 6.041[—6] 20 17 1 04591113 20 1.491[—4]
10 1 0431729556 15 4.471[—6] 20 2 04118112 22 1.851[—4]
1.5 1 0238378334 16  5.463[—6] 23 2 03154813 23 1.036[—4]
20 1 0110924828 15  2.581[—6] 25 2 024236192 24 3.959[—5]
2.5 1 0054028595 14  6.13[—7] 30 2 0112274910 23 8.044[—6]
30 1 0028726969 13 1.68[—7] 40 1 0030402802 19  4.96[—7]
05 0 0074696576 8 529[—7] 10 0 0021125392 8 4.50[—7]
1.0 0 0112699409 12 2.588[—6] 20 0 0036013825 12 4.343[—6]
L5 1 015957590 14 1.807[—5] 30 1 006823459 18 4.458[—5]
20 1 025684445 18 7.257[—5] 40 2 01713538 26 4.110[—4]
25 2 03563601 24 4484[—4] 45 3 02672598 35 6252[—4]
30 30 2 03733257 29 3.890[ —4] 50 50 4 03018758 45 7.028[—4]
35 2 022916761 31 8.490[—5] 55 4 01992855 41 6953 —4]
40 2 011179946 30  1.628[—5] 60 3 01008746 38 1.322[—4]
45 2 0055363842 26  5.963[—6] 70 2 0028320809 33  3.400[—6]
50 2 0029544016 24 1.039[—6] 80 2 0010936445 28  5.15[—7]
60 1 0011312806 20  2.46[—7] 100 1 0002864101 19  1.50[—7]
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inasmuch as the latter is a result only of the spatial inten-
sity gradients of temporally finite laser pulses.

With realistic, finite-width pulses one expects more
complicated behavior such as the appearance of multiple
uniformly spaced peaks in the photoelectron spectra, the
well-known ATI structure, but even then our calculation
presented here (viz., the behavior of the photoelectron
spectra with respect to varying intensity) can be of use in
analyzing the situation. For example, we have carried

0.00025 T T

- (a) F=0.05
o
B 00002 b_04 .
(7]
2
S o0.00015 ]
w
-
S 0.0001 4
2 )
o
> _
% 5x1075 4
0 T
0 20 40 60 80 100 120 140 160 180
polar angle (deg)

0.45 — — : :
5 04} (c) F=1.0 1.0/ -
-—
[53
3 0.35 | i
7]

03} §
3 0.25 | ]
5 02t ]
£ 0.15 05 |
o
= 01} ]
3 0.05
S 0.05 0.1 29

0 S '
0 20 40 60 80 100 120 140 160 180

polar angle (deg)

doubly differential cross section
w

4.0

0 , . N . . X .
0 20 40 60 80 100 120 140 160 180
polar angle (deq)

out calculations of the magnitude of transition ampli-
tudes to partial-wave states with a wide range of photo-
electron momenta for field strengths up to 10 a.u. From
this one can predict possible channels of significant con-
tribution to photoionization for given laser parameters.
Specifically, for the case F=k =5 a.u., the magnitudes of
transition amplitudes are of the order of 1071, 1072, and
1073 for the range of angular quantum numbers
0<1=<15, 16<1=<29, and 30=<7/=<43, respectively,

0.06 — T T T T T T ™

0.05

0.04

0.03

0.02

0.01

doubly differential cross section

0 20 40 60 80 100 120 140
polar angle (deg)

160 180

25

15

0.5 r

doubly differential cross section

0 1 1 I L 1
0 20 40 60 80 100 120 140 160 180
polar angle (deg)

18 b (f)
16

12

doubly differential cross section
o

ON H» O ®
T

— L L N L s

0 20 40 60 80 100 120 140
polar angle (deg)

160 180

FIG. 1. Angular distributions of photoelectrons for various field strengths F=0.05, 0.5, 1.0, 2.0, 3.0, and 5.0 a.u. The momentum
value is indicated on each curve, and also shown inside each graph are the polar plots. Refer to Table I to see numerical convergence
and error involved in drawing each curve.
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whereas for kK =4 a.u., these magnitudes correspond to
0,<1<6,7<I1=15, and 16 <] <24, respectively. There-
fore, one can deduce that at this field strength the num-
ber of accessible channels for a given order of probability
approximately doubles as the photoelectron momentum
increases from 4 to 5 a.u., which is true as long as the di-
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pole approximation is valid.

In summary, the method presented herein enables one
to reduce an expression involving hypergeometric func-
tions, which may obscure the physical behavior and in-
duce large computational times, to a closed form in terms
of elementary functions. This technique, which is quite

TABLE II. Differential cross section integrated over some range of polar angles. The same [, is used to obtain the numerical

value for each F and k, as is given in Table L.

Polar-angle rangle for integration

Polar-angle rangle for integration

F  k, 0-180® 0°-90° 150°-180° 170°—180* F  k, 0-180® 0°-90®° 150°~180 170°—180%¢
0.01 0000039  49.9 17.5 2.24 0.01 0003988  49.4 132 1.65
0.04 0.000156  49.7 17.6 2.26 0.1 0039047 44.1 15.9 2.03
0.08 0.000306  49.4 17.8 2.29 02 0073204 385 19.4 2.55
0.16 0.000571  48.8 18.2 2.34 03  0.098471 335 233 3.13
032 0.000877 47.8 18.8 2.43 04 0.112536 293 27.2 3.77

0.05 0.64 0.000703 46.6 19.7 2.56 05 0.5 0.115238 259 31.1 4.42
128 0000127 464 19.9 2.58 0.6 0.108446  23.3 34.6 5.05
2.56  0.000004  47.5 19.2 2.48 0.8 0079282 202 402 6.09

1.1 0036495  18.7 443 6.87

1.4 0014345 194 44.7 6.91

20 0002231 228 412 6.18
0.01 0.006441 493 11.4 1.40 0.05 0036082 463 10.8 1.31
0.05 0.032115 465 12.6 1.56 02 0143721 355 15.9 1.52
0.1 0063667 43.0 14.2 1.79 0.4 0280027 235 25.0 3.44
02 0122821 364 18.0 2.34 0.6 0385993 152 36.2 5.48
03 0172954 305 223 3.00 0.7 0415640 123 4.0 6.71
04 0209879 255 27.1 3.78 08 0423762 10.1 475 8.01
0.5 0230478 214 32.0 4.63 09 0408911 8.53 52.6 9.33

07 06 0233660 183 36.8 5.55 1.0 1.0 0373537 7.41 57.1 10.6
0.7 0221007 159 41.3 6.45 1.1 0323678 6.65 60.8 11.7
08 0196540 14.2 45.3 7.29 1.3 0211438 5.90 65.8 13.3
1.0 0133243 123 s51.1 8.62 1.5 0.120297 5.85 68.2 14.0
1.3 0057475 11.8 55.0 9.49 1.7 0.063401 6.26 68.6 139
1.6 0021814 12.7 54.9 9.35 2.1 0016788 7.89 66.1 12.8
1.9 0.008274 144 52.9 8.77 25 0004827  10.1 61.8 11.2
2.5 0001419 184 474 7.45 3.1 0000949 13.8 55.1 9.29
0.1 0037107 43.1 10.4 1.25 0.1 0012847 440 9.37 1.11
02 0075572 365 132 1.63 02 0026222 382 11.6 1.39
04 0161862 24.7 20.6 2.71 04 0056833 275 17.3 2.19
0.6 0267990  15.7 30.5 4.39 0.6 0097123 187 249 3.38
0.8 0396021 9.60 423 6.84 08 0154119 12,0 34.5 5.14
1.0 0528717 5.85 54.7 10.1 1.0 0236761 7.41 45.7 7.67
12 0617874 3.74 65.7 14.1 1.2 0353234 445 57.6 11.1
1.4 0604122 2.64 74.1 18.0 14 0.500920 2.68 68.7 15.6

15 1.6  0.480582 2.14 79.6 21.1 20 1.6  0.646902 1.68 779 20.9
1.8 0315169 2.00 82.5 228 1.8 0.719245 1.14 84.4 26.2
20  0.179264 2.10 83.6 23.2 20  0.655693 0.89 88.5 30.5
22 0.094138 2.39 83.5 225 22 0.483566 0.81 90.7 33.0
24 0.048064 2.82 82.4 21.3 2.4 0298188 0.84 91.6 33.6
2.8 0012972 4.06 78.7 18.4 2.6  0.163461 0.96 91.5 32.7
32 0.003959 5.64 74.0 15.7 2.8 0.084665 1.17 91.0 30.9
3.6 0.001778 6.97 70.3 14.1 32 0.022499 1.82 88.4 26.4

3.6 0.006640 2.75 84.7 223
40  0.002247 3.91 80.3 19.1

2Actual value.
>dPercentage of the value in the first column.
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general, allows the evaluation of accurate, highly con-
verged values of transition amplitudes and angular distri-
butions for photoelectrons generated by a &-function
pulse, a calculation which would have been prohibitively
lengthy via numerical computations using hyper-
geometric functions directly.
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APPENDIX: POLYNOMIALS N,, D;, S; FOR[1=0,1,2,3

Dy(k,F)=—2(k*—F*+1),

No(k,F)=4F ,
So(k,F)=4(k?—2kF+F>+1)(k*+2kF+F*+1) ,
D, (k,F)=2V3(k2>+1)(k*—F*+1),
N,(k,F)=—4V3F(k*+1),

S, (k,F)=12(k*+1)Xk?>—2kF +F*+1)(k?+2kF+F*+1) ,

Dz(k,F)=—‘/2—5(9k6—7k4F2+27k“—5k2F4—2k2F2+27k2+3F6+7F4+5F2+9) ,

N,(k,F)=—V'5F(9k*—4k*F*+ 18k>+3F*+8F>+9) ,

S,(k,F)=3(k*—2kF+F*+1)(k*+2kF+F*+1)

X(81k8+36kOF2+324k%—50k*F*+324k*F*+486k*— 12k 2F°— 52k *F*+ 540k *F?

+324k%2+9F8+60F°+ 142F*+252F%+81) ,

v'7

D,(k,F)=— —2—(30k8—21k6F2+ 120k 6 — 9k *F*+9k*F?+ 180k *— 15k 2F°+ 50k 2F*

+81k2F?+120k%+15F8+45F%+59F*+51F2+30) ,
N3 (k, F)=VTF(30k®— 11k *F?>+ 90k *— 10k 2F*+ 50k 2F?+90k >+ 15F+ 50F *+ 6 1F*+30) ,

Sy(k,F)=1(k*—2kF+F*+1)(k*+2kF+F*+1)

X (900k 12+ 540k 1°F2 + 5400k 10481k 8 F*+ 7020k 8 F2+ 13 500k 8 — 900k °F ¢+ 5220k SF*
+22 680k 6F2 4 18 000k 6 — 270k *F& — 20k *F°+20 358k *F*+31 320k *F2+13 500k *
+2100k2F8+ 11 300k 2F8+25 380k 2F*+ 19 980k 2F?+ 5400k 2+ 225F 12+ 1800F 1°

+5970F3+10420F%+10 161F*+4860F%+900) .
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