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We present accurate optimized-potential-model (OPM) results for spherical spin-polarized atoms
emphasizing the precise construction of the OPM exchange potential from the numerical solution
of the OPM integral equation, especially for large r. The results are used to discuss the quality of
the local spin-density approximation (LSDA) and a generalized-gradient expansion (GGA) [A. D.
Becke, Phys. Rev. A 88, 3098 (1988)] for describing these atoms. It is shown that the LSDA can
produce substantial errors (beyond what is known from unpolarized atoms) for quantities which are
directly related to the spin polarization of these systems. In particular, the LSDA overestimates
the magnetization density in the interior of Cu by a factor of 2. While the GGA improves integral
quantities like total ground-state and exchange energies, remarkably it is less successful for energy
difFerences like E y

—E~g. Most important, however, it is not able to reduce the LSDA s errors for
local quantities like the difFerence between spin-up and spin-down exchange potentials and magne-
tization densities significantly nor does it reverse the LSDA's incorrect ordering of the two highest
occupied majority-spin eigenvalues of Cr and Cu.

PACS number(s): 31.10+z, 71.10+x, 75.10—b

I. INTRODUCTION

Recently it has become clear that the so-called opti-
mized potential model (OPM) [1,2] represents the most
advantageous approach to define the exchange part E~ [n]
(often referred to as exchange-only) of the exchange-
correlation functional E,[n] of density-functional the-
ory (DFT) (see, e.g. , [3, 4]). Although not always uti-
lized, a substantial amount of recent work concerned with
the properties of E~[n] [5—12] is based on this definition.
It has, for example, the advantage that its gradient ex-
pansion exists [13] in contrast to that of EDF+ HF[n] =
EPoi [n] —&, [&]—E«t [n] —E~ [n] (where EtHF~ [n] represents
the total Hartree Fock (HF) energy, T, [n] is the kinetic
energy obtained by insertion of the HF density into the
noninteracting kinetic-energy functional, and E,„t[n] and
EH [n] are the external and Hartree energy, respectively)
[14]. Furthermore, the exchange potential corresponding
to EDFT HF

[n] is only known for a few atoms [15,16] due
to the complicated scheme required for its construction.
In contrast to this older approach the E~[n] based on
the OPM provides direct information about both total
exchange energies and the corresponding local exchange
potential v~(r). In addition, this E~[n] has a simple scal-
ing behavior [17, 18] which leads to a useful and easily
interpretable relation between v~(r) and E~[n]..

The explicit numerical application of the OPM ap-
proach to physical systems, however, is rather involved
due to the fact that it requires the simultaneous self-

consistent solution of both a Kohn-Sham-like equation
for the single-particle orbitals and an integral equation
defining v~(r). Consequently, at present only a limited
number of results for atoms has been presented [19,20,
6, 9, ll, 12]. To obtain a rough estimate of their accuracy
it is instructive to analyze the data for sodium given by
Talman [20]. Comparing the kinetic energy of 161.799
hartree with the total ground state energy of 161.857
hartree one observes an error in the standard virial rela-
tion 2T = —V of 58 mhartree. The corresponding HF so-
lution [21], on the other hand, shows an error of less than
10 2 mhartree. Two more refine criteriatoestimatethe
accuracy of OPM solutions have been used: Wang ek al.
[6] applied the virial relation introduced by Ghosh and
Parr [17] and Levy and Perdew [18] (which will be re-
ferred to as the exchange virial relation here). For the
atoms considered they found the error given by the ex-
change virial relation to be of the order of 1—100 mhartree
depending on the size of the atoms. Li et aL [9] analyzed
a relation [7] for the eigenvalue of the highest occupied
orbital finding errors of the order of 2 mhartree. Krieger,
Li, and Iafrate [ll] were able to improve their OPM re-
sults with respect to this relation. Their highest occupied
eigenvalues satisfy this criterion with an accuracy of bet-
ter than 0.8 mhartree with the noble gases and the alkali
metals being the worst cases. As for the exchange virial
relation, some room for improvements seems to be left for
the highest occupied eigenvalues. Also, for technical rea-
sons (see Appendix) these two criteria are to some extent
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competing with each other, i.e. , improving one of them
reduces the quality of the other one. As the OPM is go-
ing to serve as a new standard for the properties of E [n]
it is desirable to have highly accurate solutions available.
One purpose of this paper is to provide such a standard
for spherical atoms. Our solutions reduce the error in the
exchange virial relation by more than two orders of mag-
nitude and that in the relation for the highest occupied
eigenvalue by one order of magnitude. In particular, by
expanding and utilizing Talman and Shadwick s discus-
sion [2] of the asymptotic behavior of v~(r) beyond the
leading 1/r t—erm more precise values for the highest oc-
cupied eigenvalues are obtained (details are given in the
Appendix) .

While for unpolarized atoms the OPM exchange po-
tential has been used to some extent [6, ll, 12] there
has been less attention to spin-polarized systems [22].
The analysis of such systems has the potential to give
some insight into the source of the failure of the local
spin-density approximation (LSDA) and gradient based
corrections to the LSDA [23—28] [often called generalized
gradient approximations (GGA's)] for the magnetic prop-
erties of solids (see, e.g. , [29—33]). GGA's have shown
some promising features both for atoms and molecules
[34—39] as well as for condensed-matter systems [39—44].
These studies, however, always combined the exchange
and the correlation part of the total E,[n] and used ex-
perimental data as the standard. The OPM, on the other
hand, sets an unambigous standard for exchange-only al-
lowing for much more detailed and definitive analysis of
E [n] for "model systems" such as spherical atoms than
experimental data of much more complex real systems.
Moreover, these studies have focused on quantities like
E~'s, but did not examine the local v~(r) produced by
the approximate E~ [n].

By examining Cu, Cr, Mn, As, and Eu in some detail
we show that while the quality of the LSDA and Becke's
GGA [27] (which is representative for most of the widely
used GGA's for E [n]) for global quantities such as to-
tal ground-state and exchange energies of polarized sys-
tems is similar to that for unpolarized atoms, quantities
related to spin polarization turn out to be much more
sensitive. The error in the spin splitting of the exchange
energy E~~ —E~~ is considerably larger than that for to-
tal E~'s. Also, we find that the eigenvalues of the high-
est occupied orbitals can be significantly more in error
when spin polarization is present and eigenvalues may
even be incorrectly ordered. Most important, the split-
ting in the OPM exchange potential v~y(r) v~~ (r) is not-
reproduced by either the LSDA or the GGA. This is cor-
roborated by an analysis of the magnetization densities of
these atoms. While for Cr, Mn, and As the LSDA and the
GGA reproduce the exact magnetization density rather
well, they have some difficulties with Eu. The magneti-
zation density in the interior of Cu, on the other hand, is
overestimated almost by a factor of 2. Again the GGA
is not able to improve on the LSDA. Quite generally the
GGA's improvement on the LSDA for integral quantities
is not transferred to local quantities which are sensitive
to the difFerences between spin-up and spin-down poten-
tials.

The paper is organized as follows. Section II discusses
the accuracy of our OPM results on the basis of the ex-
change and the conventional virial relation as well as the
relation of Krieger, Li, and Iafrate [7]. In section III our
OPM results for spherical spin-polarized atoms are com-
pared with those of spin-unrestricted HF (SUHF), LSDA,
and GGA calculations. In Sec. IV we analyze Cu, Cr,
Mn, As, and Eu in more detail. Finally, in the Appendix
we give an outline of the OPM equations (for spherical
systems) emphasizing the accurate construction of v~(r)
from the numerical solution of the OPM integral equation
which is relevant for obtaining improved eigenvalues.

We use atomic units throughout this paper,

II. ACCURACY OF RESULTS

E [A n (Ar)] = AE [n (r)].

holds for either spin. DifFerentiation with respect to A

then directly leads to

E [n(r)] = d r v (r)[3n (r) + r Vn (r)]. (5)

Thus the factor [3n (r) + r V'n (r)] provides a natural
connection between v (r) and the total exchange energy.

Equation (5) is a very useful tool for checking the ac-
curacy of any calculation even for systems where the con-
ventional virial theorem 2T = —U does not hold. This is
of particular interest for OPM calculations as here v (r)
results from a rather involved procedure (details are given
in the Appendix). Wang et al [6] used thi. s criterion
and found their OPM calculations satisfy Eq. (5) within
1—100 mhartree increasing monotonically with the size
of the system. The difFerences between total exchange
energies as evaluated by Eq.(1) and the right-hand side
of (5) of our results are given in Tables I and II [for
completeness we also list the total ground-state energies
Et q, E 's, and eigenvalues of the highest occupied or-
bitals (e~l, ) of spherical unpolarized atoms in Table I
extending the results of Ref. [11] to Pd, Ba, Yb, Pt, and
Rn]. As is obvious from Table I our errors are more than
two orders of magnitude smaller than those of Wang et
al. [6]. Although these errors are still about one order of
magnitude larger than those of HF results [21] they lead

As has been shown by Ghosh and Parr [17] and Levy
and Perdew [18] the E [n] based on the OPM satisfies a
simple virial relation. First of all, from the definition of
E[n],

1 „„,p (r, r')p (r', r)
[r —r]

p (r r ) = ) .e(e e ) 4', (r ) ~, (r) (2)

n (r) = p (r, r), (3)
where the P; (r) and e, are the OPM single-particle
orbitals and eigenvalues for given spin o', it is clear that
the basic scaling relation
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TABLE I. Total ground-state energies Etot, total ex-
change energies E, eigenvalues of highest occupied or-
bitals e g (in hartrees), and difFerences between E 's as ob-
tained from Eq. (1) and the right-hand side of the exchange
virial relation, Eq. (5), for spherical unpolarized atoms (in
mhartrees) .

Atom

He
Be
Ne
Mg
Ar
Ca
Zn
Kr
Sr
Pd
Cd
Xe
Ba
Yb
pt
Hg
Rn

Etot
(hartrees)

2.8617
14.5724

128.5455
199.6116
526.8123
676.7520

1 777.8345
2 752.0431
3 131.5336
4 937.9062
5 465.1146
7 232.1213
7 883.5268

13391.4166
17331.0935
18408.9609
21 866.7461

(hartrees)

1.0258
2.6658

12.1050
15.9884
30.1748
35.1991
69.6189
93.8331

101.9264
139.1136
148.8798
179.0638
189.0666
276.1469
331.3390
345.2455
387.4527

(hartrees)

0.9180
0.3092
0.8507
0.2530
0.5908
0.1956
0.2928
0.5234
0.1786
0.3350
0.2655
0.4564
0.1577
0.1822
0.3416
0.2620
0.4271

Error
(mhartrees)

0.005
0.010
0.024
0.023
0.006

—0.021
0.016
0.039
0.008
0.038
0.010

—0.091
—0.182

0.399
0.828
0.899
0.949

g —cr,HF
~mA: —~mA: (6)

TABLE II. Difference be tween. E as obtained from
Eq. (1) and the right-hand side of the exchange virial relation,
Eq. (5), for the individual spins of spherical spin-polarized
atoms and errors in the conventional virial relation T = —Et t
(all energies in mhartrees).

Atom

Li
N

Na
P
K
Cr
Mn
Cu
As
Rb
Mo
Tc
Ag
Sb
Cs
Eu
Re
Au
Bi

Spin-up

—0.014
0.009
0.008
0.007

—0.014
—0.001

0.005
—0.002

0.016
—0.023

0.006
0.010
0.005

—0.027
—0.100

0.142
0.342
0.438
0.478

Spin-down

0.004
0.009
0.013
0.010

—0.003
—0.016
—0.022

0.008
0.037
0.015

—0.008
—0.015

0.013
—0.010
—0.065
—0.098

0.333
0.449
0.488

Etot

0.006
0.017
0.024
0.018

—0.008
—0.016
—0.013

0.007
0.055
0.025
0.001

—0.002
0.021

—0.034
—0.136

0.052
0.682
0.894
0.975

to an accuracy of better than 1 mhartree for all compo-
nents of the energy even for very large atoms like Rn.

As a further check on the accuracy of OPM results Li
et aL [9] introduced the relation [7]

where e I, and e '& are the exact highest occupied OPM
eigenvalue of spin o and the HF single-particle expec-
tation value for the corresponding exact OPM orbital,
respectively. For any numerical OPM solution Eq. (6)
will not be satisfied exactly. Thus it can be used as a
criterion for the quality of the solutions obtained. Note
that due to the variational character of the OPM equa-
tions e '& is much more stable against numerical errors
than e & as already discussed by Krieger, Li, and Iafrate
[ll]. Consequently, e '& gives a much better approxi-
mation to the exact highest occupied eigenvalue than the
direct eigenvalue obtained from the OPM solution. In
fact, variation of the point where the constant in the nu-
merically obtained solution of the OPM integral equation
is determined (for details see Appendix) did not change
Z '& on the 0.01-mhartree level. The maximum differ-
ence between the left- and right-hand sides in Eq. (6) of
our results for unpolarized atoms, on the other hand, is
smaller than 0.05 mhartree (compared to 0.8 mhartree
for the results of Ref. [11]) so that we do not list Z '&

separately.
Table II gives the corresponding errors for spin-

polarized atoms separated into their spin components
(spin-up has always been chosen as majority-spin com-
ponent). On average the errors for both spins are about
the same. The sum of spin-up and spin-down errors for
a given atom is comparable to the error for an unpo-
larized atom of similar size. It is obvious from Tables I
and II that while these errors are somewhat random for
smaller atoms and can have different signs for the indi-
vidual spins in a polarized atom they start to show a
systematic dependence on the step size of the grid for
larger systems. Furthermore, in Table II we also list the
corresponding errors in the conventional virial relation
Eq~q + T = 0. In particular for large atoms these er-
rors turn out to be more or less identical to the sum of
spin-up and spin-down errors from Eq. (5). This leads
to the conclusion that, while the Kohn-Sham-like radial
equations for given v~(r) are solved as accurately as in
any LSDA or HF calculation, the source of the remain-
ing errors for these large systems is in the construction
of v (r) from the QPM integral equation.

For almost all the spin-polarized atoms Eq. (6) is
satisfied to better than 0.07 mhartree, the only excep-
tions being the spin-up components of Cu (the correct
eigenvalues are less attractive by about 0.2 mhartree),
Cr (the correct eigenvalues are more attractive by about
1 mhartree), and Mo (the correct eigenvalues are more
attractive by about 1.2 mhartree). Clearly, the construc-
tion of v~~ (r) from the solution of the OPM integral equa-
tion is particularly complicated for these atoms where the
two outermost eigenvalues differ by only 0.064 mhartree
(Cu), 0.019 mhartree (Cr), and 0.038 mhartree (Mo) (see
discussion in Appendix).

This accuracy has been achieved by a careful numerical
preparation of the kernel and the inhomogeneity of the
OPM integral equation in combination with utilizing the
analytic form of the asymptotic v~ (r) beyond the lead-
ing 1/r term (—as discussed in the Appendix) as well as
increasing the grid to 800 points.
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TABLE III. Total ground-state energies (—Eq,q) of spher-
ical spin-polarized atoms for spin-unrestricted HF (SUHF),
OPM, exchange-only LSDA, and the GGA of Ref. [27] (in
hartrees).

Atom

Li
N

Na
p
K
Cr
Mn
CU
As
Rb
Mo
Tc
Ag
Sb
Cs
Eu
Re
Au
Bi

SUHF

7.4328
54.4045

161.8590
340.7193
599.1649

1043.3568
1149.8698
1638.9642
2234, 2399
2938.3576
3975.5530
4204.7949
5197.6989
6313.4870
7553.9338

10423.5506
15784.5441
17865.4006
20095.5886

OPM

7.4325
54.4034

161.8567
340.7151
599.1592

1043.3458
1149.8601
1638.9524
2234.2283
2938.3456
3975.5373
4204.7795
5197.6817
6313.4699
7553.9168

10423.5236
15784.5129
17865.3706
20095.5611

LSDA

7.1934
53.7093

160.6443
338.8885
596.7115

1040.2732
1146.5831
1635.2392
2229.6475
2932.9835
3969.3323
4198.3724
5190.5783
6305.5658
7545.2828

10413.8251
15772.6624
17852.5601
20081.7926

Ref. [27)

7.4288
54.4009

161.8834
340.7107
599.1483

1043.4917
1149.9671
1639.2804
2234.3657
2938.3909
3975.6140
4204.8362
5197.7652
6313.4799
7553.9246

10423.9367
15785.0273
17865.6923
20095.6989

III. RESULTS FOR SPIN-POLARIZED ATOMS

In this section we summarize our results for spin-
polarized spherical atoms and compare them to SUHF
and LSDA data as well as to the GGA of Ref. [27].

In Table III we list the total ground-state energies
(whose absolute value is identical to T, ) for spin-polarized
spherical atoms with Z & 83 comparing SUHF, OPM,

LSDA, and Ref. [27] results. Quite generally, SUHF and
OPM results are nearly equal, the biggest difference of
31 rnhartree occurring for Re. The I SDA, on the other
hand, deviates by about 12 hartree for Re. These differ-
ences are very similar to those observed for unpolarized
atoms [ll]. The GGA is able to remove most of the er-
ror in the LSDA (for Re its error is about 0.5 hartree),
although at the price that it can give lower ground-state
energies than the OPM [which is mainly due to the fact
that the GGA overestimates the exchange energy in com-
parison to the exact functional, i.e. , Eq. (1)].

Table IV shows the corresponding total exchange en-
ergies. Again the differences between SUHF and OPM
results are very small. The LSDA, on the other hand,
leads to errors of 4—15'%%uo. In particular, one notes that
the error only depends on the size of the atom but not
on the specific electronic configuration, i.e., the type of
the half-filled (outermost) shell. It decreases monotoni-
cally with the electron number as one expects from the
LSDA's statistical nature, in complete analogy to unpo-
larized atoms. Becke's GGA reproduces the OPM ex-
change energies extremely well, the error being of the
order of the differences between the OPM and SUHF en-
ergies.

Table V gives the differences E t
—E g for spin-

polarized atoms. These differences are a global measure
for the ability of an approximate E [n] to reproduce spin-
polarization. The errors of the LSDA range from 35'%%ua for
Au to 0.4%%ua for Eu. In particular, one notes the relation
between the error and the type of the half-filled shell:
While the minimum error is obtained for an open f shell,
Cr and Mo (open d and s shells) lead to about 1.7%%ua error
and Mn, Tc, and Re (open d shell) show about 2.3%%ua er-
ror. The series of atoms with half-filled p shells produces
errors between 5.4%%ua (N) and 2.3'%%uo (Bi) with a clear ten-

TABLE IV. Total exchange energies (—E ) of spherical spin-polarized atoms for SUHF, OPM,
LSDA, and the GGA of Ref. [27] (in hartrees).

Atom

Li
N

Na
p
K
Cr
Mn
Cu
As
Rb
Mo
Tc
Ag
Sb
Cs
Eu
Re
Au
Bi

SUHF

1.7812
6.6067

14.0176
22.6423
32.6781
47.7724
51.3001
65.7934
81.5177
97.8936

119.9238
124.4063
144.0357
163.8444
184.0930
230.5581
310.2161
338.3630
366.3158

OPM

1.7808
6.6044

14.0131
22.6342
32.6669
47.7555
50.9833
65.7749
81.4961
97.8704

119.8943
124.3769
144.0035
163.8115
184.0595
230.5102
310.1581
338.3059
366.2627

LSDA
error in 0

1.5054 (15.46)
5.8368 (11.62)

12.7024 ( 9.35)
20.7104 ( 8.50)
30.1269 ( 7.78)
44.4674 ( 6.89)
47.5219 ( 6.79)
61.7578 ( 6.11)
76.7132 ( 5.87)
92.3499 ( 5.64)

113.4771 ( 5.35)
117.7772 ( 5.31)
136.6482 ( 5.11)
155.7290 ( 4.93)
175.2889 ( 4.77)
220.4942 ( 4.35)
297.9542 ( 3.93)
325.1358 ( 3.89)
352.2296 ( 3.83)

Ref. [27]
(error in %%ua)

1.7681 ( 0.71)
6.5687 ( 0.54)

13.9933 ( 0.14)
22.5925 ( 0.18)
32.6290 ( 0.12)
47.7577 ( 0.00)
50.9788 ( 0.01)
65.8765 (-0.15)
81.5139 (-0.02)
97.8417 ( 0.03)

119.8517 ( 0.04)
124.3345 ( 0.03)
143.9345 ( 0.05)
163.7425 ( 0.04)
184.0292 ( 0.02)
230.7098 (-0.09)
310.4318 (-0.09)
338.3840 (-0.02)
366.2521 ( 0.00)
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Atom

Li
Na
K

Rb
Cs

CU

Ag
Au

N
p

As
Sb
Bi

OPM

0.1346
0.1230
0.1005
0.0945
0.0856

0.1044
0.1243
0.1318

1.7016
1.1525
1.0748
0.9630
0.9241

LSDA
(error in Fo)

0.1194 (—11.3)
0.1174 ( —4.6)

0.1029 ( 2.4)
0.1003 ( 6.1)
0.0929 ( 8.5)

0.0990 ( —5.2)
0.1579 ( 27.0)
0.1777 ( 34.8)

1.6096 ( —5.4)
1.0918 ( —5.3)
1.0330 ( —3.9)
0.9350 ( —2.9)
0.9031 ( —2.3)

Ref. [27]
(error in %)

0.1362 ( 1.2)
0.1291 ( 5.0)
0.1100 ( 9.5)

0.1058 ( 12.0)
0.0972 ( 13.6)

0.1085 ( 3.9)
0.1605 ( 29.1)
0.1784 ( 35.4)

1.6821 ( —l.l)
1.1331 ( —1.7)
1.0546 ( -1.9)
0.9452 ( —1.8)
0.9080 ( —1.7)

Mn
Tc
Re

4.9568
3.7461
3.4921

4.8454 ( —2.2)
3.6544 ( —2.4)
3.4110 ( —2.3)

4.9196 ( —0.8)
3.7092 ( —1.0)
3.4329 ( —1.7)

TABLE V. Exchange energy differences E i —E y for
spherical spin-polarized atoms from spin-unrestricted OPM,
exchange-only LSDA, and the GGA of Ref. [27] (in hartrees).

Atom

Li (2s)
N (2p)

Na (3s)
p (»)
K (4s)
Cr (4s)
Mn (4s)
Cu (4s)
As (4p)
Rb (Gs)
Mo (5s)
Tc (5s)
Ag (5s)
Sb (5p)
Cs (6s)
EU (6s)
Re (6s)
Au (6s)
Bi (6p)

SUHF

0.1964
0,5709
0.1822
0.3921
0.1477
0.2220
0.2735
0.2396
0.3702
0.1381
0.2230
0.2659
0.2210
0.3357
0.1239
0.1745
0.2692
0.2220
0.3214

OPM

0.1963
0.5712
0.1821
0.3916
0.1477
0.2231
0.2745
0.2407
0.3691
0.1383
0.2246
0.2677
0.2221
0.3347
0.1241
0.1742
0.2714
0.2234
0.3204

LSDA

0.1004
0.2763
0.0967
0.2033
0.0805

0.1511
0.1793

0.1588'
0.1929
0.0764
0.1495
0.1760
0.1416
0.1785
0.0694
0.1043
0.1807
0.1447
0.1721

Ref. [27]

0.1092
0.2846
0.1025
0.2100
0.0842

0.1536*
0.1819

0.1625"
0.1975
0.0794
0.1500
0.1767
0.1431
0.1819
0.0719
0.1072
0.1814
0.1459
0.1748

TABLE VI. Eigenvalues —z
&

of highest occupied
spin-up orbitals of spherical spin-polarized atoms from SUHF,
OPM, LSDA, and the GGA of Ref. [27] (in hartrees). Note
that for Cu and Cr the 4s is not the most weakly bound orbital
for the LSDA and CGA which is indicated by an asterisk.

Cr
Mo

4.2336
3.2743

4.1580 ( —1.8)
3.2182 ( —1.7)

4.2310 ( —0.1)
3.2722 ( —0.1)

Eu 11.8870 11.8391 ( —0.4) 11.9138 ( 0.2)

dency to decrease with the size of the atoms. The most
pronounced errors are found for atoms with half-filled 8
shells: The series Li to Cs (noble-gas configuration plus
half-filled s shell) gives errors between 2.4' and 11.370.
Finally, for the noble metals Cu, Ag, and Au the LSDA
shows substantial discrepancies. It is obvious that these
spin-difference exchange energies are much more sensi-
tive to the quality of the exchange potential than total
E 's. Also, E t

—E l depends much more strongly on
the specific atomic configuration (compare Table IV).

The error pattern is similar for the GGA. In partic-
ular, the GGA increases the spin splitting in E~ for all
atoms considered. This leads to smaller errors than for
the LSDA for atoms with half-filled f, d, and p shells, i.e. ,
for systems where the LSDA underestimates E i —E t.
However, this improvement is much less dramatic than
that observed for total ground-state and total exchange
energies. No systematic improvement, on the other hand,
is found for atoms with half-filled s shells where already
the LSDA often overestimates E i —E y. The effect
that GGA's increase the magnetic energy is also found
for metals [31,32]. While this is desirable for Fe where
it stabilizes the ferromagnetic bcc ground state, it is less
helpful for systems such as Ni and Fe3Ni.

In Tables VI and VII we list the eigenvalues of the high-
est occupied orbitals for spin-up and -down, respectively.
As for the total energies the highest occupied eigenval-
ues of SUHF and OPM are very close, the differences
being smaller than 4 mhartrees (Cr, Cu, spin-down) for
all atoms considered (note that there is no rigorous rea-
son for the highest occupied eigenvalues of SUHF and

Atom

Li (ls)
N (2s)

Na (2p)
P (3s)
K (3p)
Cr (3p)
Mn (4s)
Cu (3d)
As (4s)
Rb (4p)
Mo (4p)
Tc (5s)
Ag (4d)
Sb (5s)
Cs (5p)
Eu (6s)
Re (6s)
AU (5d)
Bi (6s)

SUHF

2.4687
0.7258
1.5170
0.5562
0.9535
1.8399
0.2260
0.4933
0.5560
0.8092
1.5730
0.2031
0.5364
0.4689
0.6827
0.1676
0.1994
0.5193
0.4456

OPM

2.4688
0.7257
1.5177
0.5561
0.9534
1.8361
0.2257
0.4893
0.5561
0.8086
1.5716
0.2028
0.5341
0.4692
0.6820
0.1679
0.1991
0.5164
0.4461

LSDA

1.8046
0.4820
0.9970
0.3840
0.6405
1.4738
0.1280
0.1512
0.4106
0.5421
1.2546
0.1174
0.2460
0.3478
0.4581
0.0963
0.1176
0.2523
0.3346

Ref. [27]

1.8693
0.5036
1.0111
0.3921
0.6509
1.4877
0.1341
0.1558
0.4145
0.5489
1.2596
0.1220
0.2507
0.3491
0.4629
0.0994
0.1219
0.2558
0.3349

OPM to be equal). The LSDA, on the other hand, shows
the well-known deficiency of underestimating these eigen-
values by almost 50%%uo which is directly related to its in-
correct asymptotic behavior for finite systems. The most
severe cases in this respect are the minority-spin eigen-
values for Cu, Ag, and Au. As already observed for un-
polarized atoms [12] the GGA produces highest occupied
eigenvalues which are only marginally larger than those
of the LSDA. Moreover, the LSDA and GGA can pro-

TABLE VII. Eigenvalues —e~
&

of highest occupied
spin-down orbitals of spherical spin-polarized atoms from
SUHF, OPM, LSDA, and the GGA of Ref. [27] (in hartrees).
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TABLE VIII. Eigenvalues —c„& of Cu obtained from
SUHF, OPM, LSDA, and GGA calculations (in hartrees).
Note the accuracy of the OPM spin-up component: The exact
eigenvalues are less attractive by about 0.2 mhartree.

Atom

1s
2s T

2» T

3s
3p T

3d I
4s t'

SUHF

328.7940
40.8187
35.6168
5.0124
3.3222
0.4891
0.2396

OPM

321.5110
38.2781
33.5337
4.2331
2.7537
0.3048
0.2407

LSDA

320.7080
38.0830
33.4214
4.0054
2.5577
0.1575
0.1588

Ref. [27]

321.4929
38.1898
33.4859
4.0360
2.5751
0.1616
0.1625

1s J,

2s J,

2» l
3s J,

3u l
3d 1

328.7921
40.8195
35.6193
5.0116
3.3274
0.4933

321.7164
38.4734
33.7274
4.4213
2.9410
0.4893

320.7069
38.0860
33.4235
4.0093
2.5609
0.1512

321.4919
38.1925
33.4877
4.0399
2.5782
0.1558

duce incorrect ordering of eigenvalues (see Table VI and
Sec. IV).

IV. DETAILS FOR Cu, As, Mn, Cr, AND Eu

In this section we discuss Cu, As, Mn, Cr, and Eu in
some more detail. These atoms characterize the spec-
trum of spherical spin-polarized atoms: The half-filled
shells are 4s for Cu, 4p for As, 3d for Mn, 4s and 3d for
Cr, and 4f for Eu.

We start by listing the complete series of SUHF and
Kohn-Sham eigenvalues for these systems in Tables VIII—
XII. While the highest occupied eigenvalues of the OPM
for all atoms are very close to the corresponding SUHF
values, the remaining eigenvalues differ appreciably il-
lustrating the auxiliary nature of all but the highest oc-
cupied eigenvalues of DFT calculations. More interest-
ing for our purposes, however, is the comparison of the

TABLE X. Eigenvalues —c„& of Mn obtained from SUHF,
OPM, LSDA, and GGA calculations (in hartrees).

Atom

1S
2s
2» T

3s t
3pT
3d T

4s t'

SUHF

240.5339
29.1762
24.8773
4.0215
2.7276
0.6409
0.2735

OPM

234.2981
27.0325
23.1428
3.3300
2.2184
0.4513
0.2745

LSDA

233.5752
26.8084
22.9961
3.0930
2.0077
0.2819
0.1793

Ref. [27]

234.2461
26.8954
23.0464
3.1187
2.0226
0.2857
0.1819

ls J,

2s J,

2u l
3s 1
3» l
4s 1

240.5350
29.0435
24.7488
3.6123
2.2319
0.2260

234.3523
27.0012
23.1346

2.9694
1.8635
0.2257

233.5748
26.7173
22.9268
2.8831
1.8012
0.1280

234.2464
26.8117
22.9837

2.9091
1.8160
0.1341

LSDA with the OPM. It becomes most obvious from Ta-
bles VIII—XII that while for the minority-spin the LSDA
underestimates only the highest occupied eigenvalue by
roughly a factor of 2, in complete analogy to unpolar-
ized atoms [11,12], for the majority-spin the eigenval-
ues of the two outermost orbitals are seriously in error.
In most cases the next to the highest occupied eigenval-
ues are also underestimated by 50%. Among the atoms
considered here the only exception is As where the 4s-
eigenvalue still is 25% too small. For the alkali metals
this error is reduced to 10-15%. Nevertheless, for sen-
sitive systems like Cr and Cu where the two outermost
OPM eigenvalues are nearby this deficiency of the LSDA
can produce an incorrect ordering of eigenvalues: While
the OPM (and SUHF) in both cases leads to a more
weakly bound 48 orbital compared to the competing 3d
orbital the LSDA inverts this order (although the difFer-
ence between the two eigenvalues is small for Cu). As
already mentioned in the preceding section the GGA is
not able to improve the quality of the highest occupied

Atom

ls T

2s t
2p T

3s t
3p T

3d T

4s t'

4» T

SUHF

432.5903
56.3114
50.1580
8.0366
5.8907
2.1174
0.8156
0.3702

OPM

424.2583
53.3354
47.6762

7.0145
5,0933
1.7298
0.6874
0.3691

LSDA

423.2352
53.0131
47.4468
6.6620
4.7839
1.4790
0.5145
0.1929

Ref. [27]

424. 1324
53.1342
47.5207
6.6998
4.8058
1.4845
0.5192
0.1975

1s 1
2s 1
2» l
3s j,

3» I
3d J.
4s 1

432.5820
56.3083
50.1495
8.0224
5.8704
2.1076
0.5560

424.2419
53.3343
47.6679

7.0049
5.0829
1.7167
0.5561

423.2308
53.0111
47.4433
6.6561
4.7769
1.4669
0.4106

424.1284
53.1328
47.5174
6.6945
4.7995
1.4738
0.4145

TABLE IX. Eigenvalues —e„& of As obtained from SUHF,
OPM, LSDA, and GGA calculations (in hartrees).

Atom

ls T

2s
2p T

3s
3p T

3d T

4s T

SUHF

220.3856
26.2596
22.1876
3.4588
2.2614
0.3737
0.2220

OPM

214.4066
24.2156
20.5456

2.8260
1.8100
0.2423
0.2231

LSDA

213.7569
24.0469
20.4499
2.6470
1.6526
0.1200
0.1511

Ref. [27]

214,3996
24.1304
20.4979
2.6704
1.6658
0.1230
0.1536

1s 1
2s 1
2» l
3s $
3» l

220,3868
26.1593
22.0919
3.1111
1.8399

214.8073
24.5554
20.9004

2.8507
1.8361

213.7565
23.9771
20.3966
2.4680
1.4738

214.3997
24.0666
20.4498
2.4919
1.4877

TABLE XI. Eigenvalues —e„t of Cr obtained from SUHF,
OPM, LSDA, and GGA calculations (in hartrees). Note the
limited numerical accuracy of the OPM spin-up eigenval-
ues: The exact eigenvalues are more attractive by about 1
mhartree.
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SUHF
TABLE XII. Eigenvalues —s of Eu bt d fru 0 Bine om

, OPM, LSDA, and GGA calculations (in hartrees).
0. 05 ~ I ~ I

Atom

ls T

2s I
2pT
3s T

3P t'

3d t'

4s T

4p T

4d T

5s I
5pT
4f t'

6s T

1s 1
2s J,

2p 1
3s 1
3pl
3d J,

4s $
4p 1
4d I
5s J,

5p I
6s J,

SUHF

1690.6972
272.3188
258.3645
61.4053
55.1714
43.7013
12.9598
10.4848
6,0917
1.8857
1.1220
0.7146
0.1745

1690.6973
272.3143
258.3625
61.2202
54.9780
43.5059
12.5309
10.0086
5.4691
1.7486
1.0117
0.1676

1673.9234
265.4045
252.2050
58.2094
52.3618
41.4870
11.5693
9.2996
5,2694
1.5211
0.9158
0.4108
0.1742

1673.9251
265.4151
252.2123
58.0454
52.2139
41.3880
11.1027
8.8339
4.8098
1.3724
0.8098
0.1679

LSDA

1672.1718
265.0836
252.0583
58.0157
52.2244
41.3936
11.2837
9.0418
5.0496
1.4406
0.8435
0.2483
0.1043

1672.1718
265.0787
252.0554
57.9002
52.1185
41,3153
11.0543
8.8132
4.8236
1.3276
0.7540
0.0963

Ref. [27]

1673.9138
265.3372
252.2206

58.0859
52.2681
41 4193
11.3239
9.0703
5.0648
1.4451
0.8468
0.2516
0.1072

1673.9137
265.3344
252.2191
57.9746
52.1665
41.3459
11.0946
8.8413
4.8369
1.3331
0.7596
0.0994

0. 25

0. 2

0. 15

v), t
—u, .) 0

(o„(/, . ) 0 . 0 5

eigenvalues and consequently also suffers from this or-
dering problem. It does, however, improve the lowest
eigenvalues, i.e. , the 1s, 2s, and 2p.

These observations give some insight into the source of
the failure of the LSDA (and GGA's) to reproduce exper-
imental s-d promotion energies [45, 46, 35, 47, 38, 44]. In
particular, these results might explain why the LSDA's
s-d promotion energies are somewhat closer to experi-
mental values for 4d and 5d transition metals than for
3d as for Mo, Ag, and Au, at least the ordering problem
disappears.

'1) r y
—'() r 1

0 ~ 0 5

—0. 15

—0. 2
0.01 0. 1

0. 1

—0. 1

FIG. 2. Same as Fig. 1 for As.

As is clear from this discussion the LSDA does not
just underestimate the eigenvalues of all orbitals by some
common constant, but rather does not reproduce eigen-
value differences for given spin. Analyzing the eigenvalue
differences between the outermost orbitals of the two spin
components the same feature shows up. Again the error
is roughly a factor of 2. Finally, the spin splitting of
the eigenvalues for a given orbital cannot be reproduced
much better: While e„& —c„& is roughly correct for Mn

(6s: OPM, 6 mhartree; LSDA, 8 rnhartree), the error
amounts to 21% for As (4s: OPM, 131 mhartree; LSDA,
104 mhartree) and even the sign is wrong for Cr (3p:
OPM, —25 mhartree; LSDA, 179 mhartree) and Cu (3d:
OPM, —186 rnhartree; LSDA, 6 mhartree). Again the
GGA is not doing any better.

f
In Figs. l—5 we plot v 1(r) —v i(r), which is a measure

or the tendency of the atom to favor spin polarization.
In all cases the differences between the OPM, on one
hand, and the LSDA and the GGA, on the other hand,
are striking. For Cu one essentially observes a huge con-
stant shift between v~1(r) and v~i (r) which only vanishes
in the extreme asymptotic regime where both v~1(r) and

b h
v i r approach 1/r. This shi—ft is not reproduced t 11

y t e LSDA or the GGA. The situation is similar for Cr
e a a

where the outermost orbital again is of s type. Here, how-
ever, the shift is convoluted with additional structures
originating from the 3d electrons. The comparison looks

—0. 05

—0. 1
0. 01

CL1

0. 1 10

'() .
t
—1) 'l —0 . 2 Q

L
I(l. . '(I. . } 0 - 3

I 2

—0 4

—0. 5

FIG. 1. D'

chan e
i erence between spin-up and spin-down- own ex-

c ange potentials, v r (r) vr (r), for Cu from the O—PM (solid
line), LSDA (dashed line), and the GGA of Ref. [27] (dotted
line) (in hartrees).

—0. 6
0. 01

7' (L. 'iI. .

FIG. 3. Same es Fig. 1 for Mn.

10
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0
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0. 1

OP
LD
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0. 01

0. 005
opN
LDA

[27]

~ ~ ~ ~ I ~ ~' 'I

—0. 1
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—0. 3
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I
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I
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~ /
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10

-0.005

—0. 01
0. 01

CU.

0. 1

Ir
ir

7' 0 . '1I, .

10

FIG. 4. Same as Fig. 1 for Cr.

more favorable for the LSDA and the GGA for As, Mn,
and Eu where these approximations at least make some
attempt to follow the OPM. Still, they underestimate all
structures in the OPM spin splitting considerably. While
the GGA overall tends to correct the LSDA in the right
direction its quantitative success is only marginal.

As to be expected from the fact that n~(r) and nl(r)
are determined by the total spin-up and spin-down po-
tentials, respectively,

+-sgn(&) [v*T(r) —v*t (r)]
1

2

where the error in v t(r) —v l(r) represents only a mmor
component, the spin magnetization

is considerably less sensitive to the quality of an approx-
imate E [n] than v T(r) —v i(r). In particular, t e po-
sition and shape of ( are more or less determined by the
quantum numbers of the polarized orbital as it and thus
the total magnetization are fixed for these atomic calcula-
tions. In fact, g is reproduced much better by the LSDA
and the GGA (which are more or less indistinguishable)
than v~t (r) v~~(r) as can—be seen from Figs. 6—10. While

FIG. 6. Magnetization density ( = (nt —ni)/(nt + ni)
for Cu from the OPM (solid line), LSDA (dashed line), and
the GGA of Ref. [27] (dotted line).

for As, Cr, and Mn the LSDA and GGA can follow the
OPM rather accurately there are some differences for u.
The spin polarization in the interior of Cu, on the other
hand, for which already v l (r) v~l (r) sh—owed the biggest
discrepancy, is overestimated by more than a factor of
2. We only mention that the same efI'ect occurs or g
and Au, although there it is not as pronounced as in
Cu. It, thus becomes obvious that the LSDA can lead
to erroneous magnetization densities even for atoms and
the GGA does not improve on the LSDA. Given the even
greater importance of v for the total potential in Kohn-
Sham calculations for solids and the fact that in this case
the total magnetization is not a priori fixed but rather
determined self-consistently, it is not difBcult to imag-
ine that many of the failures of the LSDA and GGA for
condensed-matter systems could be traced back to their
insufficient reproduction of the spin splitting in v~.

It should be emphazised that the difI'erences between

not the source of the huge errors in the self-consistent
2; ( j — ( ) shown in Figs. 1—5. This is immediately

clear for As, Mn, and Cr where the spin densities are

0. 1

—0. 1

l)rt l)rg 0

(a u).. . .

—0. 4

0. 03

0.025

0. 02

0.015
0. 01

0.005

OPM
LDA

[271

~ ~ ~ ~ ~ ~ ~~ f I ~ ~ ~

—0. 5

—0. 6
0. 01 0. 1

7' G. .'l(.

0-o05 as
—0.01

0. 01
I I s ~ ~ I I

0. 1
7' 0.7I .

10

FIG. 5. Same as Fig. 1 for Eu. FIG. 7. Same as Fig. 6 for As.
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0. 6

0. 5

0.4
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0. 1

OPM
LDA0. 3

0. 4

0. 3
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0. 1

OPM
LDA

[27]

—0-1 Mn

—0. 2
0. 01 0. 1 10

—0. 1

—0. 2
0. 01 0. 1 10

FIG. 8, Same as Fig. 6 for Mn. FIG. 10. Same as Fig. 6 for Eu.

rather similar, but also holds for Cu as the absolute value
of ( and consequently also (nopM —nLsDA)/nopM are
rather small. Most obvious, however, is the localization
of the error in (: This confinement contrasts with the
extended error in v~y(r) —v~g(r).

V. CONCLUDING REMARKS

In this paper we have presented accurate OPM re-
sults for all spherical atoms (both unpolarized and spin-
polarized ones) with Z & 86 discussing in some detail the
technical questions which have to be addressed to achieve
this accuracy (in the Appendix). These results allowed
a detailed study of the magnetization properties of spin-
polarized atoms. In particular, we have used them to
check the quality of the LSDA and a widely used GGA
[27] to reproduce spin-dependent quantities like the spin
splitting in the exchange energy and the exchange poten-
tial, i.e. , E y E i and—v y (r) v i (r), and —the magneti-
zation density. Our analysis shows that, while the GGA
removes most of the error in the LSDA for global quanti-
ties such as ground-state and total exchange energies, it
is less successful for E T

—E ~ and it does not improve
v t (r) —v i(r) and the magnetization density. Thus its
quality for Et t's and E 's can be somewhat misleading

and most likely results from cancellation of local errors.
Furthermore, it is found that for Cr and Cu, where the
eigenvalues of the two outermost orbitals of the majority-
spin component are nearby in the OPM, the LSDA and
GGA produce incorrect orders of eigenvalues due to the
fact that for the majority spin not only the highest occu-
pied but also the next eigenvalue is seriously in error. In
view of these results it is not surprising that the LSDA
and GGA produce unphysical magnetic phases in a num-
ber of metals [29, 32, 33].

It seems to us that as for the asymptotic properties of
GGA's [12] the source of the failure of the GGA to im-
prove local spin-dependent quantities over the LSDA is
its limited nonlocality. The exact E~[n] contains at least
one ingredient which is much more nonlocal than that
which could be reproduced by the GGA's simple quasilo-
cal functional dependence on the density, i.e., the self-
interaction correction part. Though one could hope that
this ingredient of E [n] is less important for the descrip-
tion of condensed matter systems it appears necessary to
study the capability of inherently more nonlocal schemes
to reproduce v t(r) —v g(r) and ((r).
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APPENDIX: ON THE ACCURATE
CONSTRUCTION OF V~(R)

FROM THE OPM INTEGRAL EQUATION

0
0.01 0.1

FIG. 9. Same as Fig. 6 for Cr.

10
In this appendix we brieHy review the OPM approach

in order to provide the details required for the discussion
of the asymptotic form of the OPM exchange potential.
The analytic asymptotic form is used to accurately obtain
v (r) from the OPM integral equation.
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+ 2[s l vco~(r)] P l(") = 0~
2 ~

T2 ~
~ ~ ~

0 ~
~ ~~

r

l(l + 1)
(Al)

For spherical systems the spin-unrestricted OPM equa-
tions [2] consist of a radial Kohn-Sham equation for each
spin,

n (r) =) O(s~ —s„l) s [P„l(r)] (A6)
n, l

and v (r) being the exchange potential constructed from
the solution of the OPM integral equation for given spin,

where dr'K (r, r')v (r') = I (r) . (A7)

v„,(r) = v,„],(r) + v~(r) + v (r),
z

Vext T r
1 2

OO

v~(r) = 4vr — x dx n(x) +r 0 r
n(r) = nt (r) + ni(r),

(A2)

zdz n(r) ), (Ad)

(A5)

The kernel K and the inhomogeneity I of this Fred-
holm equation of first kind are given in terms of the solu-
tions P~l and the corresponding complementary solutions

Q„l of Eq. (Al),
1 = P„l(r) B„Q„l(r)—Q„l(r) B„P„l(r) . (A8)

Using the Green's function

Q ~( r)=r2( 0( rr) P~( )Qr~(r)+e(r r) Q ~( ) ~( )

P„,(r) P-„,(r')

-P l(r') P l(r)

dxP„, (x)Q„,(x) + Q„,(r')

dxP„, (x)Q„,(x) + Q„,(r)

OO

dx[P:i(x)]'
OO

dx[P„,(x)]

which satisfies

+2P„~(r)P„~(r') dx d2]P„~ (z)] P„~(2)Q„~(2)),0 0

ct„—
2 + 2[s„l —v~«(r)] G„l(r, r') = 2(P„~(r)P„i(r') —6(r —r')),(

t(t+ 1)

one finds

K (r r') = ) .e(&~ —& l)(2t+1)P l(r)G l(r r')P l(r')
n, l

(A10)

(A11)

I (r) = —) e(s~ —e'„l)(2l + 1) ) O(z~ —z„.l )(2l'+ 1)
n, l n', l'

xP„,(r) dxG„, (r, x)P„ l. (x)
TL

dy ) c«L L P„,(y)P„, (y),r +' (A12)

where r& is the smaller of x, y and T& the larger, and c~~ L is given by

(t'+ I, —t)!(I, + t —t')!(t + t' —I.)!
(l + t' + L + 1)!

- 2
(
l+l'+L

) ]
2

(
l'+L l

) ](L+l —l'
) ](l+l' —L)]—

if l+I,'+I is even and is 0 otherwise. K has the obvious
properties

lim v (r) =0. (A15)

stant. This constant is fixed by the physical requirement

K (r, r') =K (r', r), (A13)

dr K (r, r') =0 . (A14)

Consequently Eq. (A7) defines v (r) only up to a con-

Any discretization of Eq. (A7) necessary for practical
calculations, however, no longer satisfies (A14) but rather
has a unique solution. Apart from numerical inaccura-
cies this solution differs from the exact v~ (r) by some
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unknown constant, i.e. , it does not satisfy Eq. (A15).
This constant has to be subtracted out of the solution
in order to construct v (r). The only regime where one
knows v~ (r) analytically and thus is able to define the
constant is the asymptotic regime. Talman has shown [2]
that v (r) asymptotically approaches 1/r.—The r val-
ues where v~ (r) actually starts to follow 1/—r, however,
are rather large [12]. Thus fixing the constant becomes
more accurate the larger the r value is at which v (r)
is determined. The numerical evaluation of (A7), on the
other hand, is becoming increasingly difBcult where the
kernel and the inhomogeneity decay exponentially. Also,
the accuracy of the numerical solution of Eq. (A7) as
characterized by the exchange virial relation is mainly
determined by the step size of the grid used and thus de-
creases with increasing size of the r range where v (r)
has to be evaluated numerically. This procedure is even
more critical for spin-polarized systems where the spin-up
and -down potentials have to be fixed at different r values
with that for the minority spin component being rather
small as the corresponding kernel and inhomogeneity are
decaying faster. The difFerence v ~(r) —v i(r), however,
is crucial for the spin polarization the atom displays.

In their paper Talman and Shadwick [2] noted that for
large r the sum over all occupied orbitals in Eq. (All)
reduces to just the term corresponding to the most slowly
decaying orbital P &(r). In fact, the remaining terms are
suppressed relative to this leading one by

( P„,(r) l'
P~„ r )

Apart from atoms where the eigenvalues of the two out-
ermost orbitals are extremely close this ratio turns out
to be very small as can be checked with any solution.
Even for the exceptional cases Cr and Mo it still is rea-
sonably small. The same arguments apply to I (r) such
that asymptotically one obtains the integral equation [2]

dr'G i, (r, r') P i, (r') tt (r')

dr'G I, (r, r') F (r')

with

F ( ') = —).0( — )(2~+ 1)P ( ')

A:+l rL
d& ) cIiL I+, P a('JJ)P„, (JJ) .

L=iA:—ti

Applying (A10) one ends up with

F (r)
U, (r) (A16)

As already emphasized by Talman and Shadwick [2] the
leading term in this expression is 1/—r T.he next cor-
rection to 1/r d—epends on the quantum numbers of the
two outermost orbitals. It is most pronounced if k g 0,

For the spin-up component of Bi, for example, this 1/rs
term contributes —4.3 mhartree at r = 10 a.u. Note also
that our 2p eigenvalue for the spin-down component of
Na satisfies the relation of Krieger, Li, and Iafrate [7]
much better than the result of Krieger, Li, and Iafrate
(compare Table VIII of Ref. [11]). At 8 a.u. , e.g. , the
above correction contributes —0.64 mhartree to v (r),
which is transferred to the eigenvalues.

However, not only power-law corrections can be of sig-
nificant size, also terms which decay exponentially with
respect to the leading one can contribute if the eigenval-
ues of the two outermost orbitals are very close together.
This occurs, e.g. , for the spin-up component of Cr where
the highest occupied eigenvalue (4s) is —0.2231 hartree
while the next (3d) is obtained as —0.2423 hartree. In
this case the first exponentially smaller correction con-
tributes 0.53 mhartree at 10 a.u.

We consequently use Eq. (A16) without any further
approximation to define the constant present in any nu-
merical solution of (A?). This leads to eigenvalues whose
accuracy is on the O. l mhartree level without reducing
the overall accuracy of v (r) as it allows using r val-
ues for defining the constant which are not excessively
large. The only exceptions from this level of accuracy
are those atoms where already the first approximation,
i.e. , reducing the sum in K (r, r'), Eq. (All), to a single
term introduces a small error. This, however, is only the
case if the two outermost eigenvalues are extremely close
together as occurs for the spin-up orbitals of Cr and Mo
and to a limited extent for Cu. Even for Cr and Mo the
accuracy achieved is about 1 mhartree as can be seen
from a comparison of e I, and E '& on the basis of the
relation (6).
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