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Closed expressions for partial-wave photoelectron spectra and angular distributions:
A ground-state hydrogen atom struck by a temporal 5-function pulse
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A method of dealing with hypergeometric functions to obtain closed expressions for partial-wave com-
ponents of photoelectron spectra in terms of elementary functions is presented through an example of a
hydrogen atom struck by a temporal 6-function pulse. Based on this method, angular distributions of
photoelectrons with various energies are presented for a wide range of field strengths from a perturbative
(field strength-0. 05 a.u. 1 a.u. =5. 14X 10 V/cm) to a superintense regime (field strength- 5 a.u. ).

PACS number(s): 32.80.Fb, 32.80.Rm, 42.50.Hz

I. INTRODUCTION

Owing to the rapid development of laser techniques,
very intense fields of strength comparable to that of the
atomic field can be provided to investigate atomic
response to strong radiation, especially photoionization.
Since the observation of the phenomenon of so-called
above-threshold ionization (ATI) by Agostini et al. [1],
much work, both theoretical and experimental, has been
done on this strong-field area, leading to the discovery
and prediction of novel effects such as peak suppression
[2,3], subpeak structure within a single ATI peak [4,5],
high-order harmonic generation [6,7], and stabilization
against ionization [8,9] under superstrong fields.

It is well known that one can obtain pure atomic
response (photoelectron spectra) experimentally by using
a short-pulse laser (on the order of femtoseconds, prefer-
ably) rather than a long, monochromatic one, since in the
former case one can minimize the effect of final-state
scattering inside the focusing region, the so-called pon-
deromotive scattering, on photoelectron spectra. Howev-
er, due to the finite temporal profiles of pulses and their
significant effects on the above-mentioned phenomena,
especially those of turning on and off of pulses [10], one
does not expect a purely analytic explanation or predic-
tion for such phenomena by finding the exact time evolu-
tion of electronic wave functions under both atomic and
laser fields. Thus, one of the most popular methods in
this strong-field area, which takes into account the
inAuence of the envelope function for the temporal varia-
tion of the laser intensity, is a direct numerical integra-
tion of the time-dependent Schrodinger equation (TDSE),
usually employing some technique such as the Kramers-
Henneberger transformation [11]at the early stage of cal-
culations.

On the other hand, in our previous paper [12], we
developed a useful representation called "impulse repre-
sentation" for obtaining the time evolution of a single-
electron wave function of an atom subjected to intense,
ultrashort laser pulses. Although we expect that numeri-
cal calculation will be required at some stage of the calcu-
lations for a realistic laser pulse, we demonstrated there

the effectiveness of the representation especially for ul-
trashort pulses by obtaining exact results for survival, ex-
citation, and ionization probabilities, and photoelectron
spectra of the ground-state hydrogen atom struck by a
temporal 6-function pulse. In this paper, we present
closed expressions for partial-wave components of photo-
electron spectra in that case with a demonstration of
some techniques to deal with the relevant hypergeometric
functions. After a few fundamental remarks on the
derivation of the "doubly differential cross section"
(DDCS, see the content for its definition) in Sec. III, we
show the angular distributions of photoelectrons generat-
ed for various field strengths (0.05 —5 a.u. ) with tables of
relevant data in Sec. IV. We would like to point out the
fact that many authors have recently reported measure-
ments or calculations [13,14] of angular distributions for
photoelectrons since the comparison of theoretical calcu-
lation to experimental data can provide one of the good
bases for testing the validity of a theory.

The techniques in Sec. II can reduce computational
times as compared to the direct use of any package which
recognizes hypergeometric functions, and further, we be-
lieve they can be extended to other problems related to
nonrelativistic hydrogenic wave functions in connection
with optical processes, e.g. , explicit evaluations of dipole
or multipole matrix elements, especially for continuum-
continuum transitions [15]. Although the 5-function
pulse is not realistic in the sense that it contains the en-
tire range of frequencies with equal amplitudes, the data
we present can shed light on the understanding of atomic
response as laser-pulse intensity changes from a very per-
turbative value to a superatomic one.

II. METHODS OF OBTAINING CLOSED
EXPRESSIONS FOR PARTIAL-%'A VE

COMPONENTS OF PHOTOELECTRON SPECTRA

Although the following procedure is applicable to any
initial state of a nonrelativistic Coulombic system, we will
confine ourselves here to the case of a hydrogen atom ini-
tially prepared in the ground state %too(r), struck by a 5-
function pulse E(t)=F5(t) for the sake of concrete
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demonstration of the procedure. According to the for-
malism developed previously [12], the wave function in
momentum space right after the pulse at time t=0+ is
given by

N(p 0 ) =@)pp(p+F)

with

C(() (2kr)'
(2l +1)!

=e ' 0 )pp(1 ) (2)

where 4&oo is the ground-state wave function in momen-
tum space. In coordinate space,

%(r, O+ ) =(2m ) f d p e '&'@(p,O )

=e '"'(2n ) f d p'e'~ '4 (p')

Xe '"")F((ik '+l+1;2l+2;2ikr), (6)

one can easily perform the angular part of the integration
(3). Here ji and P& are, respectively, the spherical Bessel
function and the Legendre polynomial, and (F,(a;P;X)
and C&" are, respectively, the conAuent hypergeometric
function and the k-normalization factor for continuum
states, which are given as

The transition amplitude C&1 to a continuum state
specified by a set of quantum numbers (k, 1, m) is given by

Ck( = f d rq'k( (r)qs(r, O+) . (3)

Using the formula for partial-wave expansion of the plane
wave e and

I (a+n )I (P) X"
r(a)r(p+n) n!

a X' a(a+ 1) X +
)33 1! P(P+1) 2!

(7)

e '"'= g (
—i)'(Pl +1)j&(Fr)P&(cos8),

1=0

and the continuum wave function of the form [16]

(4)

Then we have

4k
—2m/k

1/2
1

1/2
S2

2
s =1 k

Ck I Ckl p'8, p fi, p(
( (+) (2l+1)'

X dr r e " ' 'jl Fr &F&
—ik '+l+1;2I+2; —2ikr (9)

2i+1 '"
C = —iC'" (2k)'F '[( —1)'Z —Z*]klP k (2i + 1)( 1 1

C(I) (2l + 1)' 2(+)
(21+ 1)!

Im(Z&) for even l
X i Re(Z() for odd l, (10)

where

Z
—(1+2)

Z2

n=0

(l +n)!(I —n +1) iz2

n! 2F

n

It should be noted that we have chosen to change repre-
sentation from momentum space to coordinate space in
order to facilitate the evaluation of the integral in Eq. (9).
The coordinate-space bound state wave function includes
the factor e "~", which assures rapid convergence [17] of
integration. Several steps of calculation with the aid of
the integral table [18] yield the following expression for
CRIO:

~F, (a,p;y;X)=1 if one of a and p is zero, (12)

2F, (a,p;y;X)=zF((p, a;y;X),

2F, (a,p;p;X)=(1 —X), X&1,

(13)

(14)

2F) (a,P;y;0) = 1, (15)

[2p—y+(a —p)X] F, (a,p; ; y)X

with z2=1+i(k F) and 2F, (a,P—;y;X) being the ordi-
nary hypergeometric function.

The expression (10) is sufficient to perform numerical
evaluations of photoelectron spectra using a commercial
mathematical package such as MATHEMATICA, but it
would be preferable to express it in terms of elementary
functions rather than the summation over hyper-
geometric functions. In order to do this, we can use the
following properties of hypergeometric functions includ-
ing a recursion relation and differential equation [19],
which relate hypergeometric functions of different argu-
ments:

X2F)(ik+1+ l, l n+2;2l—+2;2ikz2 ' ), +(y i3),F, (a,P 1;y;X)— —

+p(x —1),F,(,P+ 1' y'x) =0 (16)
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(y —a)„(y—p)„
(1 y—) +~ )' "~F,(a,p;y+n;y),

n

a=ik '+l+1 and y=2ikz2 ', which can be derived
from Eqs. (17) and (18) as

~F, (ik '+l+1, 1;21+2;2ikz~ ')

&F)(a, I;2;g) =(a —1) g '[(1—g) —1],
where

1 if n=0
(C) ='

C(C+1) . (C+n —1) otherwise .

(17)

(18)

(19)
X

1 —ik
Z1

Z2 m=0

(ik ' —l )~
m!

(p(+)) (2l + I )! 2(+1
Z2

II (I+s k )
s=0

Z2

(20)
Here Eq. (18) is derived from Eq. (16) by setting p= 1 and

y =2 with help of Eqs. (12) and (14). In our present case,
we need an expression for zF)(a, I;2l+2;g) with

I

where z, =1—i(k+F). In this case the recursion rela-
tion of Eq. (16) becomes

~F, (ik '+ l+ l, l n+2;2—1+2;2ikz~ ' )= — ~F, (ik '+i+ I, l n+ I;21+—2;2ikz~ '
)

(l +n +1)zz+ ~F)(ik '+1+ l, l n;2l—+2;2ikzz '
) .

(l n+—1)z,
(21)

Z 1

Z2

~1 ~2 /k —i 1n(rl 2 /k
9 (22)

Now we can express the finite sum of Eq. (11) over the
running variable n in terms of two hypergeometric func-
tions having values of the second argument p equal to 0
and 1, whose explicit expressions are known from Eqs.
(12) and (20). Although it is not necessary in obtaining a
final form of the expression, one can easily show that the
quantities relevant to the final result are the first term in
the curly bracket of Eq. (20) and its overall coefficient to
be obtained after the reduction mentioned above. The
reason for this is that the terms other than those, upon
reduction, become pure real (imaginary), while we need
only the imaginary (real) part of Z( for obtaining C)do [see
the second expression for C),(0 in Eq. (10)]. This fact can
save much computational time, especially in symbolic
calculation using MACSYMA or MATHEMATICA.

Finally, using the polar form for the variables zi and
zz, z. = r exp( —i 9 ), we can convert the factor
(z, /zz) ' in Eq. (20), which appears to be multivalued,
into the following form:

' —i/k

1 )[I/2] ~ (
klO

4k
e

—2n/k

1 2
—(8 —0 )/k

1/2

F'+'r, r~ + (1+s k )
s=0

(20) we need to select a single value since a hyper-
geometric function permits only one functional value for
given arguments and variables. Furthermore, one can
easily show that this branch is correct by using formula
(14) or (18) with the definition of a hypergeometric func-
tion as an infinite series. Then the whole procedure can
be programmed in a high-level code like FORTRAN, PAS-

CAL, C, . . . , etc., using elementary functions for numeri-
cal calculations as well as in a batch file for a commercial
mathematical package for symbolic computations. We
obtain the closed expression for the transition amplitude
to continuum states with quantum numbers k, l, and
m =0 as follows:

where

r =[1+(k+F)&]i~& r = [1+(k —F)~]i~~ (23)
X [S((k,F ) ]' sin[a((k, F)+P(k, F )], (25)

and

8, =tan '(k +F), Her =tan '(F —k)

7T 7T
with 01 0219 2— (24)

The reason for choosing the principal branch for the an-
gles 8) and Oz is that in using formulas (14), (17), (18), and

where 01, 02, r „and r2 are defined in Eq.
(24), p(k, F)=k 'ln(ri/rz), a((k, F)=tan '[X&(k,F)I
D((k, F)], and X&, D&, and S& are polynomials of finite or-
der in k and F which depend on l. In the Appendix, we
show some of them obtained from symbolic computation
using MACSYMA. From those expressions, one can easily
deduce the analytic behavior of Ck&o in limiting cases
such as k «F and k ))F, for given For k.
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III. DOUBLY DIFFERENTIAL CROSS SECTION

We now turn our attention to the angular distribution
of photoelectrons and briefly review the derivation of the
differential cross section (DCS) for photoionization. The
result gives the correct angular distribution for a system
whose wave function is known (either by direct numerical
integration of the TDSE or by some other means) im-
mediately after a finite width pulse. Assuming that the
pulse terminates at time 0, denote it by
4+(r) =%(r, t =0+ ).

The relevant experimental apparatus is assumed to
consist of a detector subtending the solid angle d0 locat-
ed at radius r from the interaction region, which will be
taken to approach infinity. The distribution of photoelec-
trons is then obtained by considering the total probability
that photoelectrons cross the detector after the passage of
the pulse. This is given by [20]

(32)

These results were derived long ago by Mott and Massey
[23] using a different argument.

For a linearly polarized field, the expansion coefficient
Cklm has the form

klm lk0 mO & (33)

where 5 o is a Kronecker delta. Since
I'Io=[(21+1)l(4m)]' P~(cos8) and e ' ~ =( —i )~, we
have in this case

The DDCS, defined to be the probability that the atom is
photoionized with the photoelectron's momentum value
lying in the range k to k+dk and its direction lying in
the solid angle dQ about (8,$), is the integrand of Eq.
(29):

do = lim f dt j(r, t) dA= .lim f dt r j„d(r, t)dQ,
r~oo 0 r~ oo 0+

(26)

fk(8 0)—=fk(8)
' 1/2

= g( —i)
2l +1

Ck, e P, (cos8) .EcI

4~
(34)

where j„d(r, t ) is the radial component of the probability
current evaluated at position r and time t. It can be ex-
pressed in terms of the wave function as

5kl 5k +5k (35)

The explicit expression for the Coulomb phase shift can
be decomposed as

j„d( r, t ) = —.4,*(r, t ) 4, ( r, t )—c.c.1
(27) with 5~&

' independent of l since [24]

with %,(r, t) taken to be only the continuum portion of
the whole wave function %(r, t ), which can be expanded
in terms of a complete basis of Coulomb wave functions
as

argl ((+ I ik —')=argl (1 ik ')—
l —1+g tan

n=1 nk
(36)

%(r, t)= g C„, e "4„, (r)
n, l, m

+ y f dk Ckl~e "&kJ~(r) .
l, m

(28)

Here one needs to pay attention to the fact that the con-
tinuum basis functions are regular solutions of the
Schrodinger equation, which are standing waves rather
than outgoing waves. However, it can be shown [21] that
one can use the same coefficients Ck& in Eq. (28) in ex-
panding %,(r, t ) in terms of outgoing waves rather than
standing waves, even though the outgoing waves are ir-
regular at the origin. Now, by expressing the basis func-
tions in spherical polar coordinates in their asymptotic
form [22] as r a ~ and performing the t integral, one of
the k integrals, and one of the summations over l and m,
the following expression is obtained for the DCS:

where
a —1e„„=tan '

nk

iBkXP, (cos8) + e
n=1

(37)

(38)

IV. RESULTS AND DISCUSSION

In actual evaluations of fk, we always need to truncate
the summation in Eq. (34) at a finite value of l. Denoting
this maximum value of l by l,„, we obtain the final ex-
pression for fk as

1/2
~(0) max

max (8) k y ( 1)l
l =0 4~

with

fk(8 4')= y Ckl &I
l, m

where Ski is the Coulomb phase given by

5k& =argI (l+ I ik ') . —

(29)

(30)

(31)

In a previous paper [12], we presented photoelectron
spectra for field strengths F=0.5, 1.0, and 2.0 a.u. in-
cluding partial-wave contributions up to 1=4 (g wave).
Using the method developed in Sec. II, it is possible to
evaluate the transition amplitudes to partial waves of
large l rapidly, which enables us now to include partial-
wave contributions of angular momentum quantum num-
bers up to l,„as shown in Table I to obtain the angular
distributions of Fig. 1. We choose field strengths ranging
from 0.05 to 5.0 a.u. , and use the formula given in Eq.
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(37) with the procedure in Sec. II. We can estimate the
relative error involved in each curve of Fig. 1 looking at
Table I. One might be misled by Table I to conclude that
the perturbative regime extends to field strengths approx-
imately around 1.0 a.u. since it shows the dominant con-
tribution for photoionization to be the p-wave up to that
field strength. That is not correct: for example, for
F=0.05 a.u. , the s- and d-wave contributions are about
10 times less than the p-wave contribution in absolute
value of transition amplitude, and those of higher-/ waves
fall very rapidly as l increases. On the other hand, for
F=0.5 a.u. , the other partial-wave contributions become
quite comparable to that of the p wave for various ranges
of the photoelectron's momenta —those of the s and d
waves for k +0.3 a.u. are, respectively, about —,

' and —', of
that of the p-wave, that of the d wave for 0.4+ k ~ 1.5
a.u. is about —,

' of that of the p wave, that of the f wave
for 0.5 ~ k ~ 1.0 a.u. is about —,

' to that of the p wave, and
so on. This indicates that the perturbation calculation,

especially the lowest-order one, cannot be applied at this
value of field strength. See also Table II.

The inapplicability of perturbation theory at high-field
strengths is qualitatively evident in the polar plots of Fig.
1. The angular distribution for F=0.05 displays a rela-
tively high degree of symmetry about 0=90, suggesting
the dominance of the p-wave contribution, as would be
expected from the lowest-order perturbation theory. For
the higher values of field strength, however, the distribu-
tion of photoelectrons is localized in the direction anti-
parallel to the applied field, a result which is easily under-
stood on classical grounds.

Note that the DDCS predicts, for a given polar angle,
a continuous range of photoelectron momenta. Further-
more, the most probable momentum measured will, in
general, also vary as the angle changes. This
phenomenon, which is most evident in the polar piot for
F=1.0, is due to the pure atomic response and is not an
effect of ponderomotive scattering of the photoelectrons

TABLE I. Maximum angular quantum numbers l,„and absolute value of transition amplitudes
I Ck I

to be used to obtain Fig.
max

1 using Eqs. (25) and (37). Also shown is the maximum transition amplitude ICI,&
+

I
for each value of field strength F and momentum

k, where l* is the angular quantum number to give the maximum value of
I Ck& I

for given F and k. The number in the square brack-
ets indicates the exponent of basis 10.

0.05

0.01
0.05
0.1

0.3
0.4
0.5
0.7
1.0
2.0

I c„,.I

0.006 246 566
0.013 906 714
0.019400 951
0.029 219 018
0.030 079 851
0.029 278 098
0.02493 1 825
0.017010 391
0.003 951 453

~max

1.27[ —7]
3.08[ —7]
4.35[ —7]
1.206[ —6]
1.580[ —6]
1.863[—6]
1.948[ —6]
1.344[ —6]
1.76[ —7]

0.5

0.01
0.05
0.1

0.3
0.5
0.7
1.0
1.5
2.0

I c„,.I

0.056 817 831
0.126 674 607
0.177 502 408
0.278 728 974
0.296 669 593
0.266 381 708
0.189 582 762
0.090 104 564
0.043 026 235

Imax

7
7
7
8

10
11
11
11
10

3.07[ —7]
7.54[ —7]
1.664[ —6]
3.076[ —6]
1.056[ —6]
8.36[ —7]
8.51[—7]
3.07[ —7]
2.51[—7]

1.0

3.0

0.01
0.05
0.1

0.3
0.5
0.7
1.0
1.5
2.0
2.5
3.0

0.5
1.0
1.5
2.0
2.5
3.0
3 ' 5
4.0
4.5
5.0
6.0

0.068 853 320
0.153 891 646
0.217 323 717
0.369 621 357
0.453 599 126
0.483 515 065
0.431 729 556
0.238 378 334
0.110924 828
0.054 028 595
0.028 726 969

0.074 696 576
0, 112699 409
0.159 575 90
0.256 844 45
0.356 360 1

0.373 325 7
0.229 167 61
0.111799 46
0.055 363 842
0.029 544 016
0.011 312 806

7

8
9

11
13
15
16
15
14
13

8

12
14
18
24
29
31
30
26
24
20

1.086[ —6]
2.821[—6]
1.036[—6]
3.259[ —6]
2.298[ —6]
6.041[—6]
4.471[ —6]
5.463 [ —6]
2.581[—6]
6.13[

—7]
1.68[ —7]

5.29[ —7]
2.588[ —6]
1.807[ —5]
7.257[ —5]
4.484[ —4]
3.890[—4]
8.490[ —5]
1.628[ —5]
5.963 [ —6]
1.039[—6]
2.46[ —7]

2.0

5.0

0.1

0.5
1.0
1.3
1.5
1.7
2.0
2.3
2.5
3.0
4.0

1.0
2.0
3.0
4.0
4.5
5.0
5.5
6.0
7.0
8.0

10.0

0.083 781 897
0.188 549 989
0.324 968 10
0.410 125 22
0.449 241 8

0.459 1113
0.411 811 2
0.315481 3
0.242 361 92
0.112274 910
0.030 402 802

0.021 125 392
0.036 013 825
0.068 234 59
0.171 353 8
0.267 259 8
0.301 875 8

0.199285 5
0.100 874 6
0.028 320 809
0.010936 445
0.002 864 101

7
10
13
17
18
20
22
23
24
23
19

8
12
18
26
35
45
41
38
33
28
19

4.35[—7)
1.164[—6]
2.268[ —5]
4.901[—5]
1.353[—4]
1.491 [ —4]
1.851[—4]
1.036[—4]
3.959[—5]
8.044[ —6]
4.96[ —7]

4.50[ —7]
4.343[—6]
4.458[ —5]
4.110[—4]
6.252[ —4]
7.028 [ —4]
6.953[—4]
1.322[ —4]
3.400[ —6]
5.15[—7]
1.50[ —7]
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inasmuch as the latter is a result l f hon y o t e spatial inten-
si y gradients of temporally finite laser 1

i realistic, finite-width pulsesu ses one expects more
complicated behavior such as the a earan

rm y space peaks in the photoelectron spectra, the
well-known ATI structure but thu even t en our calculation
presented here (viz. , the behavior of the h

yp a with respect to varying intensit ) ca b f
y g the situation. For example hp e, we ave carried

tu
out calculations of the magnitud fu e o transition am li-
udes to partial-wave states with a wid

electron m
i a wi e range of photo-

ec ron momenta for field strengths u to 10
can predict possible channels of significant

tribution to hotoioniz
signi cant con-

p o oionization for given laser parameters.
Specifically, for the case F=k=5 a.u. t
transition

a.u. , t e magnitudes of
i ion amplitudes are of the order of 10 ' 10

0&1&
range o angular quantum numbers

15, 16&I &29, and 30&i &43 respectively,
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FICi. 1. Angular distribu
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tions of photoelectrons for various field stren,.1..;.;.d;....d .....h.......d 1 h, an a sos own inside each ra har
. , an . a.u. The momentum

and error involved in drawin hng eac curve.
g p are the polar plots. Refer to Table I tar . e o see numerical convergence
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whereas for k =4 a.u. , these magnitudes correspond to
0, ~1~6, 7~1~ 15, and 16~ l ~24, respectively. There-
fore, one can deduce that at this Geld strength the num-
ber of accessible channels for a given order of probability
approximately doubles as the photoelectron momentum
increases from 4 to 5 a.u. , which is true as long as the di-

pole approximation is valid.
In summary, the method presented herein enables one

to reduce an expression involving hypergeometric func-
tions, which may obscure the physical behavior and in-
duce large computational times, to a closed form in terms
of elementary functions. This technique, which is quite

TABLE II. Differential cross section integrated over some range of polar angles.
value for each Fand ko as is given in Table I.

The same l,„ is used to obtain the numerical

ko

Polar-angle rangle for integration

0 -180" 0 -90' 150 -180" 170 -180' F ko

Polar-angle rangle for integration

0 -180" 0'-90 150'-180" 170'- 180

0.01
0.04
0.08
0.16
0.32

0.05 0.64
1.28
2.56

0.000039
0.000 156
0.000 306
0.000 571
0.000 877
0.000 703
0.000127
0.000 004

49.9
49.7
49.4
48.8
47.8
46.6
46.4
47.5

17.5
17.6
17.8
18.2
18.8
19.7
19.9
19.2

2.24
2.26
2.29
2.34
2.43
2.56
2.58
2.48

0.01
0.1
0.2
0.3
0.4

0.5 0.5
0.6
0.8
1.1
1.4
2.0

0.003 988
0.039 047
0.073 204
0.098 471
0.112536
0.115238
0.108 446
0.079 282
0.036 495
0.014 345
0.002 231

49.4
44. 1

38.5
33.5
29.3
25.9
23.3
20.2
18.7
19.4
22.8

13.2
15.9
19.4
23.3
27.2
31.1
34.6
40.2
44.3
44.7
41.2

1.65
2.03
2.55
3.13
3.77
4.42
5.05
6.09
6.87
6.91
6.18

0.7

1.5

0.01
0.05
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
1.0
1.3
1.6
1.9
2.5

0.1

0.2
04
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.8
3.2
3.6

0.006 441
0.032 115
0.063 667
0.122 821
0.172 954
0.209 879
0.230 478
0.233 660
0.221 007
0.196 540
0.133 243
0.057 475
0.021 814
0.008 274
0.001 419

0.037 107
0.075 572
0.161 862
0.267 990
0.396021
0.528 717
0.617 874
0.604 122
0.480 582
0.315 169
0.179264
0.094 138
0.048 064
0.012 972
0.003 959
0.001 778

49.3
46.5
43.0
36.4
30.5
25.5
21.4
18.3
15.9
14.2
12.3
11.8
12.7
14.4
18.4

43.1

36.5
24.7
15.7
9.60
5.85
3.74
2.64
2.14
2.00
2.10
2.39
2.82
4.06
5.64
6.97

11.4
12.6
14.2
18.0
22.3
27.1

32.0
36.8
41.3
45.3
51.1
55.0
54.9
52.9
47.4

10.4
13.2
20.6
30.5
42.3
54.7
65.7
74.1

79.6
82.5
83.6
83.5
82.4
78.7
74.0
70.3

1.40
1.56
1.79
2.34
3.00
3.78
4.63
5.55
6.45
7.29
8.62
9.49
9.35
8.77
7.45

1.25
1.63
2.71
4.39
6.84

10.1
14.1
18.0
21.1
22.8
23.2
22.5
21.3
18.4
15.7
14.1

0.05
0.2
0.4
0.6
0.7
0.8
0.9

1.0 1.0
1.1
1.3
1.5
1.7
2.1

2.5
3.1

0.1

0.2
0.4
0.6
0.8
1.0
1.2
1.4

2.0 1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.2
3.6
4.0

0.036 082
0.143 721
0.280 027
0.385 993
0.415 640
0.423 762
0.408 911
0.373 537
0.323 678
0.211438
0.120297
0.063 401
0.016788
0.004 827
0.000 949

0.012 847
0.026 222
0.056 833
0.097 123
0.154 119
0.236 761
0.353 234
0.500 920
0.646 902
0.719245
0.655 693
0.483 566
0.298 188
0.163 461
0.084 665
0.022 499
0.006 640
0.002 247

46.3
35.5
23.5
15.2
12.3
10.1
8.53
7.41
6.65
5.90
5.85
6.26
7.89

10.1
13.8

44 0
38.2
27.5
18.7
12.0
7.41
4.45
2.68
1.68
1 ~ 14
0.89
0.81
0.84
0.96
1.17
1.82
2.75
3.91

10.8
15.9
25.0
36.2
42.0
47.5
52.6
57.1

60.8
65.8
68.2
68.6
66.1

61.8
55.1

9.37
11.6
17.3
24.9
34.5
45.7
57.6
68.7
77.9
84.4
88.5
90.7
91.6
91.5
91.0
88.4
84.7
80.3

1.31
1.52
3.44
5.48
6.71
8.01
9.33

10.6
11.7
13.3
14.0
13.9
12.8
11.2
9.29

1.11
1.39
2.19
3.38
5.14
7.67

11.1
15.6
20.9
26.2
30.5
33.0
33.6
32.7
30.9
26.4
22.3
19.1

'Actual value.
Percentage of the value in the first column.
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general, allows the evaluation of accurate, highly con-
verged values of transition amplitudes and angular distri-
butions for photoelectrons generated by a 5-function
pulse, a calculation which would have been prohibitively
lengthy via numerical computations using hyper-
geometric functions directly.

ACKNOWLEDGMENT

It is our pleasure to express thanks to Sun Microsys-
tems, Inc. , for the gift of a SPARCstation 1+, under
their Academic Grants Program, which has been used for
the present computations.

APPENDIX: POLYNOMIALS NI, DI, S( FOR I =0, 1,2, 3

Do(k, F)= 2(k—2 F+—1),
No(k, F)=4F,
So(k, F)=4(k 2kF—+F +1)(k +2kF+F +1),
Di(k, F)=2V3(k +1)(k F+—1),
N, (k,F)= 4V'3F—(k +1),
S, (k, F)=12(k +1) (k 2kF+F —+1)(k +2kF+F +1),

D ( k F) (9k 6 7k 4F2+ 27k 4 5k 2F4 2k 2F2+ 27k 2+ 3F6+7F4+ 5F2+ 9 )

N2(k, F)= —+5F(9k 4k F +1—8k +3F +8F +9),
S2(k, F)= 4(k 2kF+F +—1)(k +2kF+F +1)

X(81k +36k F +324k 50k F"+—324k F +486k 12k F —52k F +—540k F
+324k +9F +60F +142F +252F +81),

Dq(k, F)= — (30k —21k F +120k —9k F"+9k F +180k —1 k F +50k F

+81k F +120k +15F +45F +59F +51F +30),
Ns(k, F)=+7F(30k —1 lk F +90k —10k F +50k F +90k + 15F +50F +61F +30),

Ss(k, F)= ,'(k 2kF+F—+1—)(k +2kF+F2+1)

X(900k' +540k' F +5400k' +81k F +7020k F +13 500k —900k F +5220k F
+22680k F +18000k —270k F —20k F +20358k F +31 320k F +13500k

+2100k F +11300k F +25 380k F +19980k F +5400k +225F' +1800F"

+5970F +10420F +10 161F +4860F +900) .
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