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The recently developed explicit formalism of orthogonally-spin-adapted, Hilbert-space (or state-
universal), multireference (MR), coupled-cluster (CC) theory, exploiting the model space spanned by two
closed-shell-type reference configurations, is applied to a simple four-electron model system consisting of
two interacting hydrogen molecules. Four planar minimum-basis-set H, models are examined, each
characterized by a single parameter that fully determines its geometry, assuming the trapezoidal (H4
model), rectangular (P4 model), linear (D4 model), and square (S4 model) nuclear configuration. Varying
this geometry-determining parameter, in each case we obtain different cross sections of the H, potential-
energy hypersurface, involving the dissociation of one, two, or all four H—H “bonds.” Comparing the
resulting CC energies with exact values that are easily obtained for this model using the full
configuration-interaction method, we can assess the performance of various MRCC Hilbert-space ap-
proaches at both the linear and nonlinear levels of approximation, while a continuous transition is being
made between the degenerate and nondegenerate regimes. This enables us to elucidate the sources and
the type of singular behavior in both linear and nonlinear versions of MRCC theory, to examine the role
played by various intruder states, the existence and types of multiple solutions and their ability to de-
scribe various excited states, and, by performing a cluster analysis of the exact solutions, to assess the
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quality of the MRCC wave functions as well as the energies.

PACS number(s): 31.15.+q, 31.20.Tz, 31.50.+w, 03.65.Ge

I. INTRODUCTION

An extension of standard, single-reference (SR)
coupled-cluster (CC) theory (see, e.g., Refs. [1-10]) that
is capable of describing many-electron correlation effects
in closed-shell (CS) nondegenerate ground states, to the
general open-shell (OS) case, proved to be extremely chal-
lenging though highly desirable in view of the reliability
and size-extensive property of CC results. All genuine
OSCC approaches employ a general multireference (MR)
formalism and are based on an effective Hamiltonian, act-
ing in some relatively small model space, that is in turn
determined by the solutions of the generalized Bloch
equation (for a general account, see, e.g., Refs. [10-12]).
The existing MRCC approaches of this kind are basically
of two types, constituting the so-called Fock-space or
valence-universal (VU) methods [10-20] and Hilbert-
space or state-universal (SU) methods [7,10,12,21-30].

47

While the former ones employ a single—valence
universal—cluster operator, similarly, as in the SR case,
the latter ones represent the wave operator as a superpo-
sition of exponential Ansitze, one for each reference
configuration spanning the model space. In either case,
however, there is no “natural vacuum?” that one can em-
ploy as a reference, so that in contrast to SR theory,
when the cluster operator involves only creation opera-
tors of the hole-particle formalism, operators of both
types appear for the so-called active or valence orbitals in
the MR case.

The VU approach resolves the above-indicated prob-
lem by simultaneously considering the studied system as
well as all possible ions, up to and including the one in
which all electrons occupying valence orbitals are re-
moved. So far this approach found its greatest use in the
computation of various “differential” properties, such as
excitation or ionization energies, rather than in the deter-
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mination of potential-energy hypersurfaces of a number
of strongly interacting states over a wide range of nuclear
framework geometries. In fact, all such attempts re-
quired the use of incomplete model spaces or even the use
of different model spaces for different geometries (cf., e.g.,
Ref. [31]). Nonetheless, a great deal of progress was
made during the past decade in the implementation and
use of these theories (see, e.g., Refs. [32,33] and refer-
ences therein), which was not the case for the SU
methods. Recently, the so-called cluster conditions that
ascertain the negligibility of higher excited cluster com-
ponents in VUCC approaches, and thus the appropriate-
ness of truncation at the pair-cluster or higher excitation
level, were derived [20] and examined for two simple
models [34] as was the VUCC method itself in the ap-
proximation restricted to pair clusters [35].

In the SU or Hilbert-space approach [21], the ‘“‘vacu-
um” ambiguity is resolved by considering each reference
configuration separately and by introducing for each the
corresponding cluster operator. In general, this will obvi-
ously lead to a large multitude of cluster amplitudes, as-
suming that there are many reference configurations
spanning the model space. On the other hand, there is no
need to consider the whole hierarchy of ionized species,
which may also be very demanding when many electrons
occupy valence orbitals. So far, there have only been a
few applications of this method [22,24,26-28], including
preliminary studies of the model systems considered in
this paper.

Here and in subsequent work [36], we wish to explore
the basic properties and potential of Hilbert-space-type
MRCC approaches, using a simple four-electron model
[37] consisting of two interacting, slightly stretched hy-
drogen molecules. This model system was successfully
employed to explore the performance of various SRCC
methods [37-39], both SR [40] and MR [41,42] pertur-
bation theory as well as other approaches [43]. Prelimi-
nary studies of the so-called H4 model were also carried
out using both Hilbert-space [26,27,30], and, lately,
Fock-space [34,35] MRCC formalisms. In this paper we
examine four planar models, while the nonplanar models
will be the subject of future work [36]. For the sake of
simplicity and easy insight we employ minimum-basis-set
(MBS) models [37], each of which is uniquely specified by
a single geometric parameter a that enables us to vary
continuously the degree of degeneracy between the two
configurations spanning the model space employed. The
nuclear framework then assumes the trapezoidal (H4
model), rectangular (P4 model), linear (D4 model), and
square (S4 model) conformation, so that when varying the
geometry-determining parameter a we obtain various
cross sections of the H, potential-energy hypersurface.
When a— © (or a—0.5 in the H4 model), we examine
the fragmentation of the system, thus modeling the disso-
ciation of one, two, or all four simple H—H “bonds.”

We first present a brief outline of the Hilbert-space
MRCC approach in Sec. II and its specialized
orthogonally-spin-adapted two-reference version, per-
tinent to our model problems, in Sec. III. The detailed
description of the studied models, as well as other com-
putational and methodological details (choice of refer-
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ence orbitals and configurations, their degeneracy charac-
teristics, the model spaces, and numerical procedures em-
ployed) are given in Sec. IV, while Sec. V presents the
main results for all four planar models examined in this
paper. The singular behavior of linear approximation is
then examined in Sec. VI and the cluster analysis of the
MRCC wave functions for both ground and excited states
is described in Sec. VII. The possibility to handle the
higher excited states is examined in Sec. VIII while the
last Sec. IX summarizes and discusses the results ob-
tained.

II. MULTIREFERENCE HILBERT-SPACE
COUPLED-CLUSTER APPROACH

While for nondegenerate CS states, an SR description
[1-10,44] is generally adequate, an entirely different sit-
uation arises when the OS or highly (quasi)degenerate CS
systems are considered. In this case, the group of states
that emerges through a strong interaction of two or more
configurations must be simultaneously considered. Thus
a suitable set of configurations |<I>p >, p=1,...,M, must
be found that is capable of providing a reasonable
zeroth-order description of these states over a sufficiently
wide range of relevant nuclear geometries. In other
words, we have to choose an appropriate multidimension-
al model space M, spanned by configurations |<I>P ), that
may serve as a reasonable zeroth-order approximation to
the exact manifold M spanned by M exact solutions

|\Il#>, uw=1,...,M, of the Schrodinger equation
(H—E,)|¥,)=0. (1)

This is achieved by partitioning the spin-orbital or
molecular-orbital (MO) set, defining the one-electron
space employed, into three disjoint subsets of core,
valence (or active), and virtual (or excited) (spin) orbitals.
The reference configurations |®, ), p=1, ..., M, differ in
the occupancies of valence (spin) orbitals, while having
core and virtual (spin) orbitals completely occupied and
unoccupied, respectively. Thus, considering all possible
distributions of valence electrons [electrons occupying
valence (spin) orbitals] among valence (spin) orbitals we
obtain a complete model space [21] M, that is invariant
under unitary transformations of valence (spin) orbitals.
Although this complete space may be unnecessarily large
for the description of states that are of interest to us, and
its use may lead to the appearance of intruder state prob-
lems [26,45], the requirement of the completeness of M,
is essential for the theoretical developments that follow.
Indeed, completeness of the model space implies the con-
nectivity of cluster operators and of the effective Hamil-
tonian, and the resulting MRCC theory leads to a size-
extensive description of many-body systems (for a
rigorous formulation, see Ref. [21]). When the complete-
ness of M, is not required, disconnected terms appear
[21]. For special types of incomplete model spaces, con-
nectivity of cluster operators and of the effective Hamil-
tonian can be restored by relaxing the so-called inter-
mediate normalization conditions [12,25]. General in-
complete model-space MRCC methods that employ only
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connected cluster amplitudes and the connected effective
Hamiltonian have been successfully formulated (both
within the Fock- [46] and Hilbert-space [25,47] frame-
works), thus providing size-extensive results. In the fol-
lowing, however, we restrict ourselves to the case of a
complete reference space. The use of an incomplete mod-
el space is essential when the dimension of the corre-
sponding complete space is large. Clearly, the larger the
model space is, the more costly the practical implementa-
tion of the formalism becomes, and the more likely we
encounter intruder states. In the present paper, however,
we deal with a small two-dimensional model space that is
complete for the symmetry species considered [23,26,29]
(cf. Sec. III).

As mentioned in the Introduction, the aim of this
series is to apply the SUCC approach [21] to simple
four-electron models. Assuming that the reference
configurations |<I>p ) have been selected, we define projec-
tion operators onto J, and its orthogonal complement
M (in the N-electron Hilbert space # ), which we desig-
nate by P and Q, respectively. We obviously have

pP= zpez

g=1
0=1-P. 3)

Since J, represents a reasonable zeroth-order approxi-
mation to the exact manifold M, we further assume that
no function from J is orthogonal to all of |<I> ), so that
the model-space projections of the exact states |\l’ ),

, P,=|o, ) (@, , @)

|®,)=P[¥,), @

are linearly independent and span Ji,. This in turn im-
plies that P generates a bijective mapping P =P | /M from
JM onto M. The inverse of this bijection

U=P L Mmy—m, 5

can be extended to the whole N-electron Hilbert space
F£y by defining it as the zero operator on 1. The result-
ing wave operator U, referred to as the Bloch wave
operator [48], transforms model states |<I> ) into exact
solutions |¥,, ),

v, =Ul3,) , ©
and annihilates any state from the subspace 1}, so that
Ug=U(1—P)=0. (7

Equation (6) implies that PU acts as the identity on J/,
which is equivalent to the relationship

PU=P . (®)
From Eq. (7) we have that
UrP=U, 9)

so that U is idempotent,
U?=(UP?=U(PU)P=UP?*=UP=U , (10)

and leaves the exact states | ¥, ) invariant,

Uly,)=0%®,)=U[®,)=[¥,) . (11)

Bloch wave operator U may thus be regarded as a pro-
Jjector onto . In contrast to Kato’s [49] projectors that
are always Hermitian or orthogonal, U is a nonorthogo-
nal projector. Relationship (8) is equivalent to the condi-
tion of the intermediate normalization, which in the MR
case requires that

(@,|lU¥Y,)=5,, (p,g=1,...,M), (12)
or, equivalently,

(@,19,)=5,, (p,g=1,...,M), (13)
where the ket states

¥,)=Ul®,) (14)

form another set of functions spanning . In view of Eq
(13) and analogously as in the SR case, every state l\l/
has the form

¥, )=(1+Cc")|D,), (15)

where C'?’ designates an excitation operator into 1} rela-
tive to the reference determinant ]fbp ) regarded as a cor-
responding Fermi vacuum. Equivalently, every exact
wave function I\I!y) can be written as

W)= c,l®,)+I=E), (16)
q

where the remainder |Z) belongs to 1§ and
= (P ¥,y =(D |D,) (17)

are the linear-expansion coefficients of functions |(I> )
with respect to model states |®, ), p= , M. Clearly,
the functions |<I> )= p q“|<l> > represent the zeroth-
order approx1matxon to the exact states \\P ). The ques-
tion now arises how to determine the wave operator U
and the unknown coefficients c,

As in SRCC theory [1-10], we are looking for an
energy-independent equation (or equations) determining
U. Such an equation can easily be obtained by combining
the original Schrodinger equation, Eq. (1), and the prop-
erty of U described by Eq. (11). In this way, we find that
the wave operator U must satisfy the relation

UHU=HU , (18)

which represents the basic equation of the MR formalism
and is usually referred to as the generalized Bloch equa-
tion [10,11,16,21,48,50,51]. Once this equation is solved
and the wave operator U is known, the unknown
coefficients c,, and the corresponding energies E, are

pu
determined by diagonalizing the effective Hamiltonian

H*"=PHU = PHUP (19)
within the model space Ji,. Indeed, by projecting the
Schrodinger equation (1) onto M, we get

PH|Y,)=E,P|¥,) , (20)

so that the unknown model states I@#) can be found by
solving the equation
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HM®,)=E,|®,), @1

which is equivalent to the following M X M secular prob-
lem

S (H—8,,E,)c,, =0, (22)
q

with
ff— i —
Hyf=(®,|H"|®, ) =(D,|HU|D,) . (23)

The idea of diagonalizing the effective Hamiltonian
within the model space is the key concept of all MR
theories. It enables us to translate the exact problem, Eq.
(1), for a finite number of eigenstates into a simple secular
problem, Eq. (22), formulated entirely within a con-
veniently chosen reference space Ji.

Different Ansitze for the wave operator U lead to dis-
tinct MRCC methods [10,20,21]. The Hilbert-space ap-
proach [21] is based on a simple observation that the
wave operator U can be uniquely represented in the form

U=UP=3 |V, )(o,l, (24)
q

so that we can write [cf. Eq. (15)]

U=3 (1+C9)p, . (25)
9

Assuming a separate cluster Ansatz for every reference
configuration |®,) by defining cluster operators T in
exactly the same way as in SRCC theory, namely,

TP =In(1+C"?), (26)
we obtain that
U=3e""pP, . @7
q
Thus, the exact states |¥,), u=1,
pressed in the form

W)=3c,e™|®,), (28)
q

.,M, can be ex-

where cM=(c1#, .. .,cMH) are the eigenvectors of the
effective Hamiltonian (19), whose matrix elements now
become [21,29] [cf. Eq. (23)]

HT=(®,le T He ™" |0,)

=8,,H,, + (@, | (Hy e "")c|®,) . (29)

Here H,,=(®,|H|®,), while HNp designates the nor-

mal product form of H (cf. Refs. [6] and [44]) relative to
|®,). The subscript C indicates the connected part of a
given expression [6,44], so that it is sufficient to ascertain
the connectedness of T'?’ to prove that the effective Ham-
iltonian contains only connected terms [21].

The MR character of the Hilbert-space formalism [21]
requires that all states f‘l’,) from M are considered
simultaneously. We thus have to find as many equations
for the cluster operators T'?’ as required to determine the
entire family { T‘P’]p . Just as in the SR CS case, we ex-
pand cluster operators in terms of a conveniently chosen

set of excitation operators ?'G;,

TW=3 P PG, | (30)

and then derive the equations for the unknown cluster
amplitudes P’t;. The superscript (p) in P’G; indicates
that the excitation operator is defined with respect to the
reference |®,), so that for every model state |®,) we
have a distinct family of operators ”’G; and a drstmct
family of cluster amplitudes "’t Of course, a given ex-
cited configuration may originate from different reference
states, so that

(p) —
G/l®,)="9G,;|®,) 31)

for p7#q and i#j. Completeness of the model space and
the requirement of the intermediate normalization, Eq.
(13), imply that

PT'P|®,)=0. (32)

Consequently, the excitation operators P)G; must be
chosen in such a way that PG, |®,) €M}, or, equlvalent-
ly, the cluster amplitudes ")t must carry at least one
nonvalence (i.e., core or v1rtua1 -type) label [21].

The system of coupled equations for the unknown clus-
ter amplitudes ‘P, is obtained by substituting the Ansatz
(27) into the Bloch equation (18) acting on a reference
state |®, ). Multiplying then from the left by e ~T% and
prOJectmg the result onto the excited configurations
| p)G<I> ) =G, |®, ), we get [21]

(p)
( p)qu)p’(HNpeTp )c:|q>p>

> <(p)Gi(Dp e *T‘p)e T“l)|¢ Yy H e

q (Fp) »’
(p=1,...,M), (33)
since [6] [cf. Eq. (29)]
H p T(p)|q> > T(p HN e p))C}(I)p) ) (34)

These equations are the basic equations of the Hilbert-
space CC formalism [21]. They represent a system of
highly nonlinear coupled algebraic equations for the
coefficients P't;.

It has been proved [21] that the MRCC method given
by Egs. (33) and (22), with the effective Hamiltonian ma-
trix elements calculated using Eq. (29), leads to connected
expansions for the cluster operators T'?), so that the re-
sulting energies E,, obtained by the diagonalization of
the effective Hamiltonian, are size extensive. One can
thus consider several approximate variants of Egs. (33)
and (29), obtained by neglecting higher nonlinear terms
or higher many-body components in expansion (30) (cf.
Refs. [10,21-30]; see also Sec. III), without introducing
disconnected terms into H®%, i.e., without losing the size
extensivity of the resulting approximate energies. As al-
ready mentioned, this feature is closely associated with
the assumption of the completeness of /M, To obtain a
connected generalization of the Hilbert-space CC method
for incomplete model spaces, the requirement (32) must
be relaxed and certain types of cluster amplitudes carry-
ing only valence labels must be admitted [47].
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One of the main advantages of the SUCC approach is
its close relationship with the MR configuration interac-
tion (CI) method [7,22,23] [cf. Eq. (25)], which is useful in
deriving the MR generalizations of the Davidson correc-
tion [52] to the CI correlation energy [7,38,53]. Unfor-
tunately, the symmetry adaptation of this formalism is
not as easy as in the case of the Fock-space approach
[20]. For example, the general orthogonally-spin-adapted
[3,54,55] Hilbert-space MRCC method has not yet been
formulated. So far, only a special case of two CS-type
references (corresponding to two active orbitals of
different symmetry) was successfully considered
[23,26,29,56].

The left-hand side of Eq. (33), referred to as the direct
term, is exactly the same as in the SRCC method (with
|®,) as a reference). In fact, when ., is one-
dimensional (My=span{|®,)}), the right-hand side of
Eq. (33) vanishes and the MRCC equations (22), (29), and
(33) reduce to the well-known equations of the SRCC
theory [1-10], with the wave operator U given by
eT|®y) {(®,|. The right-hand side of Eq. (33), referred to
as the coupling term, is characteristic of the MR formal-
ism and has no counterpart in the SR case. The structure
of both direct and coupling terms for the special case of a
two-dimensional model space is discussed in the next sec-
tion.

III. ORTHOGONALLY-SPIN-ADAPTED

TWO-REFERENCE CC FORMALISMS INVOLVING

SINGLE AND DOUBLE EXCITATIONS

To get a better idea of a general structure of the
Hilbert-space MRCC equations, we expand the exponen-
tials in Eq. (33) and neglect cubic and higher-order non-
linear terms. We also restrict ourselves to the simplest
possible, though broadly applicable [23], case of a two-
dimensional model space spanned by CS-type reference
configurations |®;) and |®,) involving two active orbit-
als |k ) and |1), that belong to different symmetry species
of the spatial symmetry group of the system. Such a
model space is complete, assuming that we focus our at-
tention on the totally symmetric singlet states. In gen-
eral, we would also have to consider other reference
states, namely a non-CS singlet configuration

ECTINUT w
|5) = ‘k>z 100)="6{le,) , 35)
and, for a spin-dependent Hamiltonian, its triplet analog
(1
o)== |L; 1o> . (36)

Here, PG, p=1,2, designates the excitation operator
generating the orthogonally-spin-adapted singlet state
Plp)="Pr.00) that is monoexcited with respect to
|®,) (here and in the following, a, B, etc. designate orbit-
als occupied in ICDP) while p, o, etc. are the orbitals
unoccupied in |®, ); for definition of ”’G¥, operators, see
Eq. (3) of Ref. [29] and for definition of the orthogonally-
spin-adapted states |2;SMy ), see Refs. [54,55]; cf. also
Refs. [3,23,26,29,57]). Of course, in the presence of sym-
metry, this model space reduces to a direct sum of invari-
ant subspaces labeled by the symmetry species of the in-
variance group(s) involved. Then, each invariant sub-
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space (in our case #My=span{|®,),|®,)}) may be con-
sidered as an independent model space [10]. Thus,
neglecting cubic and higher-order terms in Eq. (33) and
restricting ourselves to the case of a two-dimensional
model space M, we obtain [10,23,26,29,30]

(@,|PG] {HN[H—T "+ LT}, )
=(®,| PG/ (T ?—T") |0, ) HT
+%( D, [(p)GiT{ (T'@—TP))2

+[(T9, TP} @, Y HT, 37
where p=1,2 and ¢ =3—p [for larger model spaces, a
summation 3., will appear on the right-hand side of
Eq. (37)]. On the left-hand side of Eq. (37) we immediate-
ly recognize the absolute, linear, and bilinear terms of
SRCC theory (cf. e.g., Ref. [57]), while the right-hand
side gives the linear and bilinear coupling terms. Since
the reference configurations |®,) and |®,) are totally
symmetric singlet states, the excitation operators (")Gi
entering Eq. (37) represent a linearly independent set of
spin-adapted singlet excitation operators that generate to-
tally symmetric excitations into the /M. We will restrict
ourselves to monoexcitation operators ?’G£, Eq. (35), and
biexcitation particle-particle—hole-hole (pp-hh) coupled
operators p )Gﬁ‘[’;(i ), i =0, 1 [for their definition, see Eq. (2)
of Ref. [29]]. The latter generate orthogonally-spin-
adapted doubly excited singlet states P, ),
=)f, 2:;00)! when acting on |®,) (see Refs. [3,23,26,
29,54,55,57,58]). Of course, operators carrylng only
valence orbital labels [VG},2Gf, PG} (0),PGEX0),
etc.] have to be excluded. In the present paper and subse-
quently [36] we employ the CCSD (CC with singly and
doubly excited cluster components) approximation, so
that the cluster operators T'?) are approximated by their
one- and two-body components T(I") and T‘z‘”, respective-
ly. In the orthogonally-spin-adapted formalism these
take the following form:

TP =3 {plt |a)PGe (38)
ap
1
TP='S S poliflap), Porm, (69
a,B,<p,ai:0
(a=PB)
(pZo)

the coefficients (p|t{’|a) and {po|t¥’|aB), represent-
ing the corresponding monoexcited and biexcited cluster
amplitudes. Thus setting TW=T% +T%), expanding
both sides of Eq. (37), and assuming P’G, to be at most
biexcited operators [so that PG, represents either ?’G#,
or P'GE%(i)], we get [23,26,29 57] (see also Ref. [30])

z LP(GH+ 2 021G

n=0 n,n'=1
(n<n)

2 2
=3 RP(GH+ 3 BYAGH+BB(GH, 4o

n=1 n,n'=1

(n<n")
where the absolute, linear, and bilinear direct terms
LY(GH, LP(G)), (n=1,2), and Q¥AG)), (n,n’

=1,2, n =n’), respectively, are given by the well-known
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SR-like expressions

L&p)(G?):((D \(p)GiTHNp\cbp) , (41)
LP(GH=(@,|"G](Hy TP)c|®,) (42)
Q'(lﬁ)( G‘T)=%< CDP |(p)GiT[HNp( T;P))Z]Clq)p ) , (43)

Q(lg)(GiT): ( q)p I(p)GiT(HN,, T(lp)T(P) ) |q)P ) ’ (44)

and the linear and bilinear coupling terms by the formu-
las

wGH=(®,|"P6!T\"|®, Y HT (45)
B,(,")(G-T)Zl(d) PG (T2 @, YHST, 46)
BB(GH=(,|PG T (T —TP)|® YHLT, @47

12(G,.)=<<1>,,|‘P’G,T[T2 , TP 1@ YHET . 48)

The off-diagonal elements of the effective Hamiltonian
matrix HSF, p=1,2, g =3—p, take the form [23,26,29,57]

HT = (@, |1 G,’,‘k(O)(HNleT(‘I)JrT(zl))ClCDl) ) (49)
HST=(,| DG (0N Hy e ' T2 ] ®,) (50)
since
@,y =Gl 0)]e,), (51)
|®,)=2G}0)|®,) , (52)
and [29,57]
o)=[GH 1" . (53)

They can involve at most quartic terms, namely (T’ )*.
The diagonal elements H;I‘f, p=1,2, which together with
off-diagonal terms H;f, Egs. (49) and (50), are needed to
solve the 2 X2 secular problem [cf. Eq. (22)]

eff eff —

H“c,#-f—H]zcz“ =E,cy, ,
ff f (54)
€ € —

H21clu +H2262u —E#czﬂ ,

are identical with SRCC expressions for the energy (see
Refs. [23] and [57)), i.e.,

Hyl=H,, +(®,|(Hy [TV +T¢ + {TP )} cl®,)

(55)

and involve at most quadratic terms (7% )% Once Hj, cff
and Hg, X p=1,2, g=3—p, are known, the energies E
u=1, 2 and the corresponding eigenvectors C. determm-
ing ]\I/ ), Eq. (28), are easily found. Equations (40)—(50),
(54), and (55), together with expansions (38) and (39),
represent the basic equations defining the orthogonally-
spin-adapted two-reference fully quadratic CCSD ap-
proach.

It remains to work out the explicit expressions for the
quantities given by Egs. (41)-(50) and (55) in terms of
one- and two-body cluster amplitudes {p|t{’|a) and
(poltP|aB); and one- and two-electron integrals.
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(p) Heﬂ' Heﬂ‘)

These may be found in Refs. [23] (LP, p

[26] Q(,,S B2, B'%)), [29] (H,;p‘f up to 11near terms, R%’
B\»), B%), and [57] L‘p’ NN H;;r, H"'f) where we em-

ployed e1ther the algebraic approach exploiting the
replacement-operator technique [59] (see Refs. [23] and
[26]) or the diagrammatic procedure based on graphical
methods of spin algebras [3,55] (see Refs. [29] and [57]).
The resulting expressions are highly symmetric and can
be cast into a very compact form. The use of Eq. (33) in
its actual form, with the product e =T PeT" on the right-
hand side, is not as cumbersome as stated in Ref. [27], at
least at the level of approximation described in this sec-
tion, since most of the terms vanish and only few survive.

Some terms appearing in Eq. (40) can be grouped to-
gether, further simplifying final formulas. For example,
we can combine the linear and bilinear terms involving
cluster components of the same excitation order, such as
L“”(G,-Jr ) and Q8 (G]) (see Ref. [57)) or RY'(G]) and

B?(G]") (see Ref. [29]). Since we wish to explore the role
of 1nd1v1dua1 contributions given by Eqgs. (41)—-(48) (in
particular, the effect of monoexcited clusters), we avoid
such grouping. Combining the coupling terms R )(G;r)
and B'%(G/') is also inconvenient when we wish to test
the role of various approximations for the effective Ham-
iltonian (cf. Ref. [30]), since we must then use the same
approximation for Hg, “f in both Egs. (45) and (46). We
could also combine the bilinear coupling terms B % ( GJr

and B'% )(G ) by introducing the single term
BpGHh=B%cH+8% G, (56)
since [29]

BR(GH=(2,|PGH (T —T¢ Tyl YHT . (57)
This is particularly natural from the diagrammatic
viewpoint [29]. However,

B (Gg)=0 (58)

while the two-body components B%'[G22(i)] and
B(” ) [G"‘B (i)] contribute for different types of double exci-
tations [29] It is thus best to consider them separately.
We recall [29] here that G“—(G") and G"‘B(t)
=[G25()]".

To examine the role of various contributions (41)—(48)
in the MRCCSD formalism, different variants of the
MRCCSD method are considered. We start with the
linear MRCCSD (L-MRCCSD) theory, which arlses by
neglecting the nonlinear terms Q2/(G,), B®X(G/), and
BB (G, T) in Eq. (40). In this method the off-diagonal ele-
ments of the eﬁ‘ectlve Hamiltonian H;,ff that enter the
coupling terms R P( Gi ) must be approxtmated by matrix
elements qu, lest the linearity of R,, (G T) be destroyed.
Full expansions of the effective Hamiltonian in terms of
cluster amplitudes, Eqs. (49), (50), and (55), are only used
when evaluating the energies E,, and coefficients c,, Eq.
(54). Since the linear theory works well only in the highly
(quasi)degenerate regimes and is often plagued with
singularities in nondegenerate cases [26,30] (see Sec. V),
we examine three different nonlinear approximations.
First, we test the role of disconnected tetraexcited clus-
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ters + T{ in the direct term. This approximation, re-
ferred to as the MRCCSD-1 method, considers the non-
linear contribution Q%' (G ) *), Eq. (43), in addition to ab-
solute and all linear terms. Thus the MRCCSD-1
equatlons result from Eq (40) Dby setting

09 (6H=0%(GH=BL(GH)=B% (G/)=0. Next, the
MRCCSD-2 approximation cons1ders pair-cluster in-
teractlons in the dlrect and coupling terms, so that both
'3 (G and B (G ) terms, Eqgs. (43) and (46), respec-
tlvely, are retained while the remammg b111near terms
o (GhH, o (G, BB (G, BB (G]), and BB (G/) are
neglected This approach was already employed in Ref.
[26]. Finally, the fully quadratic MRCCSD approxima-
tion, hereafter referred to as the MRCCSD-3 method,
considers all bilinear terms given by Egs. (43), (44), and
(46)—(48). Comparison of MRCCSD-2 and MRCCSD-3
results will enable us to assess the role played by the non-
linear terms involving one-body clusters 7.

In all three nonlinear approximations we employ the
full expansion for the effective Hamiltonian, Egs. (49),
(50), and (55). The role of various terms appearing in
these expressions was already investigated in Ref. [30],
where three different truncation schemes for HT were
analyzed in the MRCCSD-3 approach. In the crudest
approximation [30], referred to as MRCCSD-3a, we con-
sidered at most bilinear contributions to H*T and, in addi-
tion, we required that the entire expression for the cou-
pling term (taking into account the dependence of H°f on
cluster amplitudes) contains at most bilinear terms, so
that the absolute term qu replaced Hg, f in expressions
for B.P) (GT) and B (G ), while in computmg the linear
terms R‘P)(G ) we assumed that [29] [cf. Eq. (29)]

Ho=H,, +(®,|[Hy (TP +T{)]c|®,) . (59)

In the MRCCSD-3b approx1mat10n we neglected cubic
and quartic terms in HSS and HSF, so that the effective
Hamiltonian matrix elements entering the right-hand side
of Eq. (40) and those appearing in the secular problem
(54) contained at most bilinear terms. Finally, in the last
approximation [30] MRCCSD-3¢, we simply considered
all nonlinear contributions to the effective Hamiltonian
(even the cubic and quartic ones). Comparison of ener-
gies obtained with the MRCCSD-3x, x =a,b,c, ap-
proaches showed that different truncation schemes for
the effective Hamiltonian matrix elements lead to almost
identical results with differences amounting to at most a
few millihartrees (couple of microhartrees when the
MRCCSD-3b and MRCCSD-3c¢ energies are compared
[30]). In view of this fact and the simplicity of computing
H*¥ for a two-reference model space, we employed the
full effective Hamiltonian in all MRCCSD methods in-
vestigated in this paper (except for L-MRCCSD).

To explore the basic characteristics of the SUCC ap-
proach, in particular its limitations in determining
potential-energy surfaces for various molecular systems,
and to get detailed information about the quality of the
resulting eigenstates, we apply the above-described
MRCCSD schemes to simple four-electron model sys-
tems consisting of two interacting hydrogen molecules.
A brief description of these models and of computational
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details associated with the implementation and use of the
orthogonally-spin-adapted two-reference formalism are
given in the next section.

IV. COMPUTATIONAL DETAILS

A. Model description

In this paper and subsequently [36] we study a proto-
typical molecular system for which the range of the
configurational and orbital quasidegeneracies [60] can be
continuously varied by changing a single parameter
defining its geometry, and which is simple enough to en-
able numerous computations using many different
methods to be carried out, including the full
configuration-interaction (FCI) method providing the ex-
act solution. In this way, we can assess the effectiveness
of various MRCC approaches and gain deeper insight
into the nature of the resulting solutions.

The model consists of two interacting hydrogen mole-
cules in several geometrical arrangements. In this paper
we concentrate on planar models introduced by Jan-
kowski and Paldus [37], namely, H4, D4, and P4 (see Fig.
1). Nonplanar geometries will be the subject of future
work [36]. In the H4 model [Fig. 1(a)], the H, molecules
are arranged in an isosceles trapezoidal configuration
with all nearest-neighbor internuclear separations (or
H—H “bond lengths”) fixed and equal to a, while the
angle 8=/H(1)-H(2)-H@3)—=/2=/H((2)-H(3)-H4)— 7 /2
varies in the interval § E€[0,7/2]. We define the ‘“degen-
eracy parameter” a=3§/7, a€[0,1]. Proceeding from
the square conformation (a=0) to the linear one (a=1),
we obtain a cross section of the H, potential-energy sur-
face involving the dissociation of a single chemical bond.

Once the H(1)—H(4) bond is broken, we can vary the
H(2)-H(3) distance. This leads to the linear model D4,
whose geometry is determined by the intermolecular sep-
aration a, defined as the distance between atoms H(2) and
H(3) [Fig. 1(b)]. The parameter a can be varied from O to
infinity, and we can consider both the short-range region
a=a as well as the dissociation of the second chemical
bond when a>>a. By proceeding from the square con-

H4 e P4
Y, \Y TN
Ly ;[1 4{1
e @
a
D4 S4
1 2 3 4 12 3
—a —— o ———a—=! Vo4
(b) fe— O —

(d)

FIG. 1. Nuclear configurations and definition of the parame-
ter a for the H4 (a), D4 (b), P4 (c), and S4 (d) models.
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formation to the D4, a— « limit, we model the consecu-
tive breaking of two chemical bonds.

Another type of dissociation of the H, cluster is
achieved when two H—H bonds are broken simultane-
ously. This takes place when we start from the H4, a=0
geometry and consider a long-range limit of the P4 model
consisting of two parallel hydrogen molecules with nuclei
in a rectangular arrangement [Fig. 1(c)]. Geometry of
the P4 model is again described by the intermolecular
distance a, and the dissociation of the two bonds takes
place when a>>a. The highly degenerate compressed
case, when a < a, is also considered.

The fixed internuclear separation a is usually chosen to
be 2.0 a.u., so that the hydrogen molecules involved are
slightly stretched (the FCI equilibrium bond length ob-
tained with the MBS used here is approximately 1.667
a.u.; the corresponding restricted Hartree-Fock value is
1.604 a.u.). This enhances the quasidegeneracy effects
[26,30] (see later) as illustrated for the trapezoidal
geometry (H4 model), for which three different values of
a are considered: in addition to the standard stretched
bond length @ =2.0 a.u. we also consider the nearly equi-
librium (¢=1.6 a.u.) and compressed (¢=1.2 a.u.)
geometries.

From this viewpoint it is also interesting to examine
the @ — o limit. We thus introduce one additional mod-
el, referred to as S4, in which four hydrogen nuclei form
a square, and we vary the nearest-neighbor separation
from the one corresponding to a compressed geometry to
the fully dissociated limit, where all four H—H bonds are
broken [Fig. 1(d)]. This is certainly the most demanding
model, since our model space cannot describe the simul-
taneous breaking of all four bonds. It may be compared
with a strongly correlated regime in the cyclic polyene
model, where most of the many-body methods, including
several highly accurate SRCC approaches, encounter
serious difficulties (cf., e.g., Refs. [60—-63] and references
therein).

In this paper and subsequently [36] we restrict our-
selves to the MBS models with one 1s-type atomic orbital
[64] (AO) located on each hydrogen nucleus. (The same
basis set was employed in Refs. [26-28,30,34,37] and
[40-43].) Computations with larger basis sets, including
the double zeta plus polarization basis [38] (cf. also Refs.
[27] and [39]), clearly indicate the relevance and useful-
ness of MBS models, which not only display all the quali-
tative features involved (such as the singular behavior of
linear CC (L-CC) approaches [26,30,37,38] and the role
of various terms arising in the theory [30,37]), but also
give a good quantitative estimate of the performance of
various approximate procedures when compared with the
corresponding exact FCI results. However, in spite of all
these useful features of MBS H, models, we must still
keep in mind their inherent limitations.

B. Reference configurations and orbitals

To define our model spaces we employ restricted
Hartree-Fock (RHF) MO’s in the linear combination of
atomic orbitals (LCAO) approximation. Since all our
models possess at least one symmetry element of order 2,
each MO must either be symmetric or antisymmetric
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with respect to this operation. For example, four RHF
MO’s for the MBS H4 and D4 models, whose spatial
symmetry groups are, respectively, C,, and D ,, take
the following form:

¢i=ai[X1+(_l)i+1X4]
H= D020 [ (=17
(i=1,...,4), (60)

where [x] designates the largest integer not exceeding x
(Gauss symbol) and Xj»Jj=1,...,4are the 1s atomic or-
bitals centered on nuclei H(j) (cf. Fig. 1). Thus, only four
LCAO coefficients (one for each MO) are unknown and
must be determined by the RHF iterative procedure.
The situation is even simpler for the P4 and S4 models,
since corresponding RHF MO’s are fully determined by
the D,, symmetry group of the P4 model, so that
a;=

i=b, (i=1,...,4). 61)

For the S4 model, a,=a;, so that orbitals ¢;, Egs. (60)
and (61), are adapted to the chain D,, CD,,, the latter
group being the symmetry group of S4. Thus, the orbit-
als (60), (61) for the S4 model can be classified either ac-
cording to the irreducible representations (irreps) of D,,
(symmetry group of the P4 model) or D,;,. The symme-
try groups of various models and the symmetry species of
the corresponding RHF MO’s are summarized in Table 1.
Note that for the S4 model, ¢, and ¢; span two one-
dimensional irreps b,, and b3, of D,, or a two-
dimensional irrep e, of D,;,, which decomposes into b,,
and b;, when subduced to D,

e, (D) 1Dy, =b,, +bs, . (62)

Except for the compressed (a <a ) P4 model, the orbit-
al labeling ¢;, i =1,2,3,4, corresponds to the increasing
orbital energy and the RHF ground-state configuration is
(¢,)%(¢,)>. When a<a in the P4 model, the
configuration (¢;)*(¢;)* becomes the RHF ground state
while (¢,)%($,)* represents one of the excited
configurations. The orbital energy picture associated
with these configurations is shown in Fig. 2. It is evident
that both configurations (¢,)%(¢,)* and (¢,)*(¢;)> become
degenerate for the square geometry a =a, since the orbit-
al energies associated with these two different occupation
schemes are equivalent when a=a. We could, of course,
switch the MO’s when passing through the square
geometry (when proceeding from large o’s toward the
a=0 limit), but it is more instructive to use (¢;)%(¢,)? as

TABLE I. Symmetry groups of the studied models and sym-
metry species of the RHF MO’s, Egs. (60) and (61).

Model Symmetry MO symmetry species
group & é2 &3 2
H4 C,, a, b, a, b,
D4 D, ag ot U; oF
P4 D,, a, b,, bs, by,
S4 D4h ag e, e, b2g




2746

a reference even for a<a, since the corresponding
highest occupied (HOMO) and lowest unoccupied
(LUMO) MO’s, ¢, and ¢;, respectively, become exactly
degenerate at some point ay<a (for example, for a =2.0
a.u., ap=1.1428 a.u.; cf. Fig. 2), which would not happen
if we switched to the (¢,)%(¢;)? reference. In this way we
can explore the entire range of the orbital quasidegenera-
cy [60] effects, including nondegenerate cases and vanish-
ing of the HOMO-LUMO gap. With (¢,)%(¢,)* as a
reference, the orbital energies €, and €, (g; is the energy
of ¢;) cross one another at ay, so that for a <a, we have
€3 <&, (cf. Fig. 2). HOMO and LUMO energies associat-
ed with the (#,)%(¢;)? configuration also cross, this time
for ap>a (for a=2.0 a.u., a;=3.4611 a.u,; cf. Fig. 2).
The fact that both energy crossings are shifted away from
the square geometry, where it should occur according to
simple MO theory, was first documented by Fukutome in
his study of instabilities of RHF solutions describing
chemical reactions [65]. Fukutome proved that crossing
of the HOMO and LUMO energy levels of configurations
(6,)%(¢,)? and (¢1)2(¢3)2 cannot take place at the square
nuclear configuration due to the presence of interelec-
tronic repulsion terms in the Hamiltonian. Consequent-
ly, the orbitals ¢, and ¢, for the S4 model are never de-
generate, despite the fact that they belong to the same
symmetry species e, of D,,. The size of the HOMO-
LUMO gap is measured by the magnitude of the in-
terelectronic  repulsion integral ¥ ,,=<{ X X2lx1X2)
=(X1X11X2X>) so that the orbitals ¢, and ¢; become de-
generate only in the fully dissociated limit of the S4 mod-
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-15 ‘
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FIG. 2. Dependence of the Hartree-Fock orbital energies ¢;
(in hartrees) that are associated with configurations (¢;)*(¢,)?
(solid lines) and (¢,)*(¢;)* (short-dashed lines) for the MBS P4
model with ¢=2.0 a.u. on the parameter a. For both
configurations, the energies ¢; of the MO’s ¢; for «=6.0 a.u. in-
crease in the order: €, <g, <e;<g, Notice that the crossing of
HOMO and LUMO energy levels is always shifted away from
the square geometry. For the RHF solution (¢,)%(¢$,)? it occurs
at ap=1.1428 a.u., while for the configuration (¢;)%(¢;)? it
occurs at ap=3.4611 a.u. (see the text for details).
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FIG. 3. Dependence of the Hartree-Fock orbital energies ¢;
(in hartrees) that are associated with configuration (¢,)*(¢,)? for
the MBS S4 model on the parameter a. The orbital labeling ¢,
¢y, ¢3, ¢4 corresponds to the increasing orbital energy. The
same diagram would result if the (¢,)%(¢;)* configuration was
used as a reference, but the energies of MO’s would increase in
the order g, <&3 <g, <g4. Notice that the HOMO-LUMO ener-
gy gap never vanishes for finite values of a (cf. the text for de-
tails; see also Fig. 2).

el, where all the orbital energies are identical and equal to
the energy of the 1s hydrogenic orbital (see Fig. 3).

The existence of a nonvanishing HOMO-LUMO gap
for the square geometry, in spite of the fact that orbitals
¢, and ¢; belong to the same symmetry species of D, is
an indication of symmetry breaking. In fact, the Fock
operator for the S4 model, associated with the solution
(¢1)%(,)? [or (¢,)%(¢3)?], does not commute with all sym-
metry operations of D, but only with those belonging to
D,,. Symbolically, we can express this fact by writing

[F[(¢, )2(¢j )2]’D2h 1=0,

(63)
[FL()%(6;)*],D4,\D3;, 170, (j=2,3).

Relations (63) are an obvious consequence of the fact that
both single-determinantal configurations (¢;)*(¢,)* and
(¢1)*(¢3)* violate the D,, symmetry of the S4 model.
The e, orbitals are only partially filled in either (¢,)%(¢,)?
or (¢;)%(¢;)? configuration. In order to avoid this sym-
metry breaking while using a single-determinantal refer-
ence, we would have to use (¢,)*(¢,)* configuration, in
which both e, orbitals remain unoccupied. In this case
we would have

[F[($,7($4)],D4,1=0,

and the empty orbitals ¢, and ¢; would be degenerate.
This symmetry breaking has additional consequences for
the MRCC formalism employing (¢;)%(#,)*> and
(¢,)%(¢;)* as references, as will be shown later on. Let us

(64)
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TABLE II. FCI coefficients of the configurations |®,)=|($,)%($,)*| and |®,) =1(¢$,)%($;)?| for the
ground-state wave function of the MBS H4 model with the H-H internuclear separations a =1.2, 1.6,
and 2.0 a.u. and different values of the parameter a.

a=0.500 0.200 0.150 0.100 0.050 0.010 0.005 0.000
a Configuration
1.2 |®,) 0.991 0.988 0.986 0.982 0.966 0.833 0.775 0.702
|®,) —0.106 —0.114 —0.123 —0.148 —0.228 —0.539 —0.619 —0.702
1.6 |®,) 0.983 0.979 0.976 0.970 0.948 0.811 0.760 0.697
|®,) —0.146 —0.153 —0.162 —0.187 —0.270 —0.560 —0.628 —0.697
2.0 [®,) 0.967 0.962 0.958 0.949 0.922 0.786 0.742 0.690
|®D,) —0.193 —0.200 —0.209 —0.234 —0.317 —0.576 —0.632 —0.690

only mention that we encounter many more cases of sym-
metry breaking when studying nonplanar geometries
[36,66].

C. Orbital and configurational degeneracies

We have seen that the RHF MO’s associated with the
(¢,)%(¢,)* configuration display various degrees of
quasidegeneracy, including the exact degeneracy of
HOMO and LUMO levels for certain conformations. It
is well known, however, that orbital degeneracy alone
causes few problems for CC approaches [60]. Even the
simplest L-CC methods give accurate correlation energies
in such cases (cf, e.g., Refs. [67] and [68]).
Configurational degeneracy, on the other hand, is of
much greater concern. In this case, the linear SRCC
(L-SRCC) approaches, such as L-CCD (CC with doubly
excited amplitudes) or L-CCSD, suffer singular behavior
due to the strong interaction of the ground-state
configuration with the low-lying biexcited states
[37,38,53,61,62,69], while the L-MRCC methods fail due
to the presence of intruder states, which strongly interact
with one or more model-space configurations [26,30] (see
the next two sections). Inclusion of nonlinear terms in
the CC formalism removes the L-CC singularities
[26,30,37,38,53,61,62], but new serious problems arise
when both types of quasidegeneracies (orbital and
configurational) are simultaneously present or when the
dimension of the quasidegenerate reference space be-
comes very large [60]. For example, in the linear metal-
liclike systems, even the full CCSD or CCSDT (CCSD

with triply excited cluster amplitudes) approaches suffer
singular behavior [61-63].

It is thus important to examine the effect of various
configurational degeneracies. The H, models provide us
with a useful example in this regard. In the case of H4,
P4, and S4 models, we deal with a rather strong
configurational quasidegeneracy involving configurations
(¢,)%(¢,)? and (¢,)X($3)%, as may be seen by examining
the FCI ground-state wave function (cf. Tables II and
III). As mentioned earlier, this quasidegeneracy becomes
more pronounced with increasing internuclear distance a
(see, e.g., the FCI coefficients for the H4, a =1.2, 1.6, and
2.0 a.u. models in Table II). True degeneracy of
(¢1)4(¢,)* and (,)*(¢;)* configurations is then reached
for the square geometry a=a (cf., Table III). Thus, a
challenging situation arises when the dissociation limit of
the S4 model is studied. In this limit, orbital and
configurational degeneracies are heavily mixed, produc-
ing a very severe test for various formalisms, including
the MRCC theory investigated in this paper. Although
the model space employed cannot properly describe the
H,—4H dissociation, this a =a— ¢ limit of the S4 mod-
el may be compared to a strongly correlated regime in the
cyclic polyene model, where the increasing role of qua-
druply excited connected cluster components [70] causes
the failure of highly sophisticated theories like CCSDT
[63]. It is thus worthwhile to examine the behavior of the
two-reference formalism in this limit.

The D4 model represents an entirely different situa-
tion, since the (¢;)*($3)? configuration is relatively impor-

TABLE III. Same as Table II for the MBS D4, P4, and S4 models with a =2.0 a.u.

S
———_

T a=17.0 5.0 2.5 2.2 2.0 1.8 1.5
Model Conﬁgurm '
D4 |®,) 0.968 0.968 0.969 0.969 0.968 0.967 0.964 0.957
|®,) —0.088 —0.091 —0.123 —0.149 —0.173 —0.193 —0.216 —0.257
P4 |®y) 0.968 0.968 0.961 0.947 0.893 0.690 0.345 0.144
|®,) —0.088 —0.094 —0.143 —0.219 —0.386 —0.690 —0.916 —0.976
S4 |<1>1 ) 0.451 0.524 0.656 0.676 0.685 0.690 0.694 0.698
|®,) —0.451 —0.524 —0.656 —0.676 —0.685 —0.690 —0.694 —0.698
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tant only for small a values (see Table III). For large a
values, the dominant configuration in the FCI expansion
of the ground-state wave function is (¢;)%(¢,)?, while al-
most all biexcited configurations relative to (¢;)*($,)*
contribute equally (a similar situation occurs in the case
of the P4 model when a— «; see Ref. [37]). Thus, the
D4 model essentially represents a single-reference case
with an increasingly rich biexcited manifold for large o’s.

D. Model spaces

The dominant role of CS configurations (¢,)*(¢,)* and
(¢,)X(3)* suggests their choice as model states for our
MRCC formalism. Such choice of the model space per-
fectly fits the two-reference theory described in the previ-
ous section. The lowest totally symmetric orbital ¢,
represents the core orbital and the next two orbitals, ¢,
and ¢,, the active orbitals. Since ¢, and ¢; belong to
different symmetry species (see Table I), the two-
configuration model space is complete. We thus have

[, =1(¢))*($,)? , (65)

[®,)=1(¢)%(¢3)*] , (66)
so that [cf. Egs. (51) and (52)]

|0,y =1G30)|®,), |®)=2G6%00)®,). (67

Since we study the MBS models, there is only one virtual
orbital ¢,.

The S4 model requires special attention. In this case,
active orbitals ¢, and ¢; belong to the same symmetry
species e, of D, so that the basic assumption of our
two-reference formalism seems to be violated. It would
seem that in order to obtain a complete model space, we

must also consider the configuration [cf. Egs. (35) and
(36)]

Lo (3
[®3) = 12> : (68)
and its triplet analog

(1
|®y )=

3,
3:10) . (69)

since the four states |®,), |®,), |®%), and |®} ) span the
representation e of D,,. The triplet state |®} ) cannot
interact with the remaining three e? states since our
Hamiltonian is spin independent. Since the enlarged
model space M, =span{|®,),|®D,),|®}),|d )} breaks
down into a direct sum of subspaces carrying different ir-
reps of Dy,

My=span{|®,),|D,),|D}),| DY)}

:‘MO,BIg@‘/M’O,AlgGB‘/M’O,BZg$'MO,Azg ) (70)

where
M0,31g=span{(|d>1)—|<I>2>)/\/—2} , (71)
Mo,A1g=Span{(|<I>1)+|¢2))/\/§} , (72)
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./l’lo’Bzg:Span{ @57, (73)
Moy, =span{|)] . 74

the CS configurations |®,) and |®,) do not interact with
the state |®}). Thus, the model space

My=span{|®,),|®,)}=span{|D,),[P,)}, (75)
where

1) =(l®))—|®,))/V2, (76)
and

1®,)=(|®))+[®,))/V2 77

can be regarded as a complete reference space. Obvious-
ly, decomposition of the enlarged model space i, Eq.
(70), into a direct sum of four D,,-invariant one-

dimensional subspaces corresponds to the group-
theoretical relation
el=E}=B,,0A,,0B,,® Ay, . (78)

The RHF MO’s (60) and (61) (where a, =a;) are adapt-
ed to the chain D,, CD,,, so that relations (63) hold.
These relations imply that the proper symmetry group to
be used for the S4 model is D,;, which implies in turn the
completeness of M, Eq. (75), since ¢, and ¢, belong to
different symmetry species of the D,, group (cf., Table I).
We immediately find that both configurations |®,) and
|®,) [or |®,) and |®,), Egs. (76) and (77)] are D,, total-
ly symmetric, while [®}) and |®y) transform as
B,,(D,, ) states, in agreement with relations

A1g(Dyy)iDy), =B 14(Dyy ) Dy = Ag(Dyy) (79)

A2 (D )IDyy, =By (Dyy )N Dy =B g(Dyy) . (80)

We thus conclude that two-reference CC theory em-
ploying model space (75) for the S4 model will produce
two solutions that are totally symmetric with respect to
the symmetry of the Fock operator (D,,), but at the
same time belong to different symmetry species of the in-
variance group of the Hamiltonian (D, ). This is related
to the fact that for the model space /M, the correspond-
ing MRCC wave operator U,

U=eT"P,+eTP, , (81)
and, in consequence, the effective Hamiltonian H°T, Eq.
(19), are invariant with respect to the D,, symmetry
operations, so that the resulting states

W) =U|®)=U(|®;)—|®,))/V2, (82)
]wz)=U|62>=U(|¢1>+i¢)2>)/‘/§, (83)

may be classified by the symmetry species of Dg,. We
must remember, however, that the cluster operators TP,
p=1,2, break the D,, symmetry in exactly the same way
as does the Fock operator F[(#,)%(#,)*]. Thus, symboli-
cally
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TABLE IV. Excitation operators '’G; generating orthonormal spin-adapted configurations
|®;)="G,;|®,) spanning the FCI totally symmetric singlet space for the MBS H4, D4, P4, and S4
models. See Refs. [23,26,29] for the definitions of orthogonally-spin-adapted configurations and excita-
tion operators. As usual, S, D, T, and Q stand for single, double, triple, and quadruple excitations, re-

spectively.
Configuration Excitation Excitation
number i operator ‘G, Type order Model
1 1 REF 0 H4,D4,P4,54
2 G33(0) D 2 H4,D4,P4,84
3 MG#(0) D 2 H4,D4,P4,S4
4 DGH(0) D 2 H4,D4,P4,S4
5 WGH0) D 2 H4,D4,P4,54
6 MGH(0) D 2 H4,D4,P4,54
7 WG#(1) D 2 H4,D4,P4,54
8 a3 N 1 H4,D4
9 MG S 1 H4,D4
10 1G48(0,0,4)="6%(0)"G} T 3 H4,D4
11 (1G114(0,0,1)=""G}(0)"G3 T 3 H4,D4
12 (WG344(0,0,0,0,0)=""G}(0)’'G42(0) Q 4 H4,D4,P4,54
[U,D,,1=0=[H*TD,, 1, (84) metric A, (Dy,) irrep]. Thus, for the MBS P4 and S4

while

[T, D4, \D,, 150,

» (85)
[Tp’DZh]:O »

which has interesting consequences for the general form
of the effective Hamiltonian and the properties of the
MRCC solutions for the MBS S4 model (see Sec. V D).
Let us mention here that in more general situations even
the invariance of the model space with respect to the
maximum symmetry group of the Hamiltonian may not
take place, and thus the relations analogous to Eq. (84)
may not hold, so that the full symmetry group of the
Hamiltonian cannot be used to classify the resulting
states. Examples of such situations will be presented else-
where [36]. As a final remark in this discussion, let us
emphasize that the high symmetry of the S4 model
uniquely determines the coefficients c,,, Eq. (17)
(C“ FTCTCpTCn T 1/‘/2), so that we do not have
to solve the secular problem (54) to get the eigenvectors

c, in this case.

E. CI results

To assess the performance of various MRCC solutions
we compare them with the exact FCI results. For the to-
tally symmetric singlet states considered, we only need
twelve configurations. The excitation operators generat-
ing the required orthogonally-spin-adapted states | P j>,
j=2-12, through their action on the reference |®,) are
listed in Table IV. In the case of the P4 and S4 models,
monoexcited and triexcited configurations may be ig-
nored, since they belong to other symmetry species than
do |®,) and |®,) [namely, to Bj,(D,,), while the
remaining eight configurations belong to the totally sym-

models, the CI method limited to doubly and quadruply
excited states and the FCI approach are equivalent (cf.
Ref. [37]). An additional splitting of the A4,(D,,) FCI
matrix for the S4 model into A4,(D,;,) and B (D)
subproblems is not essential here, since the two-reference
CC theory considered in this paper yields solutions be-
longing to different D4, subproblems (see the above dis-
cussion).

F. MRCC equations and their solution

Singly and doubly excited operators (P)G’; and
(”)G‘;‘Zg(i), (p=1,2; i=0,1) which are required in the
two-reference CCSD formalism, when applied to the
MBS H4, D4, P4, and S4 models, are listed in Table V.
Acting on model states |®;) and |®,), Egs. (65) and (66),
respectively, they generate totally symmetric singlet
states in JU}, so that all of them carry at least one non-
valence index (1 or 4). In general, we have sixteen excita-
tions (seven for the first reference and nine for the second,
see Table V), except for the P4 and S4 models, where the
monoexcitations 'G3 and (VG4 do not contribute. This
means that the MRCCSD and MRCCD methods are
equivalent for the MBS P4 and S4 models (this will not be
the case when larger basis sets are employed). It should
also be noticed that for the P4 and S4 models, the biexci-
tations PG%%(0), p#0o, and P’G45(0), a#B, are not to-
tally symmetric (cf. Table V).

MRCCSD equations (40) represent an energy-
independent system of nonlinear algebraic equations,
which has the following general form:

N
> cuxtjtg=0,

1K=1

U<K)

N
ar+ 3 byt +
J=1

I=12,...,N), (86)

where N designates the number of linearly independent
singly and doubly excited cluster coefficients {p|t{"’|a)
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TABLE V. Monoexcitation and biexcitation operators *'G¥%,
and P’G53(i), (p=1,2; i=0,1) required in the two-reference
CCSD formalism when applied to the MBS H4, D4, P4, and S4
models. Equation number [ labels the equations in system (86),
N=16.

Equation
pr number (I) PG, Model
1 1 MG#(0) H4,D4,P4,54
2 VGii(0) H4,D4,P4,84
3 DGt 0) H4,D4,P4,54
4 MG3#(0) H4,D4,P4,54
5 WGH(1) H4,D4,P4,54
6 a3 H4,D4
7 HGi H4,D4
2 8 2)G%(0) H4,D4
9 2G%(0) H4,D4
10 2G14(0) H4,D4
11 2G34(0) H4,D4
12 2G%(0) H4,D4,P4,54
13 2G1(0) H4,D4,P4,54
14 2G4(0) H4,D4,P4,S4
15 2G%(0) H4,D4,P4,S4
16 2G#H(1) H4,D4,P4,54

and {po|t¥’|aB); (for brevity designated here as t;) or
operators (P)Gg and (p)Gfl‘é(i), (p=0,1;i=0,1). Since the
order of the spin- and symmetry-adapted MRCCSD sys-
tem of equations for all the models considered in the
present paper is very small (cf. Table V), we can simply
store the necessary coefficients a;, b;;, and c¢;;x and solve
the system (86) for the unknown cluster amplitudes ¢; by
applying the standard Newton-Raphson procedure [see,
e.g., Appendix B in Ref. 68(a)], while using Gaussian el-
imination to solve the linear system resulting in each
iteration. Normally, only a few iterations (at most a
dozen or so) are needed to achieve eight-digit accuracy
for the cluster amplitudes, or better. The entire pro-
cedure is thus very similar to that used in our SRCC cal-
culations [2,37,38,60-63,67,68,71-73]. The only essen-
tial difference is the presence of effective Hamiltonian
matrix elements HST and HS in the linear and bilinear
coupling terms, entering Eq. (86), which depend on clus-
ter amplitudes and must be recalculated in every
Newton-Raphson iteration (other algorithms, like allow-
ing the Newton-Raphson procedure to converge first be-
fore updating the coupling term and then iterating in this
fashion until convergence is achieved, were also exam-
ined, but finally we decided to update coupling terms
after each Newton-Raphson iteration).

The convergence rate of the Newton-Raphson scheme
strongly depends on the initial guess t ©=||¢{V||,<;<y-
Moreover, the system of nonlinear equations (86) may
possess numerous solutions, in which case the actual
solution that we obtain will depend on the choice of t (.
As we have shown earlier [26,30] (cf. also Refs. [61] and
[63]), an appropriate choice of t‘© is very crucial. The
L-MRCC solutions [obtained by solving system (86) with
the nonlinear part neglected, c;;x =0] are often useless
due to their singular behavior caused by the presence of
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intruder states [26,30] (see the next two sections). Al-
though it is possible that in some cases this situation can
be remedied by employing other choices for t‘? (cf. dis-
cussion in Refs. [61] and [63]), the best way to avoid con-
vergence problems due to an appropriate choice of initial
guess for cluster amplitudes is to exploit an “analytic
continuation” of solutions from the region of geometries
for which a good starting point is easily available. This
procedure, which we often exploited in the past
[26,30,37,38,60-63,71-73], employs as a first approxi-
mation t©, the converged solution for a sufficiently close
geometry,

t Oa+Aa)=t(a), (87)

while choosing a sufficiently small step Aa. This pro-
cedure is particularly helpful in the vicinity of singulari-
ties (most likely algebraic branch points; cf. Refs. [61]
and [63]), that plague some of the nonlinear MRCCSD
solutions (see the following sections). This analytic con-
tinuation is the only procedure that enables us to follow a
particular solution of the system (86) while changing the
geometry of the model. As far as we know, it is the only
method that enables us to examine the analytic properties
of CC potential-energy surfaces and the only efficient way
to determine the limits of applicability of CC approaches
(cf. Refs. [61] and [63]).

The actual computations were carried out with a set of
programs exploiting both the spin and spatial symmetry
common to all models. This was achieved by adapting
the codes used in the original SR studies of the H, models
[37] to the two-reference case. Correctness of these codes
was checked by deriving explicit expressions for various
terms occurring in the MRCCSD equations for the MBS
H, models in different ways and checking them numeri-
cally. Exploitation of the available symmetries allowed
us to reduce the dimension of the problem and thus to
eliminate most of the difficulties which are normally asso-
ciated with CC computations. The GAMESS electronic
structure package [74] of computer programs was used
for the initial RHF calculations. The one- and two-
electron molecular integrals needed to construct the
coefficients a;, b;;, and cj;x and the effective Hamiltonian
matrix were evaluated using the transformation routines
that form part of the GAMESS CI system.

V. RESULTS

We now focus on a comparison of MRCCSD energies
with FCI data. Some specific problems, namely the
breakdown of the L-MRCCSD method and the cluster
analysis of the MRCCSD wave functions, are addressed
in Secs. VI and VIIL.

A. H4 model

In the vicinity of the degenerate limit (¢ =0), even the
simplest L-MRCCSD formalism provides very good
correlation energies. For a <0.05, the energies (of the
two lowest totally symmetric singlets) differ from the FCI
energies by at most a couple of millihartrees (mhartree)
[26]. This excellent performance of the L-MRCCSD
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method in the degenerate region is apparent from Figs. ~ havior is very similar to that of SR L-CCD and L-CCSD
4(a)-4(c), which display the a dependence of the L-  approaches in the vicinity of the a=0 limit [37,38], in

MRCCSD and MRCCSD-3 energies for three distinct in-
ternuclear separations @ =1.2, 1.6, and 2.0 a.u. As the
nondegenerate regime is approached, the second refer-
ence state energy becomes degenerate with the next
lowest-lying state that acts as an intruder state and the
L-MRCC theory undergoes singular behavior. This be-

which case our second reference |®,) plays the role of an
intruder. Clearly, inclusion of |®,) in our model space
removes the singularity arising in the SR approach but at
the same time increases the probability of encountering
another intruder that interacts with |®,). This problem
is even more acute for the D4, P4, and S4 models, where
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FIG. 4. A comparison of the FCI and various MRCCSD energies AE (in hartrees) relative to the ground-state RHF energy,
AE =E —E&YF, for the low-energy totally symmetric singlet states of the MBS H4 model considered over the whole range of the an-
gular parameter a. Three distinct internuclear separations a are assumed, namely, @ =1.2 a.u. [Fig. 4(a)], a =1.6 a.u. [Fig. 4(b)], and
a=2.0 a.u. [Fig. 4(c)]. The L-MRCCSD energies that are represented by the long- and short-dashed lines display a singular behavior
around a=0.26 (for a=1.2 a.u.), a==0.21 (for a=1.6 a.u.), and a=0.16 (for a =2.0 a.u.). Pairs of energies associated with two dis-
tinct solutions of the MRCCSD-3 equations are represented by the thick chain-dashed line (1st solution) and the thin solid line (2nd
solution). The dotted lines represent the successive FCI eigenstates of the ! 4;(C,, ) symmetry.
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the behavior of the L-MRCCSD method is indeed very
complex (cf. Secs. VB-V D and Sec. VI). As we shall
see in the next section, the L-MRCCSD singularity can
be quite reliably predicted by observing the dependence
of easily accessible diagonal CI matrix elements on the
geometry of the nuclear framework.

Once we pass the region of singular behavior, the
second root of the effective Hamiltonian describes the
third (second excited) totally symmetric singlet state, to
which the reference |®,) now primarily contributes (cf.
Fig. 4). It is remarkable that the ground state is still very
well described by the lowest root of H T Thus, while the
ground state is better and better approximated by |®,) as
a increases, |®,) approximates successively higher and
higher excited states (see also Secs. VB and VC). It is
also interesting to observe (Fig. 4) that the “width” of the
L-MRCCSD singularity becomes narrower and narrower
as the nuclear framework is compressed together. This is
precisely the reason why we consider slightly stretched
(@=2.0 a.u.) H, molecules (cf. Ref. [26]). Notice that
with increasing a, the first and second L-MRCCSD roots
approach one another in the region of singular behavior,
so that it may finally happen that the two energy curves
will touch one another at some point. Further increase in
the bond length a should thus lead to another type of
L-MRCCSD breakdown, namely to the failure of the
L-MRCCSD method to yield real energies (see Secs. VB
and VC). Notice, finally, that with increasing internu-
clear distance a the L-MRCCSD singularity shifts to-
wards the degenerate (a=0) limit (see caption to Fig. 4).

Just as in the SR case [37,38], the singular behavior of
the linear approximation is avoided when we account for
nonlinear terms. This is illustrated graphically in Figs.
4(a)-4(c), and in greater detail in Tables VI-VIII, where
three different nonlinear approximations MRCCSD-n,
n=1,2,3, defined in Sec. III, are compared with FCI re-
sults. It is remarkable that already the direct (7% )?
terms entirely eliminate the singular behavior of the
L-MRCCSD approach. In fact, the ground-state energies
provided by all three MRCCSD-n approximations differ
by at most ~2 mhartree for a =2.0 a.u. and by less than
~0.5 mhartree for ¢ =1.2 and 1.6 a.u. Even smaller
differences are found for the second root corresponding
to the first excited totally symmetric singlet (maximum
difference in all cases is less than ~0.15 mhartree). The
difference between the MRCCSD-2 and MRCCSD-3 ap-
proximations, which is entirely due to monoexcited clus-
ters T (cf. Sec. III), vanishes for a=0 (recall that
T =0 for the square configuration for symmetry
reasons, cf. Sec. IV). The inclusion of bilinear terms in-
volving singly excited clusters increases both the ground-
state energy and the energy of the first excited state.
However, for a =1.2 a.u., the energy of the ground state
increases only up to a~0.24-0.25, while for a =1.6 a.u.
this energy increase is observed up to a=~0.40-0.42.
Then, rapid decrease sets in.

The inclusion of nonlinear clusters involving TP
lterms Q®(G)), 0¥(G)), BR (G, BB (G, and
B®(G)) given by Eqgs. (43) with n =1, (44), (46) with
n =1, (47), and (48), respectively] does not always im-
prove the agreement with FCI results, just as the in-

(in mhartree), for the lowest three totally

RHF
1.2 a.u,, as given by the two distinct solutions of the nonlinear MRCCSD problem. NC(1) indicates no convergence when

,AE=E—Ej

RHF
0

=1,2,3) energies relative to the ground-state RHF energy E

TABLE VI. Comparison of the FCI and MRCCSD-n (n
symmetric singlet states of the MBS H4 model with a

continued from the nondegenerate region. Critical & values for the second MRCCSD-1, MRCCSD-2, and MRCCSD-3 solutions are 0.1465, 0.1464, and 0.1011, respectively. See the

text for details.

MRCCSD-3

MRCCSD-2

MRCCSD-1

FCI

2nd solution

Ist solution

AE,

—78.375
—69.112

2nd solution

AE,

1st solution

2nd solution

1st solution

—78.384

—69.121

AE,

AE,

AE,

AE,

AE,

14.032
26.020
40.194
73.141
184.334
363.242
516.878
638.489

724.514

14.032
26.020
40.194
73.140
184.334
363.239
516.871
638.477

724.498

—78.375
—69.112
—62.097
—52.974
—41.892
—35.340
—31.911
—29.819
—28.531
—27.733
—26.918
—26.689

14.029
26.017
40.191
73.137
184.329
363.234
516.867

—29.864 638.475

—28.604
—27.847
—27.113
—26.913

793.852

14.047
26.034
40.203
73.139
184.303

363.174

—178.424
—69.161

0.000
0.005

0.010

793.932
794.128

—62.096
—52.973
—41.887
—35.326
—31.890
—29.798
—28.539
—27.832
—27.301
—27.211

—62.106
—52.984
—41.904
—35.359
—31.939

—62.143
—53.014
—41.920
—35.363
—31.924
—29.815
—28.508
—27.706
—26.938
—26.745

794.860
799.811

0.020
0.050

N

NC(1)

—35.822
—31.171
—29.089
—28.017
—27.099
—26.879

NC(1)

1

NC(

NC(1)

NC(1)

817.872
848.277

890.130

0.100
0.150

0.200

0.250

853.693
892.879

898.027
892.941

82.475
—28.433
—27.934
—217.351
—26.711
—26.545

898.966
892.919

81.356
—28.943
—28.160
—27.489
—26.801
—26.624

516.791
638.474
724.844
779.422

830.174

943.087
998.247

1086.580

943.133

724.499 943.123

778.421

942.018

778.433

998.289
1086.618

778.416

998.284
1086.614

998.027
1086.799

0.300

0.400

827.955

827.943
839.840

827.952

839.849 1117.658

1117.693

839.850 1117.690

1117.916

842.472

0.500
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clusion of higher-order terms in the effective Hamiltonian
does not necessarily improve the accuracy of the
MRCCSD-3 method [30] (cf. Sec. III). This is particular-
ly apparent for the compressed @ =1.2 a.u. geometry in
the vicinity of the degenerate (¢=0) limit. This con-
trasts with the observation made in Ref. [27], whose au-
thors find that the inclusion of T’ clusters invariably im-
proves the agreement with exact energies in the whole
range of the parameter a. Indeed, more thorough inves-
tigation of the degenerate a=0 region as well as of vari-
ous bond lengths a shows that this is not necessarily the
case. On the whole, however, there is excellent agree-
ment between our MRCCSD-3 and MRCC results of
Ref. [27]. Small differences (at most 0.05 mhartree) for
a0 geometries are due to higher than quadratic terms
in T clusters that are accounted for in the MRCC re-
sults of Ref. [27], while our MRCCSD-3 approximation is
strictly quadratic. An earlier reported [30] slight
discrepancy between these MRCC energies for square
geometry (a=0), in which case T clusters do not con-
tribute, was due to rounding off errors. No difference is
found when data of the same accuracy are compared.

It is not uncommon that a higher-level approximation
yields less accurate results than a simpler version of a
theory. Among many reasons for such seemingly con-
tradictory behavior may be the fact that a simpler theory
provides a more balanced truncation scheme, while a
theoretically preferable approach may overestimate cer-
tain effects. We have demonstrated such a situation in
Ref. [30], showing that the MRCCSD-3a energies are su-
perior to the 3b and 3¢ approximations. Sometimes, the
simplest method of accounting for nonlinear terms,
MRCCSD-1, gives the best result [cf. e.g., a=1.2 a.u.
and a <0.15 for the ground state and a <0.2 for the first
excited state). However, the differences between various
MRCCSD-n energies are too small to allow definite con-
clusions to be made. To get a better understanding of the
differences between these methods, we also analyze the
resulting wave functions in Sec. VII.

We can thus conclude that agreement is best in the
highly quasidegenerate region and deteriorates as the
nondegenerate limit (a=0.5) is approached. Overall
agreement also deteriorates with increasing internuclear
separation a [cf. Tables VI-VIII and Figs. 4(a)-4(c)].
For this reason we consider slightly stretched H, mole-
cules in our models [26,37] to make the comparison more
demanding. We also note that in the degenerate region,
we invariably get better results for the second state rather
than for the ground state, while the opposite is true in the
nondegenerate limit. Since the description of the first ex-
cited ! 4,(C,,) state worsens with increasing a [cf. e.g.,
Fig. 4(c)], we must expect rather poor results for this
state in the dissociation limit of the D4 and P4 models,
when the second H—H bond gets broken. Clearly, the
manifold {|®,),|®,)} is too small to properly describe
this process (see Secs. VB and V C).

The MRCCSD solutions (Tables VI-VIII) were ob-
tained using the analytic continuation procedure de-
scribed in the preceding section. Even in the highly de-
generate a=~0 region, where the L-MRCCSD method
represents a very good approximation, this procedure
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was faster since it required fewer iterations. We thus
used the L-MRCCSD solution as an initial guess only for
one of the values near a=0 and then continued the re-
sulting solution of nonlinear MRCCSD equations toward
the nondegenerate limit. In this way, we could obtain
MRCCSD results matching the two lowest '4,(C,,)
eigenstates of the Hamiltonian (referred to as the 1st
solution in Tables VI-VIII) over the entire range of the
parameter a. Once the a=0.5 limit was reached, we
could immediately start varying the H(2)-H(3) distance
(see Fig. 1) and continue this solution towards the a—» o
and a—0 limits of the D4 model, despite the problem
with the L-MRCCSD method, which for the H4 ¢=0.5
model (or D4 a=a model) describes the ground and the
second excited states (see Sec. V B).

When we employ the L-MRCCSD solution for a=0.5
as a starting guess, the Newton-Raphson iterative pro-
cedure converges to another solution of system (86) (re-
ferred to as the 2nd solution in Tables VI-VIII), which
describes the ground and the second excited states (cf.
Fig. 4). This solution can then be continued towards the
degenerate limit, yielding an amazingly good description
of the second excited totally symmetric state over a broad
range of geometries (cf. Fig. 4 and Tables VI-VIII), the
error for all MRCCSD-n methods being at most a couple
of mhartree (again, the three MRCCSD-n, n =1,2, 3, ap-
proximations yield almost identical results). Remarkably
enough, the ground-state energy is best described by the
simplest approximation MRCCSD-1. Only when the
highly degenerate regime is reached (a~0.1), the rate of
convergence of the Newton-Raphson scheme rapidly
worsens (tens, hundreds, or even thousands of iterations
are needed to achieve convergence), and the energies be-
gin to deviate from FCI results. Very soon no converged
solutions can be obtained even when very small steps Aa
(such as Aa=10"%) are used.

This behavior is very much reminiscent of that found
in the strongly correlated limit of cyclic polyene models,
where no real solution of the SRCC [CCD, CCSD,
CCSDT-1 (CCSDT with the second-order perturbative
estimate for triples [75,76]), ACPTQ (coupled pair theory
with an approximate estimate of connected triples and
quadruples [58,63], see also [77,78])] equations, that is
continuous as a function of the resonance integral 8 from
the weakly correlated side, can be found beyond a certain
critical value B, of the resonance integral B (see Refs.
[61-63]). In this case we were able to prove that this
critical value B=f3, represents an algebraic branch point
of the first order, so that the SRCC energy bifurcates into
two complex solutions that have no physical meaning
[61-63]. It seems that the critical values a, of parame-
ter a, beyond which further continuation of the
MRCCSD-n solutions is not possible (cf. Tables
VI-VIII), also represent algebraic branch points.
Indeed, careful numerical inspection indicates that the
Jacobian of system (86), i.e., the determinant

af[a,t '
J(a)zdet'M

3, () , (88)

1<I,J=N

where
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N N
f](a,t)=a](a)+ 2 b]](a)tJ+ 2 cIJK(a)tJtK (89)
J=1 JK=1
(J=K)

represents the left-hand side of Eq. (86) and t(a) is the
second solution of the system (86), vanishes for a=c,.
This invalidates the Newton-Raphson procedure and
causes its failure in the immediate vicinity of a, in the
same way as in the SRCC approach to cyclic polyenes
[61-63]. Because of the algebraic nature of system (86),
the cluster amplitudes #;(a) are algebraic functions of a,
so that t(a) is defined for all complex a with the possible
exception of a finite number of poles and algebraic
branch points (cf. Sec. VI in Ref. [63]). The critical
values a, do not represent poles [none of the components
t;(a) tends to infinity as a—a_], so that they must be
algebraic branch points. The situation is much easier in
the case of L-MRCCSD singularities, since they appear
whenever the corresponding solution t(a) has a pole (cf.
Sec. VI). The problem of an analytic continuation of the
2nd solution of nonlinear MRCCSD equations towards
the degenerate limit of the H4 model will be discussed in
Sec. VC.

It is certainly remarkable that the nonlinear MRCCSD
equations possess multiple solutions that describe higher
excited states of a given symmetry species (SRCC equa-
tions also possess multiple solutions, but it is rather hard
to associate them with physically meaningful eigenstates
[63]). Existence of a solution matching the ground and
the second excited state suggests that there exist other
solutions of system (86) that match other pairs of totally
symmetric FCI eigenstates. Results for the H4 model in-
dicate that the lowest root of the effective Hamiltonian
always provides a good approximation to the ground-
state energy, while the second root approximates energies
of the successive excited states. Examples of such further
solutions of nonlinear MRCCSD equations will be given
in Sec. VIII.

B. D4 model

Results for the H4 model indicate that most of the
problems encountered by MRCC theories appear when
we use them to describe weakly degenerate or nondegen-
erate states. The best illustration of this fact is provided
by the singular behavior of the L-MRCCSD approach.
In weakly degenerate situations, a given state is relatively
well described by a single dominant configuration, while
other configurations, differing in one or two orbitals, con-
tribute more or less equally. Consequently, the choice of
a multidimensional model space becomes problematic.
Including only a few configurations that dominate in
quasidegenerate situations is often unsatisfactory, since it
increases the probability of encountering intruder states
dut to a strong interaction of model-space configurations
with configurations belonging to 3. This is exactly
what happens when we employ our two-reference L-
CCSD formalism for the ‘“‘nondegenerate” D4 model.
With increasing intermolecular distance a we observe an
increasingly strong interaction of the second reference
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|®,) with various configurations from M} (see the next
section for details). As a result, the L-MRCCSD method
is plagued by numerous singularities, since the second
root of H°¥ successively approximates higher and higher
excited states (see Fig. 5), even though the lowest root of
H*®T to which |®,) primarily contributes, invariably de-
scribes the ground state. Exceptions are the regions of
the singular behavior of the L-MRCCSD theory, where
both eigenvalues of H°" tend to infinity.

Thus, for compressed geometries (a¢=0.5 a.u.), the
L-MRCCSD energies match rather well the two energeti-
cally lowest 'S, states, since |®,) is relatively important
here (cf. Table III and recall similar behavior in the H4
model). Once we pass the region of the first singularity
(a=1.18 a.u.), the second root of H° begins to approxi-
mate the second 12; excited state, and soon another
singularity is reached (at ¢=~2.41 a.u.), after which the
second root begins to approximate the third excited 12;
state. Once the next singularity (at a=3.03 a.u.) is
passed, the second root begins to approximate the fourth
excited 12; state. The last and broadest singularity ap-
pears at a=6.20 a.u., following which the second root
approximates the group of the fifth, sixth, and seventh ex-
cited states of 12;’ symmetry.

We must also note that in the range of examined
geometries there exist two regions where the
L-MRCCSD method fails to provide real energies (for
2.37 au.<a<2.40 a.u. and 6.00 a.u.<a<6.12 a.u.; cf.
Fig. 5). Both regions in the vicinity of

appear

AE (hartree)

FIG. 5. Same as Fig. 4 for the MBS D4 model with a=2.0
a.u. and 0.6 a.u.<a<8.0 a.u. For a=1.18, 2.41, 3.03, and 6.20
a.u., L-MRCCSD method becomes singular. For a €(2.37 a.u.,
2.40 a.u.) and a€(6.00 a.u., 6.12 a.u.), the energies resulting
from the L-MRCCSD theory become complex (cf. text for de-
tails). The dotted lines correspond to successive FCI eigenstates
of '2; symmetry.
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L-MRCCSD singularities. Their existence is related to
the fact that in the vicinity of L-MRCCSD singularities
the off-diagonal matrix elements of H°T assume large
values (see the next section). It thus happens that the
discriminant of the secular equation for H*f,

A=(HS—HS{P+4HHST (90)

becomes negative. Since in the vicinity of the L-
MRCCSD singularities the non-Hermiticity of the
effective Hamiltonian, as measured by the difference
HST—HST, becomes extremely large (see the next sec-
tion), it is not surprising that H°F may posses complex ei-
genvalues. We have mentioned this possibility in a previ-
ous subsection and we now see that the L-MRCCSD
method does indeed fail to produce real energies in some
regions Q,=(a,a,) near singularities. This type of
breakdown of the L-MRCCSD formalism distinguishes
MR linear theory from the SR one, which may become
singular, but can never yield complex energies. Note that
at the terminal points of the interval Q,, i.e., at a=gq;
and a=a,, the energies E| and E, become identical (see
Fig. 5), since A <0 for a; <a <a, while A>0 for a<a;
and a > a,, so that A=0 for a=«a, and a=a,, and

E\=E,=WHT+HH) . 91)

Just as in the case of the H4 model, singular behavior
of the linear approximation is overcome by accounting
for nonlinear terms. Results of these calculations are
shown in Fig. 5 and in Table IX. The analytic continua-
tion procedure (see Sec. IV) yields MRCCSD energies
matching the two lowest 12; states (so-called 1st solution
of MRCCSD equations) for the entire region of parame-
ter a. This was accomplished by employing the con-
verged MRCCSD amplitudes for the H4 ¢ =0.5 model as
a starting approximation. Using these amplitudes, we
can continue the first solution, obtained for the H4 mod-
el, toward both the a—0 and a— « limits of the D4
model. Only for large values of a are many iterations
needed to achieve convergence. For intermediate and
small a values, convergence of the Newton-Raphson
scheme is very fast.

Again, to obtain a nonsingular formalism providing
reasonable results, it is entirely sufficient to include the
direct (T¥’)? terms. It is, however, the MRCCSD-3 for-
malism that provides the best results. Remarkably, a
good description of the first excited 'S state in the
quasidegenerate (a <a) region by all three MRCCSD-#n
methods begins to deteriorate when a~a. Consequently,
this state is poorly described in the a— o limit: the er-
ror of MRCCSD-r results for ¢=8 a.u. is almost 80
mhartree. This confirms an earlier observation that the
two-dimensional model space is not rich enough to de-
scribe nondegenerate states. It seems that we either have
to increase the dimension of M, or to go beyond the
CCSD approximation in order to achieve a more accu-
rate description of the low-lying states of 12; symmetry
in the nondegenerate limit of the D4 model. Indeed, the

TABLE IX. Same as Table VI for the MBS D4 model with a=2.0 a.u. NC(|) designates no convergence when continued toward the a— o limit. Corresponding critical «

values for the second MRCCSD-1, MRCCSD-2, and MRCCSD-3 solutions are 2.7422, 2.6949, and 2.6011 a.u., respectively. Energies are in mhartree.

MRCCSD-3

MRCCSD-2

MRCCSD-1

FCI

Ist solution 2nd solution

2nd solution

—78.501
—75.166
—69.954
—64.427
—57.539
—51.498
—49.563

NC(!)

1st solution

2nd solution

AE[
—179.237
—75.934
—70.768
—65.304
—58.561
—53.179
—54.119

NC(!)

1st solution

665.734

637.515

—87.870
—81.056
—74.088
—67.838
—60.805
—55.855
—59.585

NC(!)

378.507

367.743

AE,
—83.877
—71.719
—71.462
—65.909
—59.838
—55.705
—55.803
—56.814
—58.123
—58.888

667.987

AE2

378.518

AE,
—83.851
—71.774
—71.683
—66.361
—60.603
—56.573
—56.430
—57.194
—58.245
—58.920
—59.446
—59.923

AE,
667.842

639.185

AEz

378.512

—83.916
—77.887
—71.875
—66.666
—61.134
—57.567
—57.942
—59.301
—61.862
—64.193
—65.966
—67.500

AE,
660.656

AEZ
378.379
367.634
356.324
345.936
335.590
337.643
358.475
386.593
436.245

461.181

—83.683
—71.376
—70.896
—65.060
—58.517
—53.690
—53.319
—54.018
—54.754
—54.779
—54.718
—54.666

0.6

639.328

367.757

367.753

633.138

0.8

617.566
604.882

356.220
345.258

619.124

356.228
345.242

333.131

618.991
606.111

356.230
345.260

333.183

613.986
602.275

1.0
1.2
1.5
2.0

25

606.225

594.880

333.204
330.550

595.940
584.675
556.622

595.870
584.741

594.092
587.722

572.878

583.661
553.501

N

330.409
345.245

366.394

330.525

345.371

557.476

345.408
366.613

366.480

NC(!)

NC(!)

552.508
525.103

3.0
4.0

397.363

397.341

397.842
402.937

401.942
397.434
391.735

401.944
397.435
391.735

517.354
515.861

5.0
6.0
8.0

—59.440
—59.923

398.821

468.118

393.448

512.999

469.714
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FCI calculations indicate that for large a values we find
almost equal participation of reference configuration
|®,)="1G33(0)|®,) and double excitations
Weio)e,), Deio)e,), PGP, and
WG (1)|®,) in the first excited-state wave function (for
a=3§8 a.u., the corresponding FCI expansion coefficients
equal 0.438, —0.430, —0.436, 0.428, and 0.500, respec-
tively), while |®;) is almost totally absent. Only when
approaches small values, configurations |®;) and |®,)
begin to dominate. In this region (small a values) the
CCSD approximation is perfectly adequate, since triply
and quadruply excited clusters T’ and T'¢’, respectively,
are very small. When a increases, T’ clusters remain
small while T’ clusters increase rapidly. To provide
better insight, we have carried out a detailed cluster
analysis of two energetically lowest FCI eigenstates of
'=; symmetry, using our reference space /i, and cluster
Ansatz of Eq. (27) (for details, see Sec. VII and Appen-
dix), obtaining exact values of the orthogonally-spin-
adapted cluster amplitudes defining the operators T 7,
i=1-4, p=1,2. Thanks to the high symmetry of our
models and small dimension of the MBS CI space, there
are only two triexcited and two quadruply excited cluster
amplitudes, namely,

(2§ ) =(443[25" 1221 )0, 2 »

(P )25(334|t‘3”|112)0’0’1/2 ’

(24 =(3344[14"[1122)4,,0,0,0 »
and

(¢ ) =(2244[t2 (1133 00,00 -

Just like the monoexcited clusters T'?), all triexcited clus-
ter coefficients associated with reference |®,) vanish (cf.
Table V). Amplitudes {z§" ), and ("), are associated
with excitation operators e 3‘2‘% (0,0,1) and
e ??‘2‘(0,0,%), respectively, while the amplitudes (z4!)
and (t{?) are associated with quadruple excitations
G 1133(0,0,0,0,0) and ¥'G3344(0,0,0,0,0) (cf. Table IV).
Their exact values for the MBS D4 model and several
values of a are given in Table X. It is seen that both
tetraexcited cluster amplitudes increase by about two or-
ders of magnitude when a changes from 1 to 8 a.u.’s.
Especially large becomes the amplitude (¢{?’) defining
Tf,?’. It is thus not surprising that the two-reference
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CCSD formalism provides a poor description of the first
excited state when a— oo and that the description of the
first excited state is much worse than the description of
the ground state. Just as in the case of the SR formalism
[37], the role of T4 is rather unessential. The corre-
sponding amplitude {z{"’ ) never becomes large.

When approaching a nondegenerate regime, we could,
of course, switch to the SR formalism [37,38] that here
provides excellent results. However, apart from small
discontinuities that would necessarily arise in this way,
we would lose all information about the excited states
that is provided by MR theories. It should be noted that
our two-reference CCSD method yields a qualitatively
correct shape of the potential-energy surface for the first
excited 12; state. On the other hand, for large a values
the FCI energies, as well as the MRCCSD results, satu-
rate and do not change with a further increase in the in-
ternuclear distance, whereas for smaller a values these
methods yield almost identical energies (see Fig. 5 and
Table IX).

In the quasidegenerate region of the D4 model, the
three nonlinear approaches MRCCSD-n, n =1,2,3, pro-
vide identical results. Differences arise when the inter-
molecular distance a becomes larger than the intramolec-
ular bond length a. Differences between MRCCSD-2 and
MRCCSD-3 energies remain small over the entire region
of a. In fact, energies provided by these two methods
differ by at most ~0.9 mhartree for the ground state and
less than ~0.15 mhartree for the first 2. excited state.
Maximum  difference between @ MRCCSD-2 and
MRCCSD-3 energies appears for a=a and decreases
when a approaches zero or infinity. For a=8 a.u., the
energies provided by the MRCCSD-2 and MRCCSD-3
methods are identical up to 1 phartree. This indicates
that the role of nonlinear terms involving T’ clusters is
relatively small, even though they do improve final re-
sults. Except for a <0.6 a.u., their inclusion only slightly
increases the ground-state energy. The situation is, how-
ever, different when we examine the role of the (7% )?
coupling terms. Except for the small values of a, the
MRCCSD-2 and MRCCSD-3 approaches yield energies,
that are visibly closer to FCI data than those provided by
the MRCCSD-1 method. For example, for @ =8 a.u., the
difference between the MRCCSD-1 and MRCCSD-2 or
MRCCSD-3 energies is almost 7.6 mhartree for the
ground state and about 1.7 mhartree for the first excited
state. It is thus essential to include nonlinear coupling

TABLE X. Exact values of the orthogonally-spin-adapted triply and quadruply excited cluster am-
plitudes (see Appendix) associated with reference states |®,) and |®,) for the MBS D4 model with
a=2.0 a.u., as obtained by cluster analysis of two energetically lowest FCI eigenstates of 'S} symme-
try. In view of the symmetry of the model, triexcited cluster coefficients associated with reference |®,)

vanish.

a 1.0 2.0 3.0 4.0 5.0 6.0 8.0

t;; —0.006562 —0.009225 —0.001980 0.002 179 0.002 080 0.000933 0.000 020
tg 0.008 084 0.005176 —0.003506 —0.006052 —0.004035 —0.001884 —0.000360
tio 0.000439 —0.003592 —0.009661 —0.013542 —0.016676 —0.019057 —0.021144
t,o —0.011258 —0.112314 —0.249141 —0.375868 —0.482481 —0.571382 —0.651044
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terms. However, as pointed out earlier, we must not for-
get about the necessity of enlarging the model space or
including higher-order terms for large values of a.

As for the H4 model, we found another solution of the
nonlinear system (86), matching the ground and the
second excited totally symmetric states. We obtained it
by applying the analytic continuation procedure to the
second solution of system (86), that was found earlier for
the H4 model. Contrary to the H4 model, however, we
could only penetrate the quasidegenerate a <a region (cf.
Fig. 5 and Table IX). Once we increased a beyond a=a,
the resulting energies began to deviate from FCI results
and the rate of convergence of the Newton-Raphson pro-
cedure began to deteriorate, so that soon we were unable
to obtain a converged solution, even when very small
steps Aa were used (such as Aa=10"° a.u.). As in the
case of the H4 model, we approached the singular point
a., beyond which further continuation of the second
solution of system (86) was impossible due to the vanish-
ing of the Jacobian (88) (critical points «, for all three
nonlinear approximations MRCCSD-n are given in Table
IX).

The fact that we cannot proceed very far beyond the
region a=a seems to indicate that our model space is not
rich enough to describe the second excited state in the
nondegenerate limit of the D4 model, at least at the
CCSD level of approximation. This becomes clear when
we examine the FCI expansion of the second excited state
for a>a. Indeed, monoexcited states ’G3}|®,) and
‘UG%|®,) are far more important than references |®,)
and |®,) in this region. In fact, for a— o they become
dominant configurations (the corresponding FCI expan-
sion coefficients for « =8 a.u. are —0.706 and —0.683,
respectively). It is thus remarkable. that our two-
reference formalism is capable of providing rather good
results for the second excited 12; state for o <a. For
both the ground and second excited states, differences be-
tween MRCCSD-n and FCI data do not exceed a few
mhartree (see Table IX).

As in the case of the H4 model, the best ground-state
energy from among those provided by the 2nd solution of
system (86) results from the simplest MRCCSD-1 ap-
proximation. Contrary to the 1st solution, the fully
quadratic MRCCSD-3 approach yields the worst
ground-state energies. As a matter of fact, we observe
that EMROCSD-3  pMRCCSD-1 . pMRCCSD-2

Quadratic MRCCSD equations for the D4 model pos-
sess several other solutions. As we shall see in Sec. VIII,
some of them describe highly excited states. This is not
surprising when we realize that even the linear two-
reference theory may approximate higher excitations (cf.
Fig. 5).

C. P4 model

By proceeding from a square configuration toward the
a— oo limit of the D4 model, we describe a consecutive
breaking of two chemical bonds. Another type of dissoci-
ation of two chemical bonds is modeled by the P4 system.
In this case, when a increases, the H(1)—H(4) and
H(2)—H(3) bonds are broken simultaneously (cf. Fig. 1).
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For a— «, the dominant configuration in the FCI ex-
pansion of the ground-state wave function is |®,), while
configurations of the type ‘'G?2,(0)|®,) contribute with
more or less equal weight. The doubly excited
configuration V'G3%(0)|®,) is also quite important,
whereas its triplet coupled counterpart ‘VG35(1)|®,)
plays a negligible role [37]. The importance of the latter
configuration increases, however, when we consider the
first excited state (cf. the FCI expansion of the first excit-
ed state for the D4 model described in Sec. VB). When
a—0, |®,) begins to dominate and a strong quasidegen-
eracy involving |®,) and |®,) is achieved for a=~a. In
fact, for the square geometry (a=a), |®;) and |®,) are
exactly degenerate (cf. Sec. IV and Table III). Thus, for
a=a we can expect similar behavior as observed in the
degenerate limit of the H4 model, whereas for a ap-
proaching infinity we should observe similarities with the
nondegenerate D4 model.

Although configuration (¢,)%(¢,)* does not represent
the ground-state RHF solution for a <a, we use it to
determine MO’s and MO energies for both a=a and
a <a. As explained in Sec. IV, switching to MO’s associ-
ated with configuration (¢,)*(¢;)? would not be very in-
structive, since the orbital energy picture associated with
configuration (¢;)%(¢,)? for a <a is equivalent to the or-
bital energy picture associated with configuration
(¢,)%(¢,)? for @ >a. By employing MO’s associated with
configuration (¢,)*(¢,)? for both a>a and a <a, we can
examine various types of orbital quasidegeneracy ranging
from the nondegenerate a— o limit to the exact degen-
eracy of active orbitals ¢, and ¢; (cf. Fig. 2). We would
never attain the exact degeneracy of orbitals ¢, and ¢,
by switching to MO’s associated with configuration
(¢1)X($3)? in the region of a <a.

For the MBS P4 model, the monoexcited clusters TP’
vanish, so that MRCCSD-2 and MRCCSD-3 approxima-
tions become equivalent (and will thus be designated as
MRCCSD-2,3). For the same reason, the fully quadratic
MRCCSD approach is equivalent to the quadratic
MRCCD method considered by Meissner and co-workers
[24]. Likewise, the FCI manifold is smaller and consists
of only eight states (see Table IV). Since monoexcited
and triexcited states now belong to other symmetry
species than do |®,) and |®,) (cf. Sec. IV and Table IV),
we can expect the number of singularities encountered in
the L-MRCCSD approach to also be smaller than in the
D4 model, in spite of similarities between both models for
large values of a. Indeed, only two singularities are
found for the P4 model (see Fig. 6).

As for the H4 and D4 models, the lowest root of the
L-MRCCSD effective Hamiltonian describes the ground
state, while the second root approximates higher and
higher excited states of 1Ag(Dz,,) symmetry. In the re-
gion of strong quasidegeneracy (configurational or orbit-
al), the L-MRCCSD energies match the two energetically
lowest 1Ag(Dz,,) states. Once we pass the region of the
first singularity (a=3.46 a.u.), the second root begins to
approximate the second excited state of 1Ag(DZ;,) sym-
metry. Following the second singularity (at a~6.80
a.u.), the second root begins to approximate a group of
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the third, fourth, and fifth excited states of '4,(D,,)
symmetry. As in the case of the D4 model, this singulari-
ty is very broad. For symmetry reasons, the L-MRCCSD
energies cannot describe the two 'B;,(D,,) FCI states,
spanned by monoexcited and triexcited configurations,
that appear between the first and the second excited
1Ag(DZh ) states. For reasons of greater clarity, these, as
well as the other two 'B;,(D,,) FCI states, are not
shown in Fig. 6.

Again, in the vicinity of the L-MRCCSD singularities,
there exist two regions (), where the L-MRCCSD
method fails to provide real energies (for 3.41
au.<a<3.43 a.u. and 6.54 a.u.<a<6.70 a.u., cf. Fig.
6). As for the D4 model, the existence of these regions is
related to a large non-Hermiticity of H°T and for a given
region Q,=(a;,a,) we observe that discriminant A, Eq.
(90), vanishes for a=a,; and a=a,. Consequently, for
a=a, and a=a,, two L-MRCCSD roots are equal [cf.
Eq. (91) and Fig. 6].

Inclusion of nonlinear terms removes the singular be-
havior of L-MRCCSD theory, and we can easily continue
the solution of the nonlinear MRCCSD equations, which
matches two energetically lowest 1Ag(Dzh) states, over
the entire region of a. Only for large values of a, many
iterations are needed to achieve convergence. The result-
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FIG. 6. Same as Fig. 4 for the MBS P4 model with a =2.0
a.u. and 1.1428 a.u.<a =< 8.0 a.u. For both a>a and a <a, we
employ the RHF MO’s associated with configuration (¢;)*(¢,)?%,
so that for a=1.1428 a.u. active orbitals ¢, and ¢;, Egs. (60)
and (61), become degenerate. All energies are evaluated relative
to the RHF energy of (¢,)%(¢,)? configuration, which represents
the RHF ground state for ¢ =a. Dotted lines correspond to
successive FCI eigenstates of '4,(D,,) symmetry ['B;,(D,y)
states are not displayed] and only one MRCCSD-3 solution is
shown. The L-MRCCSD method becomes singular for a=3.46
a.u. and =6.80 a.u. For a€(3.41 a.u,, 3.43 a.u.) and a €(6.54
a.u., 6.70 a.u.), the energies resulting from the L-MRCCSD
theory become complex (cf. text for details).
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ing energies are shown in Fig. 6 and, in greater detail, in
Table XI. As the initial iteration in the Newton-Raphson
scheme, we can either use the L-MRCCSD amplitudes
for a=a or the converged MRCCSD amplitudes ob-
tained for the H4 a=0 model (which coincides with the
P4 a=a model).

For obvious reasons, we cannot find the second
1Ag(DZ,,) solution following the same strategy as we did
for the D4 model. In fact, the second solution for the H4
model describes the second excited state of '4,(C,,)
symmetry, that becomes the lowest state of 'B;, (D,;)
symmetry in the square configuration. Clearly, for sym-
metry reasons, |®;) and |®,) do not contribute at all to
the latter state. This is also why the second solution for
the H4 model could not be continued toward the degen-
erate =0 limit. Participation of |®;) and |®,) in the
FCI expansion of the second excited ' 4,(C,,) state of
the H4 model decreases with decreasing value of the pa-
rameter a. Already for a=0.0S5, the corresponding FCI
expansion coefficients equal 0.096 and 0.176, respectively.
When the square geometry is reached, they simply vanish
and the symmetry of this state changes to 'B;, (D,),).

As in the case of the D4 model, the best results are
provided by the MRCCSD-2,3 approach. The behavior
of MRCCSD-n formalisms for the P4 model is in fact al-
most identical to that found for the previously discussed
D4 model, particularly for large a’s, when all nonlinear
approximations give a rather poor description of the first
excited ' 4,(D,,) state. Again, while the (T¥)* direct
terms entirely remove the singular behavior of the linear
approximation, the nonlinear coupling terms play a sub-
stantial role. For example, for a=10 a.u., the
MRCCSD-1 error in the ground-state energy is almost
13.3 mhartree, whereas with the MRCCSD-2,3 approach
it is only about 5.4 mhartree (see Table XI). Even the
latter result, however, is not satisfactory, indicating that
our model space is too small to describe low-lying elec-
tronic states of the P4 model in the nondegenerate limit.
This is especially the case for excited states. Similarly as
in the case of the D4 model, for a=10 a.u., the error in
the first excited-state energy is almost 80 mhartree, indi-
cating an increasing importance of configurations belong-
ing to /M when a— . These are not necessarily the
dominant configurations, but—as already pointed out—
their contribution to low-lying eigenstates of the Hamil-
tonian is substantial. For example, for a=10 a.u., the
FCI expansion coefficients at |®,), |®,), V'G%5(0)|®,),
WeHo)e,), PYeHo)le,), PVGH©)|®,), and
WG (1)|®,) configurations for the ground state are
0.968, —0.087, —0.088, —0.088, —0.087, —0.175, and
—0.001, respectively, and for the first excited 1Ag(DZh)
state 0.000, 0.433,—0.433, —0.433, 0.433, 0.000, and
0.500, respectively.

Another indication of an increasing importance of
configurations belonging to Jt§ for large a’s is the in-
creasing role of T\ clusters that are neglected in the
MRCCSD formalism (T’ clusters are also neglected,
but for the MBS P4 model these do not appear for sym-
metry reasons). A detailed cluster analysis of the two en-
ergetically lowest FCI eigenstates of 1Ag(DZ,,) symmetry
(see Sec. VII) indicates that the exact values of tetraexcit-
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TABLE XI. Comparison of the FCI and MRCCSD-n (n =1,2,3) energies, relative to the energy of
|®,)=1(¢,)$,)?|, AE=E —H,, (in mhartree), for the two lowest totally symmetric singlet states of
the MBS P4 model with @ =2.0 a.u. RHF MO’s associated with configuration (¢,)%(#,)? are employed
throughout (see the text for details). For a=1.1428 a.u. active orbitals ¢, and ¢; become degenerate.

FCI MRCCSD-1 MRCCSD-2,3
a AE, AE, AE, AE, AE, AE,

1.1428 —791.128 —67.990 —1791.152 —67.794 —791.113 —67.790
1.145 —788.553 —67.953 —788.577 —67.757 —788.538 —67.753
1.15 —782.719 —67.867 —1782.742 —67.673 —782.704 —67.668
1.20 —725.733 —66.978 —1725.756 —66.795 —1725.716 —66.790
1.30 —618.873 —65.001 —618.896 —64.842 —618.852 —64.836
1.40 —520.896 —62.696 —520.918 —62.563 —520.870 —62.555
1.60 —349.331 —56.397 —349.349 —56.318 —349.290 —56.307
1.80 —210.047 —44.008 —210.065 —43.982 —209.988 —43.974
1.90 —155.978 —30.868 —156.010 —30.859 —155.917 —30.857
1.95 —134.584 —20.648 —134.629 —20.643 —134.527 —20.644
1.98 —123.867 —13.009 —123.924 —13.004 —123.816 —13.007
1.99 —120.655 —10.202 —120.716 —10.197 —120.606 —10.201
2.00 —117.621 —7.268 —117.686 —17.263 —117.575 —17.266
2.01 —114.760 —4.209 —114.830 —4.203 —114.717 —4.207
2.02 —112.069 —1.030 —112.143 —1.024 —112.029 —1.028
2.05 —104.949 9.171 —105.038 9.178 —104.920 9.174
2.10 —95.815 27.951 —95.930 27.959 —95.806 27.956
2.20 —84.443 68.960 —84.613 68.959 —84.475 68.958
2.50 —70.873 187.247 —71.256 187.012 —71.039 187.000
3.00 —63.061 327.960 —64.154 324.820 —63.600 324.720
4.00 —57.269 441.613 —62.072 410.376 —59.529 409.908
5.00 —55.391 464.667 —64.236 407.406 —59.283 406.416
7.00 —54.701 469.618 —67.143 395.450 —59.856 393.807
10.00 —54.650 469.740 —67.914 391.961 —60.078 390.161

ed amplitudes (¢4 ) and (z{¥)) (see Sec. V B) increase by
a few orders of magnitude when a changes from 2 to 10
a.u. (cf. Table XII). While amplitude {z{’) remains
small over the entire region of a, amplitude {¢{?’) as-
sumes large values when a— o. Thus, to obtain a
correct description of the first excited state, we must ac-
count for the T?) cluster component or increase the di-
mension of M. As in the case of SR theory [37], the con-
nected cluster components T4 are far less important, so
that there is no need to include them to achieve a rela-
tively good description of the ground-state wave function.

In view of these facts, it is quite remarkable that simple
nonlinear MRCCSD methods, employing only a two-
dimensional model space, are capable of providing a rath-
er good description of the two energetically lowest

1Ag(D2h) states even for large a values. Description of
the ground state remains particularly good over the en-
tire range of geometries considered. At the same time we
obtain important information about the shape of the
potential-energy curve for the first excited state.

In the degenerate region, where either configurational
(a=a) or orbital (a <a) quasidegeneracy is present, the
difference between the MRCCSD-1 and MRCCSD-2,3
approximations is very small, both providing an excellent
description of the two energetically lowest 1Ag(Dz,,)
states. For example, for @ <a =2.0 a.u., the maximal er-
ror of MRCCSD-n energies is 61 phartree for the ground
state and less than 0.2 mhartree for the first excited state.
The fact that we are able to obtain remarkably good re-
sults for a <a, where configurational quasidegeneracy is

TABLE XII. Exact values of the quadruply excited cluster amplitudes (see Appendix) associated
with reference states |®;) and |®,) for the MBS P4 model with a=2.0 a.u., as obtained by cluster
analysis of two energetically lowest FCI eigenstates of ' 4,(D,,) symmetry. Triexcited clusters vanish
due to symmetry. RHF MO’s associated with configuration (¢,)%(¢,)? are used throughout. Orbitals ¢,

and ¢; become degenerate for a=1.1428 a.u.

a 1.1428 1.5 2.0 3.0

4.0 5.0 7.0 10.0

tjo 0.003112 0.002115 0.000398 —0.004544 —0.011740 —0.017036 —0.020794 —0.021674
1o 0.000146 0.000327 0.000398 —0.027128 —0.212660 —0.436216 —0.625927 —0.665 191
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absent (cf. Table III), seems to indicate the importance of
a proper choice of an MO basis. Here we do not mean
the size of the basis, which is another problem that
remains to be investigated [27,79], but the type of MO’s
employed. In our case, MO’s are fully determined by the
symmetry [cf. Egs. (60) and (61)]. However, we do not
employ the ground-state RHF MO’s for all values of a.
In order to employ the ground-state RHF MO’s for a <a,
we would have to switch to orbitals associated with
configuration (¢,)*(¢;)%. In this way, active orbitals ¢,
and ¢; would never become degenerate and, consequent-
ly, we would obtain a poor description of the first excited
state, just as in the case of large a’s. The use of MO’s as-
sociated with configuration (¢,)%(¢,)* leads to a strong
quasidegeneracy of active orbitals and, as our cluster
analysis indicates (see Table XII), to very small values of
the connected tetraexcited cluster components. This re-
sults in a very good description of the lowest two eigen-
states of the Hamiltonian by the two-reference CCSD for-
malism, despite the nondegenerate character of the P4
model for a <a (cf. Sec. VII). It would thus be interest-
ing to examine other choices of molecular bases [such as
multiconfiguration self-consistent field (MCSCF) orbitals,
triplet orbitals [42], etc.]. This problem was already ad-
dressed in the context of the multireference many-body
perturbation theory (MRMBPT) study of the P4 model,
where it was shown that various shifting techniques of
one-particle energy levels speed up convergence of
perturbation-theory series and extend the range of appli-
cability of MR theories [42].

D. S4 model

The most challenging situation arises when we study
the simultaneous breaking of all four chemical bonds in
our H, models. For this reason we examine the S4 mod-
el, in which the four protons form a square, and we in-
crease the nearest-neighbor separation a toward the fully
dissociated limit @ — «, where, similarly as in the strong-
ly correlated regime of the cyclic polyene model
[60-63,70-72], all orbital energies are identical (cf. Fig.
3) so that a strong mixing of orbital and configurational
degeneracies sets in.

For small and intermediate values of a, the model
space employed is perfectly adequate: as shown in Table
XIII, the reference configurations |®,) and |®,) dom-
inate in the FCI expansions of the two lowest singlets [re-
call that these states belong to different symmetry species
of the invariance group of the Hamiltonian D, ; they are
totally symmetric only with respect to invariance group
of the Fock operator (D, ); see Sec. IV]. Their weights,
as measured by the sum of squares of the FCI expansion
coefficients, exceed 50% up to a~=>5 a.u. for the ground
state [which is a 'B ,(D,,) state] and up to a=~3 a.u. for
the first excited state [the lowest state of ' 4 1g(Dap) sym-
metry]. For a<2 a.u., the weight of the remaining
configurations does not exceed 8%.

For larger values of a, the situation becomes far more
complex. The reference configurations |®;) and |®,)
are still exactly degenerate (cf. Tables III and XIII), but
the role of other states dramatically increases. For a=7
a.u., the weight of other configurations is about 60% for
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TABLE XIII. FCI expansion coefficients for the two lowest
singlet eigenstates |W,) and |¥,) of the MBS S4 model [see
Table IV and Egs. (114) and (115)]. Monoexcited and triexcited
coefficients d; ,, j=8-11 vanish. Recall that |¥;) and |¥,) be-
long to different symmetry species of the symmetry group of the
Hamiltonian D,, but are totally symmetric with respect to the
invariance group of the Fock operator D,, (see Sec. IV). Since
|W,) is a B ,(Dy,) state and the symmetry of |¥,) is 4,,(Dy,),
the coefficients d; , satisfy the following relations: d|,=—d} |,
d; =dy, =0, di;=—dy,, d¢ =V3d,, di,=d;,,
ds,=dy,, dy,=—V3d;, Only independent coefficients are
listed.

a L ds, dy, ds, ds,
u=1 10 0.703 0.0 0.0 —0.013 —0.086
20 0.690 0.0 0.0 —0.045 —0.183
3.0 0.656 0.0 0.0 —0.118  —0.290
4.0 0.594 0.0 0.0 —0.230 —0.376
50 0.524 0.0 0.0 —0.330 —0.417
6.0 0.476 0.0 0.0 —0.388 —0.430
7.0 0.451 0.0 0.0 —0.415 —0432
u=2 10 0702 —0.053 —0.100 —0.005 —0.005
20 0.678 —0.169 —0.205 0.002 —0.049
30 0554 —0.374 —0.369 0.058 —0.162
40 0392 —0482 —0.459 0.141  —0.230
50 0312 —0.500 —0.487 0.195 —0.246
6.0 0276 —0.501 —0.496 0.225 —0.249
70 0260 —0.500 —0.499 0.240 —0.250

the ground state and 86% for the first excited state (see
Table XIII). Thus it is inappropriate to use our /1, as a
reference space in this region. It is, in fact, impossible to
find a low-dimensional model space in this case, since
such a space would have to be identical with the FCI
space (cf. Tables IV and XIII). Alternatively, we must go
beyond the CCSD approximation. The cluster analysis of
the exact wave functions |¥;) and |¥,) [assuming the
cluster Ansatz of Eq. (81); see Sec. VII and Appendix] in-
dicates a rapid increase in the importance of T4’ and T’
clusters with increasing a (see Table XIV). These clus-
ters remain small up to a=~3 a.u. Then, a rapid increase
sets in and the ratio of the connected tetraexcited com-
ponent T to its disconnected counterpart L(T¥’)? be-
comes as large as 0.4 for a— . Contrary to the previ-
ously discussed D4 and P4 models, both quadruply excit-
ed components T3 and T$ become large (actually
(t{)y={t{?)) in this case; cf. later part of this section),
so that we can expect the two-reference CCSD theory to
fail in the dissociation limit of the S4 model. Just as in
the case of the SRCCSD formalism and the strongly
correlated regime of cyclic polyenes [60—-63] neglect of
connected quadruply excited clusters should result in
singular behavior of our two-reference formalism for a
sufficiently large.

This is precisely what we find. All three MRCCSD-n
formalisms provide good results only up to the region of
the first L-MRCCSD singularity, which appears at
a=3.30 a.u. (see Fig. 7 and Table XV). For a>3.3 a.u,,
the MRCCSD-n energies begin to deviate from the FCI
results, the rate of convergence of the Newton-Raphson
procedure deteriorates, and soon a point is reached where
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TABLE XIV. Exact values of the quadruply excited cluster
amplitudes associated with reference states |®,) and |®,) and
the ratio of the connected tetraexcited components T’ and
their disconnected counterparts +(7%’)%, p=1,2 for the MBS

S4 model, as obtained by cluster analysis of two energetically
lowest FCI eigenstates of ! 4,(D,, ) symmetry. As in the case of
the P4 model, T¥’=0. The quantities k' designate the ratio:
K O=(DDy| T |®; ) /{ "Dy| LTS )?|®; }|, where

[N, ) =G 135(0,0,0,0,0)[D,) ,
|Pd,,) =2G#43(0,0,0,0,0)|P,) .
Recall that (see Appendix)
o= (2§ ) =(3344[t{"]1122 ) 0,0,0,0={ V| T4 P} )

and similarly for t,,= (¢ ).

a tie =t kD= @
1.0 0.000 335 0.064 023
2.0 0.000 398 0.011975
3.0 —0.045 623 0.243 360
4.0 —0.224 885 0.376 118
5.0 —0.413843 0.397 457
6.0 —0.542 887 0.399 741
7.0 —0.613 546 0.399973

no converged solution can be obtained, even when the
analytical continuation procedure with a very small step
Aca is used. With the MRCCSD-1 scheme, we can pass
the region of the second L-MRCCSD singularity
(a=~5.86 a.u.), but this does not help much: the solution
cannot be continued beyond a=6.4682 a.u. (cf. Table
XV).

As explained in Sec. V A, singularities encountered in
MRCCSD-n approaches are most likely algebraic branch
points. Our experience with SR theories [60-63,71-73]
tells us that there is only one way in which to overcome
this type of singularity in the CC formalism while em-
ploying low dimensional reference space, namely, by ac-
counting for the connected quadruple excitations. We
should thus consider the MRCCSDTQ or MRCCDQ
theory (as usual, T and Q stand for the connected triply
and quadruply excited clusters). Since, however, the
MRCCSDTQ formalism is equivalent to the full (not
truncated) MRCC theory in our case, it would be more
instructive to develop and test an approximate method of
accounting for connected quadruply excited clusters.
Our preliminary observations indicate that we can obtain
such a formalism by generalizing the so-called ACPQ
theory (coupled pair theory with an approximate account
of connected quadruply excited clusters [77,78]) to the
MR case [80].

In the region of small values of a, where |<I>1) and
|<I>2) are the dominant configurations, all three
MRCCSD-n methods provide remarkably good energies.
For a <2 a.u., the difference between the MRCCSD-1
and MRCCSD-2,3 energies is less than ~0.1 mhartree
for the ground state and at most 5 phartree for the first
excited state of ' 4,(D,, ) symmetry. For a<1.5 a.u., the
best ground-state energies are provided by the simplest
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MRCCSD-1 method. As for the H4 model with small a
values, when our M, is perfectly adequate, the second
'4,(Dy,) state [i.e., the lowest state of ' 4,,(D,,) sym-
metry] is better described than the ground state (the er-
rors in MRCCSD-n energies for the first excited state do
not exceed 20 phartree). Actually, for a <2 a.u., very
good results are already provided by linear theory (cf.
Fig. 7). Only when a becomes larger, the linear theory
becomes singular. As already mentioned, the
L-MRCCSD formalism has singularities at a~3.30 and
5.86 a.u. In the region of geometries that we examined,
there is one more singularity for a=~8.41 a.u. As in the
case of the D4 and P4 models, this singularity is
very broad (cf. Fig. 7). For example, for a=10
a.u., the L-MRCCSD energies EMRCCSD ;=1 9
are still very large: AE}™MRCCSD = pL-MRCCSD _ pRHF
=—66.081 hartree, AE}MRCCSD = pI-MRCCSD _ pRHF
=101.149 hartree. As we shall see in the next section,
we deal with a very strong interaction of both model
states with configurations belonging to J{, when a ap-
proaches infinity.

0.5

0.0

I
0.0 2.0

8.0

FIG. 7. Same as Fig. 4 for two energetically lowest ' 4,(D,;)
states of the MBS S4 model with 0.5 a.u.<a=8.0 a.u. The
ground state of 1Ag(Dz;,) symmetry is the lowest eigenstate of
lBlg(D4,, ) symmetry, whereas the first excited state of lAg(Dz,, )
symmetry is the lowest eigenstate of ' 4 1g(D4y) symmetry. For
@ <3.72 a.u. the fourth- and the sixth-excited states of ! 4,(D,)
symmetry belong to 'B,,(Dy,) subproblem, while the third,
fourth, sixth, and eighth '4,(D,,) states belong to 'd,,(Dy;,)
subproblem. For a=~3.72 a.u., the fourth and fifth states of
' 4,(D,;) symmetry cross one another, so that for a>3.72 a.u.
the ground, the third-, and the sixth-excited ' 4,(D,, ) states be-
long to lB,g(D4,,) subproblem. The dotted lines correspond to
successive FCI eigenstates of 'Ag(Dz;,) symmetry (recall that
proper symmetry for the two-reference CC theory is D,,). The
thin solid line represents MRCCSD-1 solution and the
thick chain-dashed line the MRCCSD-2,3 solution. The L-
MRCCSD method becomes singular for a=3.30, 5.86, and 8.41
a.u. For a=2.92, 3.18, 5.77, and 5.95 a.u., L-MRCCSD ener-
gies become identical.
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TABLE XV. Same as Table VI for the two lowest ' 4,(D,, ) states of the MBS S4 model (see the text
for details). Critical a values for MRCCSD-1 and MRCCSD-2,3 methods are 6.4682 and 4.9356 a.u.,

respectively. Energies are in mhartree.

FCI MRCCSD-1 MRCCSD-2,3

a AE, AE, AE, AE, AE, AE,
0.50 —48.273 19.546 —48.269 19.543 —48.269 19.544
1.00 —69.211 16.635 —69.187 16.622 —69.183 16.624
1.50 —92.259 8.633 —92.197 8.613 —92.172 8.618
2.00 —117.621 —7.268 —117.686 —17.263 —117.575 —7.266
2.50 —147.058 —39.076 —148.677 —39.261 —148.261 —39.386
3.00 —180.605 —92.530 —190.088 —95.251 —188.987 —95.978
3.50 —218.530 —159.780 —250.747 —170.718 —249.089 —172.927
4.00 —260.289 —226.728 —334.156 —250.712 —333.663 —256.103
4.50 —303.762 —286.517 —436.032 —326.007 —445.870 —340.078
5.00 —345.874 —337.639 —550.991 —394.272 NC() NC(!)
6.00 —416.160 —414.523 —819.264 —512.415
7.00 —463.410 —463.119 NC() NC()

It is interesting to observe that L-MRCCSD energies
become identical for several values of a, but unlike the
D4 and P4 models, the eigenvalues of the L-MRCCSD
effective Hamiltonian never become complex. There are
four points where L-MRCCSD energies become identi-
cal: «;=2.92 au., a,=3.18 a.u.,, a3=5.77 a.u.,, and
@,=5.95 a.u. At all these points, energies E-MRCCSD,
i=1,2 (E, is always the lower eigenvalue) have discon-
tinuous first derivatives with respect to a. To see these
discontinuities better, we plotted the a dependence of the
L-MRCCSD eigenvalues in separate Figs. 8(a) and 8(b).
We note that both L-MRCCSD energies can easily be
transformed into smooth functions of a (except, of
course, for the poles at a=3.30, 5.86, and 8.41 a.u.) by
defining new energies E,-L‘MRCCSD, i =1,2 as follows:

ELYMRCCSD for g <a,a,<a<as,au<a
FL-MRCCSD _
1 lE%’MRCCSD for a;<a<aa;<a<ay,
(92)

EIMRCOSD for a<ay,a,<a<aj,a,<a

FL-MRCCSD _
2 ELMRCCSD g4 o

<a<azoaz<a<ay .
(93)

To understand this behavior, we note that for the MBS
S4 model the effective Hamiltonian matrix is Hermitian
and has the following highly symmetric form:

H = , (94)

b a

where
a=H{{=H3, b=H{=HS, 95)

so that MRCCSD-n and L-MRCCSD energies are given
by
E;=a—|bl, (96)

E,=a+|b| . 97

In the case of MRCCSD-n methods, the off-diagonal ma-
trix element b is always positive, so that the energies (96)
and (97) are smooth functions of a in the region of ex-
istence of MRCCSD-n solutions. However, for the
L-MRCCSD approach, b changes sign, being positive for
a<a;, a,<a<as and a,<a and negative otherwise.

For a=q, i=1-4, b=0, so that EMRCD
=E}yMRCOSD =4 Clearly, if we redefine the energies (96)
and (97) as follows:
El =a—b , (98)
EZ =a+b , (99)

we obtain two smooth functions of a defined by Egs. (92)
and (93).

It thus remains to explain why Eq. (95) holds for the
MBS S4 model. We have seen in Sec. IV that our two-
reference CC theory yields two states of different symme-
try with respect to the invariance group of the Hamil-
tonian (Dy,). This is a consequence of the fact that our
MO basis is adapted to the chain D,, CD,,, so that
Mo=span{|®,),|®P,)} represents an invariant subspace
that is embedded in a larger space iy, Eq. (70), and the
operations belonging to D,, leave |®;) and |®,) un-
changed, or transform them one into the other. The two
states resulting from the two-reference CC formalism are
given by Egs. (82) and (83). The symmetry of the lower
energy solution |W¥,) is B, (D,,), so that rotation
C,ED,, actson |¥,) as

Ciuv))=—|w). (100)

The second state |W,) is totally symmetric [ A (Dyy)],
so that

C,l¥,)=|v,) . (101)

From Egs. (81)-(83), (100), and (101), and the fact that
C, transforms |®,) into |®,) (as pointed out in Sec. IV,
none of the reference states spans a single irrep of D,,,), it
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follows that
V2w =eT" @) —eT"|®,)

= —C4e T(”|¢1>+C4e T(2)1¢2>

(2)r—1 (1)~—1
_ G |q)1>_eC4T c; ,) (102)
V2w, =eT" @) +e T |@,)
=CueT"|0)) +Cie T |®,)
(2)~—1 (De~—1
=T oy +e T e,y . (103)
0.5
(o)
0.0 .
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8 N
: -
o “05F \ll \\
=) 0N
&= [
|| \
1 (.
‘! 1I!
—-1.5 | \’ | l“
0.0 2.0 4.0 6.0 8.0
o (a.u
0.5 T I T
\ L
(b) \ | 1
\\ | ‘l
\\ |
0.0 — N \. lj
D A N
) Y AN
= \ v
= ! i
o —-05 - \/\/
£ '
s
g9
-1.0
-1.5 ‘ ' '
0.0 2.0 4.0 6.0 8.0
o (au.)

FIG. 8. Dependence of the L-MRCCSD energies on the pa-
rameter « for the MBS S4 model. The a dependence of the first
(lower energy) root of the effective Hamiltonian H®T is
displayed in Fig. 8(a), whereas Fig. 8(b) displays the a depen-
dence of the second (higher-energy) root of H °%.
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This implies that cluster operators break the D,;, symme-

try, since we can write [cf. Eq. (85)]
C,TPC; =T, p=1,2, q=3—p . (104)

There is no such symmetry breaking when we consider
the wave operator U, Eq. (81), i.e., we have

c,uc;'=u. (105)

Notice that relation (104) follows directly from Eq. (105).
Indeed, since

Cio,)=|®,), p=1,2, ¢=3—p, (106)
we can write
c,p,C;'=P,, (107)
so that
TP +e™'P,=U=C,UC;!
_ C4T‘2)C;1Pl+eC4T“’c;‘P2 .
(108)

Now, relations (95) are an immediate consequence of Egs.
(105) and (106): for the diagonal matrix elements we get

H{T=(®,|HU|®,)=(C;'®,|HU|C; ' ®,)
=(®,[(C,HC; 1 )(C,UC; )|®,)
=(®,|HU|®,)=HST , (109)

while for the off-diagonal elements we find

HS§=(®,|HU|®,)=(C; ®,|HU|C; ' ®,)
=(®,[(C,HC; ' Cc,uC; @)
=(®,|HU|®,)=HST , (110)

so that indeed H °f has the form (94). Clearly, H °T must
have this highly symmetric form, since the effective Ham-
iltonian operator H°T, Eq. (19), is invariant with respect
to all symmetry operations belonging to D,,, in particu-
lar C, [cf. Eq. (84)].

There are further interesting consequences of Eq. (104).
We can apply it to specific many-body components of
cluster operators T'?’ and thus find useful relations be-
tween individual pair-cluster coefficients associated with
distinct reference configurations, namely,

(44[t5V122),=(44]t52(33), ,

(44{t[11)g=(44[t2|11), ,
(111)

(33]£5V111)g=(22[tP[11),,

(34[¢5V112),=(24]¢2|13);, i=0,1.

Monoexcited clusters and pair-cluster amplitudes associ-
ated with excitations ?’G£%(0), p7#o, and ‘P’GZ5(0),
a7 3 vanish for the MBS S4 model (cf. Sec. IV). For qua-
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druply excited components T’ we then get
(5 ) =(3344[2{"(1122) 4,6 0.0.0
=(2244[t?[1133) 0 0,00=tP) , (112)

which is employed in Table XIV. Our calculations
confirm the above results. Relations (111) hold for both
the full CC theory (equivalent to FCI) and the CCSD ap-
proximation.

Results of this section confirm our expectations that
the S4 model represents the most severe test for the two-
reference version of the MRCC theory employed here.
Clearly, a two-reference model space is insufficient to de-
scribe the breaking of all four bonds in our model.

VI. L-MRCCSD BREAKDOWN

Our calculations reveal that L-MRCC formalisms are
more likely to suffer from singular behavior than SRCC
theories. Including only a few (in our case, two)
configurations that dominate the quasidegenerate regime
in the model space is generally insufficient to yield a
meaningful description of nondegenerate or strongly
correlated states. In the vicinity of the square geometry
of the nuclear framework with H—H bond lengths close
to their equilibrium value, where the ground-state
configuration |®,) strongly interacts only with
biexcited |®,) configuration, the model space
Mo=span{|®,),|®,)]} is perfectly adequate. Absence of
|®,) from M, would certainly lead to the appearance of
a singularity in this region as was first found by Jan-
kowski and Paldus in their SRCC study of various H,
models [37]. Unfortunately, the presence of |®,) in M,
increases the probability of encountering intruder states
in other regions of the nuclear coordinate space, charac-
terized by a strong interaction of |®,) with
configurations belonging to JM. As a consequence,
the L-MRCCSD coefficient matrix b=b(a)
=||by(@)|l1<1,s<n [cf. Egs. (86) or (89)] becomes singular
[37,38,53,69] (cf. also Refs. [6] and [7]) and the solution
vector t=t(a), as well as the corresponding energies
ELMRCCSD(g) i=1,2 regarded as functions of the pa-
rameter a, have one or more poles [63].

As mentioned in Sec. VA, the appearance of these
poles may be approximately predicted by examining the
dependence of easily accessible diagonal CI matrix ele-
ments H;;=(®;|H|®;) on the geometry of the nuclear
framework. Figure 9 shows this dependence for the mod-

els considered in this paper. Every crossing indicates a
strong interaction of corresponding configurations.
Thus, crossings of curves Hy; or H,, with H;, j=3-12,
imply the possibility of appearance of L-MRCCSD singu-
larities.

For the MBS H4 model [Fig. 9(a)], we observe a
crossing of H,,=('VG}1(0)®,|H|'VG}1(0)®,) with
Hg=(VGi®,|H|'VG}®,) (cf. Table IV). For a=2.0
a.u., this crossing takes place at a=0.26, which corre-
lates quite well with the appearance of the L-MRCCSD
singularity at a~0.16 (cf..Sec. V A). Actually, the region
where L-MRCCSD energies significantly deviate from
the FCI data (¢~0.1-0.25) is much larger than the im-
mediate vicinity of the singularity, so that the crossing of
H,, and Hgg at a~0.26 provides us with valuable infor-
mation where this region may appear. Notice that the
matrix elements H,, and Hg remain close in a much
broader region a=~0.15-0.5. In this region, |®,) and
|®g)="1G3|®,) are the dominant configurations in the
FCI expansion of the second excited ! 4,(C,, ) state |¥;)
(see Table XVI), with almost equal weights at a ~0.5. It
is thus not surprising that once we pass the region of
singular behavior, the second root of the L-MRCCSD
effective Hamiltonian begins to describe the second rath-
er than the first excited state. The lowest root of the
effective Hamiltonian invariably describes the ground
state, since the reference state |®,) never becomes degen-
erate with configurations belonging to M} [cf. Fig. 9(a)].

Although the situation for the MBS D4 model is much
more complicated, we can carry out a similar analysis.
In this case H,, crosses Hg at a~1.7 a.u,
Hy=(VG}®,|H|'VGj®,) at a=~2.7 au, and
H,,=(VY6¢# (e |HI'VGH(1)®,) at a=5.1 a.u. [Fig.
9(b)]. Moreover, we observe a strong interaction of
|®,) with configurations |®;)="G55(0)®,),|®,)
=G30)|®,), and |®5)="G#(0)|®,) for a—
[Hy,, Hs3, Hyy, and Hs are very close already for a=7
a.u.; cf. Fig. 9(b)]. Interaction of |®,) with |®;) results
in the appearance of a L-MRCCSD singularity at
a=1.18 a.u. Indeed, in this region |®,) and |®g) are
dominant configurations in the FCI expansions of the
first and second excited states and participation of |®;)
in the FCI expansion of the second excited state reaches
its maximum (Table XVII). Since |®,) and |®g) become
nearly degenerate, the second root of the L-MRCCSD
effective Hamiltonian, EI™MRCSD | begins to approximate
the second rather than the first excited state of 12;” sym-

TABLE XVI. Selected FCI expansion coefficients for the first and the second excited states of
'4,(C,,) symmetry, |¥,) and |®,), respectively, for the MBS H4 model with @ =2.0 a.u. As in Table

XIIL |¥,)=3,d;,|®;), {(¥,|¥,)=1.

a a”l,z dlz,z d;;,z d'1,3 dlz,s d§,3
0.000 0.678 0.678 0.000 0.000 0.000 —0.894
0.050 0.296 0.884 0.126 0.096 0.176 —0.858
0.100 0.194 0.847 0.275 0.134 0.352 —0.826
0.150 0.150 0.769 0.410 0.146 0.481 —0.805
0.200 0.127 0.700 0.504 0.145 0.539 —0.785
0.500 0.106 0.593 0.650 0.143 0.609 —0.693
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FIG. 9. Dependence of the diagonal CI matrix elements H;;=(®;|H|®;), j=1-12, relative to the RHF energy
H, =(®,|H|®,)=((¢1)d)*|H|($1)*(,)*) (except for the MBS P4 model with a <a, H,, represents the ground-state RHF ener-
gy), on the geometry of the nuclear framework, as measured by the parameter a (solid lines), for the MBS H4 model with ¢ =2.0 a.u.
and 0<a=<0.5 (a), MBS D4 model with ¢=2.0 a.u. and 0.6 a.u.<a =<8 a.u. (b), MBS P4 model with ¢=2.0 a.u. and 1.1428
a.u.<a =<8 a.u. (c), and MBS S4 model with 0.5 a.u.<a <8 a.u. (d). Open circles and squares (O and [J) represent matrix elements
H,, and Hy,, respectively, whereas solid circles and squares (® and M) represent H;; and H,. The remaining matrix elements H;
Jj=5-12, are represented by V, A, X, K, ®, O, ®, and ®, respectively. In the case of the P4 and S4 models, configurations |® i ),
j=8-11, belong to different symmetry species than do |®,) and |®,). Thus, the corresponding matrix elements H;, j =8-11, are
not displayed in (c) and (d). The dotted lines correspond to successive FCI eigenstates of ' 4,(C,,) (a), '2; (b), and ' 4,(D,;) [(c) and
(d)] symmetry. As in Fig. 7, we do not distinguish between 'B,(D,;) and ' 4,,(D,,) states in part (d).
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TABLE XVII. Same as Table XVI for the first, second, and third excited states of 'S, symmetry, |¥,), [¥;), and |¥,), respec-
tively, for the MBS D4 model with @ =2.0 a.u.

a d;,z dé,z dé,z d;,z di,z d;,s d§,3 d;,a /1,4 dlz,4 d§,4 d§,4
1.0 0.294 0.750 0.536 —0.164 0.156 0.538 —0.795 —0.025 0.040 0.129 0.139 0.914
1.5 0.192 0.656 0.628 —0.231 0.170 0.632 —0.705 —0.107 0.073 0.221 0.158 0.883
2.0 0.106 0.593 0.650 —0.265 0.143 0.609 —0.693 —0.249 0.112 0.363 0.090 0.834
2.5 0.052 0.552 0.639 —0.271 0.091 0.485 —0.715 —0.393 0.125 0.469 —0.069 0.794
3.0 0.023 0.525 0.611 —0.256 0.049 0.364 —0.734 —0.450 0.081 0.389 —0.206 0.816
4.0 0.004 0.502 0.491 —0.188 0.014 0.209 —0.790 —0.454 0.020 0.170 —0.330 0.852
5.0 0.001 0.489 0.267 —0.112 0.005 0.081 —0.820 —0.511 0.008 0.062 —0.483 0.837
8.0 0.000 0.438 0.012 —0.011 0.001 0.001 —0.706 —0.683 0.001 —0.025 —0.695 0.718

metry and this transition results in the appearance of a
singularity. Crossing of H,, and Hgyy nicely correlates
with the appearance of the next singularity at a~2.41
a.u. In this case, the energy EY™MRCOSD pegins to match
the energy of the third excited state |W,), since the FCI
expansion of |W,) for a=2.5 a.u. results from a strong
interaction of |®,) and |®,) with a substantial participa-
tion of |®,) (see Table XVII). The third singularity ap-
pears at a=~3.03 a.u., so that it is hard to associate it
with the crossing of H,, with H,;. However, for a~3-4
a.u. we observe a strong interaction of |®,), |®,), and
|®,) [see Fig. 9(b)], and this seems to correlate with the
fact that the FCI expansion of the fourth excited state
[ws) results from a strong interaction of |®,), |®,),
|®¢)="1G3%(0)|®,) and |®,) (the corresponding FCI
expansion coeﬂicients for a=3 a.u. equal 0.470, 0.587,
0.457, and 0.291, respectively). In consequence, once we
pass the singularity at a=~3.03 a.u., the second root be-
gins to describe |Ws). The last and the broadest singular-
ity at a=~6.20 a.u. seems to be related with both the
crossing of H,, with H,; and strong interaction of |®,)
with |®;), |®,), and |®P5). Once we pass it, the second
root begins to describe the group of fifth, sixth, and
seventh excited states, to which configurations ]d> ),
j=2-5, and |®,) contribute substantially. This can "be
most easily seen by looking at the FCI expansions of
W), |W;), and |W,) for a>6.20 a.u. (Table XVIII for
a=8a.u.).

For the P4 model, H,, crosses H;; at a=5.6 a.u. and
we observe a strong interaction of |®,) with |®;), |®,),
and |®,) for a approaching infinity [see Fig. 9(c)]. Prox-
imity of H,,, Hy3, Hy,, and Hss, and the crossing of H,,
and H, result in the appearance of two singularities at
a=~3.46 a.u. and a=6.80 a.u. For a>3.46 a.u., the
second root E %‘MRCCSD begins to approximate the second
excited IAg(DZ,,) state, to which |®,), |®,), |®¢), and

|®,) contribute most substantially [recall that the second
excited Ag(Dzh) state for the P4 model corresponds to
the fourth excited 'S state for the D4 model]. Then,
beyond the smgularlty at @~6.80 a.u., E;MRCESD peging
to approxxmate the energy of the fourth, fifth, and sixth
states of ! 4 ¢(D2) symmetry, which result from a strong
mixing of conﬁguratlons |®;), j=2-5, and |®,) (other
configurations practically do not contribute to the FCI
expansions of these states). For symmetry reasons, |®,)
cannot interact with 'B,,(D,,) configurations |®g) and
|®y). Thus, two singularities appearing in the short-
range region of the D4 model do not show up for the P4
model.

As in the other cases, singularities appearing for the S4
model can also be associated with a strong interaction of
the model-space configurations |®;) and |®,) with
configurations belonging to J/j. Again, we can predict
their occurrence by observing the a dependence of diago-
nal matrix elements H;. Figure 9(d) shows that |®,;)
and |®,) do not interact with M} only for small values of
a, but become degenerate with |®;), [®,), |®s), and
|®,,) when a— «, causing singularmes in this region
[cf. Figs. 7, 8, and 9(d)].

The singular character of the L-MRCCSD coefficient
matrix b is also reflected in the structure of the effective
Hamiltonian matrix. Since in the vicinity of the singular-
ity the cluster amplitudes become large, so do the t-
dependent contributions to H®Y, This is illustrated by
the a dependence of the individual contributions to H T
for the MBS H4 model with a =2.0 a.u. in Tables XIX
and XX. In the immediate vicinity of the singularity at
a=0.155, we observe a rapid increase in the absolute
values of all t-dependent contributions to H*T. Simul-
taneously, we observe a dramatic increase in the absolute
values of cluster amplitudes, particularly t¢, to, £1, Z1;,
t4, and t ¢ (cf. Table V).

TABLE XVIII. FCI expansion coefficients for the fifth, sixth, and seventh excited states of '=;” symmetry, |¥¢), |¥,), and [¥,),

respectively, for the MBS D4 model with ¢ =2.0 a.u. and a=8 a.u.

lnd dllvﬂl dé,# da,p, d‘l‘r,y d;,y d’ﬁ,y d’7,,u dé,,u d"),y ’10,# d’ll,y d’lZ,p

6 0.004 —0.633 0.337 —0.307 0.621 0.013  0.044 0.029 —0.030 ~ —0.027 0.027 —0.006
7 0.001 —0.348 —0.586 0.661 0.277  0.001 0.140 0.015 —0.013 —0.014 0.017 —0.003
8 0.011 —0.157 0.339 0.171 —0.320 0.017 0.853 —0.005 0.004 0.007 —0.003 —0.021
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TABLE XIX. Individual contributions to diagonal elements of the effective Hamiltonian H°f (in hartree) for the MBS H4 model
with @ =2.0 a.u. and various values of a, as obtained by using the L-MRCCSD method. Zero contributions are not listed.

a HST Hy (@ |HT V@) 1@y |H(T)|®)) HS Hy (@0,|HT®|®,)
0.000 —4.630173 —4.565 348 —0.064 825 0.000 000 —4.630173 —4.565 348 —0.064 825
0.005  —4.622269  —4.557786 —0.064 481 ~0.000001 —4.604625  —4.537695 —0.066 930
0.010 —4.614 628 —4.550596 —0.064 026 —0.000005 —4.579876 —4.510730 —0.069 147
0.020 —4.600051 —4.537155 —0.062 876 —0.000020 —4.532786 —4.458 811 —0.073975
0.050 —4.560 944 —4.502 001 —0.058 844 —0.000099 —4.411439 —4.318 257 —0.093 183
0.100 —4.509 876 —4.452611 —0.056 747 —0.000519 —4.297034 —4.129 176 —0.167 859
0.110 —4.502 788 —4.443614 —0.058 406 —0.000767 —4.299417 —4.097419 —0.201998
0.120 —4.498012 —4.434 875 —0.061927 —0.001211 —4.322 827 —4.067514 —0.255313
0.130 —4.497944 —4.426 387 —0.069413 —0.002 144 —4.390299 —4.039 386 —0.350913
0.140 —4.511703 —4.418154 —0.088 685 —0.004 865 —4.587 507 —4.012962 —0.574 545
0.150 —4.632959 —4.410175 —0.193 503 —0.029 281 —35.722593 —3.988 169 —1.734424
0.155  —7.615032  —4.406282 2.879793 —6.088 543 27.954804  —3.976360 31.931164
0.160 —4.300922 —4.402454 0.104021 —0.002 490 —2.450254 —3.964 931 1.514 677
0.170  —4.379269  —4.394992 0.012393 0.003 331 —3.442122  —3.943175 0.501053
0.180 —4.390 945 —4.387792 —0.006 199 0.003 045 —3.634463 —3.922 828 0.288 365
0.190 —4.391999 —4.380853 —0.013973 0.002 827 —3.708 936 —3.903 819 0.194 883
0200  —4.389599  —4.374177 —0.018 144 0.002722 —3.744596  —3.886078 0.141 481
0250  —4.366974  —4.344672 —0.025 165 0.002 862 —3.780723  —3.814129 0.033 406
0.300 —4.345 164 —4.321356 —0.026 920 0.003 112 —3.772329 —3.764 811 —0.007 518
0.400 —4.316092 —4.291522 —0.027 604 0.003 034 —3.749 129 —3.711618 —0.037510
0.500 —4.306 601 —4.281903 —0.027 599 0.002 901 —3.739733 —3.696 814 —0.042919

It is interesting to compare the effective Hamiltonians
resulting from the L-MRCCSD (Tables XIX and XX)
and nonlinear MRCCSD-3 (Tables XXI and XXII) calcu-
lations. It is seen that the off-diagonal matrix elements
are especially sensitive to the appearance of singularities.
They contain highly nonlinear (even quartic) terms, such
as 4 (®,|H(T'V)*|®, ), and these terms are much more

sensitive to variations in cluster coefficients than other t-
dependent contributions. In nonsingular regions, where
cluster amplitudes are small, these terms practically do
not contribute. However, when we approach a singu-
larity, cluster coefficients increase and highly
nonlinear terms, such as (@,|H(T'V)|®,) or
A{®,|H(T™V)*|®, ), increase by many orders of magni-

TABLE XXI. Individual contributions to diagonal elements of the effective Hamiltonian H°F (in hartree) for the MBS H4 model
with @ =2.0 a.u. and various values of a, as obtained by using the fully quadratic MRCCSD-3 approach. As in Tables XIX and XX,

zero contributions are not listed.

a HST Hy, (@ |HTV|®) (@ |H(TV)|®,) H Hy (0, HT?|®,)
0.000  —4.627769  —4.565348 —0.062421 0.000 000 —4.627769  —4.565348 —0.062421
0.005 —4.619856 —4.557786  —0.062069 —0.000001 —4.602007  —4.537695 —0.064312
0010  —4.612206 —4.550596  —0.061605 —0.000 004 —4.577003  —4.510730 —0.066273
0020 —4597592  —4.537155 —0.060424 —0.000013 4529240  —4.458811 —0.070429
0050  —4.558076  —4.502001 —0.056019 —0.000057 —4.403399  —4.318257 —0.085 142
0.100  —4.502419  —4.452611 —0.049 656 —0.000 152 —4247600  —4.129176 —0.118424
0.110  —4.492488  —4.443614  —0.048701 —0.000 172 4223655  —4.097419 —0.126236
0.120  —4.482910  —4.434875 —0.047844 —0.000 192 —4201793  —4067514  —0.134280
0.130  —4473670  —4.426387 —0.047073 —0.000210 —4.181848  —4.039386  —0.142462
0.140  —4.464760  —4.418154 —0.046 379 —0.000227 —4.163648  —4.012962 —0.150 686
0.150  —4.456170  —4.410175 —0.045753 —0.000242 —4.147027  —3.988169 —0.158 858
0.155  —4.451993  —4.406282 —0.045462 —0.000248 —4.139258  —3.976360  —0.162898
0.160  —4.447803  —4.402454  —0.045185 —0.000254 —4.131825  —3.964931 —0.166 894
0.170  —4.439926  —4.394992 —0.044 670 —0.000264 —4.117897  —3.943175 —0.174722
0.180  —4432262  —4.387792 —0.044200 —0.000270 —4.105110  —3.922828 —0.182282
0.190  —4424899  —4.380853 —0.043772 —0.000273 —4.093348  —3.903819 —0.189 529
0200 —4.417831  —4.374177 —0.043381 —0.000273 —4.082508  —3.886078 —0.196430
0250  —4.386788  —4.344672 —0.041885 —0.000231 —4.039392  —3.814129 —0.225263
0300 —4362463  —4.321356 —0.040 965 —0.000 141 —4.009873  —3.764811 —0.245062
0400  —4.331621  —4.291522 —0.040 144 0.000 045 —3.976853  —3.711618 —0.265234
0.500  —4321751  —4.281903 —0.039 967 0.000119 —3.967210  —3.696814  —0.270396
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TABLE XXII. Same as Table XXI for the off-diagonal elements of H®® (in hartree). We define ((T'V)*)
=(k") @,/ H(TV)*|®,) and (T2 = (k)™ YD | H(T?)|d,).

a H?g Hu <T(2)> <(T(2))2> Hgt}’ H21 <T(l)) ((T(l))2> ((T(l))3> ((T(l))4)
0.000 0.055154 0.056970 —0.003830 0.002013 0.055154 0.056970 —0.003830 0.002013 0.000000 0.000000
0.005 0.055237 0.057282 —0.004174 0.002128 0.055363 0.057282 —0.003942 0.002023 0.000000 0.000000
0.010 0.055426 0.057749 —0.004574 0.002251 0.055689 0.057749 —0.004099 0.002039 0.000000 0.000000
0.020 0.056048 0.059066 —0.005540 0.002522 0.056624 0.059066 —0.004533 0.002092 —0.000001 0.000000
0.050 0.058844 0.064975 —0.009688 0.003558 0.060688 0.064975 —0.006638 0.002355 —0.000003 0.000000
0.100 0.063069 0.076690 —0.019810 0.006188 0.067481 0.076690 —0.012275 0.003068 —0.000003 0.000000
0.110 0.063731 0.078940 —0.022068 0.006859 0.068541 0.078940 —0.013649 0.003252 —0.000003 0.000001
0.120 0.064365 0.081111 —0.024315 0.007569 0.069484 0.081111 —0.015072 0.003446 —0.000002 0.000001
0.130 0.064991 0.083194 —0.026513 0.008310 0.070316 0.083194 —0.016526 0.003648 —0.000001 0.000001
0.140 0.065623 0.085181 —0.028630 0.009072 0.071046 0.085181 —0.017989 0.003 853 0.000000 0.000001
0.150 0.066271 0.087066 —0.030639 0.009844 0.071682 0.087066 —0.019445 0.004059 0.000001 0.000001
0.155 0.066603 0.087970 —0.031597 0.010230 0.071969 0.087970 —0.020165 0.004 161 0.000001 0.000002
0.160 0.066939 0.088848 —0.032522 0.010614 0.072237 0.088848 —0.020876 0.004 262 0.000002 0.000002
0.170 0.067626 0.090523 —0.034268 0.011371 0.072719 0.090523 —0.022269 0.004 460 0.000002 0.000002
0.180 0.068328 0.092093 —0.035873 0.012107 0.073138 0.092093 —0.023612 0.004 651 0.000003 0.000002
0.190 0.069036 0.093559 —0.037336 0.012813 0.073501 0.093559 —0.024897 0.004 833 0.000004 0.000003
0.200 0.069744 0.094922 —0.038662 0.013484 0.073816 0.094922 —0.026119 0.005005 0.000005 0.000003
0.250 0.072996 0.100319 —0.043511 0.016189 0.074841 0.100319 —0.031188 0.005700 0.000007 0.000 004
0.300 0.075368 0.103748 —0.046203 0.017823 0.075271 0.103748 —0.034633 0.006 145 0.000006 0.000005
0.400 0.077570 0.106915 —0.048358 0.019012 0.075366 0.106915 —0.038108 0.006551 0.000002 0.000005
0.500 0.078010 0.107635 —0.048786 0.019162 0.075292 0.107635 —0.038991 0.006 643 0.000001 0.000005

tude (see Table XX). By observing these highly nonlinear
terms we can forecast the breakdown of the L-MRCCSD
method very early. Visible differences between
the L-MRCCSD and MRCCSD-3 results and a rapid in-
crease of matrix elements L{(®,/H(T")*|®,;) and
A{®,|H(T'"V)*|®,) begin to appear already at a~=0.11
(cf. Tables XX and XXII).

The presence of cubic and quartic terms in HST and
their absence in HST lead to a large non-Hermiticity of
the effective Hamiltonian in the vicinity of L-MRCCSD
singularities, which may even lead to complex energies
(see Secs. VB and V C). Interestingly enough, the non-
Hermiticity of H®¥ for a very accurate MRCCSD-3
method also reaches its local maximum in the vicinity of
the L-MRCCSD singularity (see Table XXIII). The
effective Hamiltonian matrix is nearly Hermitian only in
the highly quasidegenerate region, where the interaction
of the model-space configurations with those belonging to
M is small (cf. Table XXIII).

VII. CLUSTER ANALYSIS OF MRCC
WAVE FUNCTIONS

Our models are sufficiently simple so that we are able
to carry out an explicit cluster analysis of exact FCI wave
functions and thus obtain exact values of cluster ampli-
tudes. Comparing these with the MRCCSD amplitudes
we obtain deeper insight into the nature of various
MRCCSD-n approximations, since the differences in en-
ergy are much less sensitive than those in the wave func-
tion. In this way we can also better assess the
effectiveness of various MRCCSD-# methods in describ-
ing low-lying excited states.

To obtain exact values of cluster amplitudes, we first
transform the relevant FCI wave functions into the form
required by MRCC theory [see Eq. (28)]. Thus, we con-
sider a group of FCI eigenstates |\I/#), u=1,...,M,
whose CI expansions have the form
N

tot
’
djul®;)
j=M+1

(u=1,...,M),

M
lw,)= Zldé,ulq’pH
=

(113)

with M and N, being the dimensions of MM, and of the
FCI configuration space M ®. M}, and transform them
into the functions |¥,), p=1,...,M, Eq. (14). In this
way [cf. Eq. (15)] we can find the family of excitation
operators {C'”}*_, that is used to define cluster opera-
tors TP, p=1,...,M, through the logarithmic relation-
ship (26). We could, of course, compare the FCI expan-
sions (113) directly with the corresponding MRCC ex-
pansions (28). However, this would be more cumbersome
than to transform first [¥,)’s into I\T/p)’s, and subse-
quently to use Eq. (26).

In the two-reference case considered, we must trans-
form a given pair of FCI eigenstates (not necessarily the
lowest-energy states)

NlO[
|‘P1>:di,1[¢x>+d'2,1|q’2)+ st;,1|¢j> , (114)
i=

N(ol
W,)=d},|®)+d),|P,)+ ZSd;,zlnbj) ,  (115)
=
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into states |¥,) and |¥,), where [cf. Egs. (15) and (26)]
T,)=e""1®,), (p=1,2), (116)

are related with |¥, ) and |W¥,) as follows [cf. Eq. (28)]:
W,)=d},|%)+d;,|¥,), (u=12). (117)

The required transformation is given by the inverse of the
2 X2 matrix

’ ’
dl,l dl,Z

D: ’ ’
dyy d;

» (118)

with coefficients given by expansions (114) and (115), i.e.,
by

’ ’
dz,z _dl,Z

D‘1=_. ’ !’
—dZ,l 1,1

D
where D =detD. We thus get

> (119)

Nto!
P, )=l®,)+ 3 d,,|®;), (p=1,2), (120)
j=3
where
dj=(d;d;,—d;,d,,)/D, (121)
dj,=(—d;jdi,+d;,d\,)/D, (122)

are the expansion coefficients of |¥,) in terms of states

|®;), j=3,...,Nyq. Clearly, every state |®;),
j=3, ..., Ny, may be written in the form
|@;)="6;|®;) (123)
or
|®;)="2G;|®,), (124)

where the excitation operators “)Gj, j=3-12, are listed

in Table IV and *’G; when acting on |®,) are given by

[cf. Eq. (67)]
@G, =g, DGR0) . (125)

We can thus cast the transformed FCI wave functions
|¥,) and |¥,) into the form of Eq. (15), where

Nlot

cV=3d;,,"G;=c"+ci"+ -, (126)
j=3
Ntot

c?= 3 d,,'YG,=CcP+CcP+ -, (127)

j=3

with CP, i=1,2,..., designating the i-particle com-
ponent of the excitation operator C'P relative to the
reference |®,), p=1,2. Since the cluster operators TP
are related with the FCI excitation operators C” in ex-
actly the same way as in SRCC theory, Eq. (26), we im-
mediately find the exact cluster amplitudes {p|t{’|a),
(poltP|aB);, (i=0,1), etc., using the well-known rela-
tions

TP =cp , (128)
TP =CcP —L(CcP)?, (129)
TP =CP —CcPcP +1cP ), (130)
TP =cy —ccy —ycyy

HCPPCY —(CPt. (131)

Explicit expressions for the cluster amplitudes are given
in the Appendix. We shall now compare their exact FCI
values with those obtained by various approximations
studied in this paper. Note that higher than biexcited
amplitudes, which are neglected in our MRCCSD ap-
proaches, are listed in Tables X, XII, and XIV.
Comparison of various cluster components for the
MBS H4 model with ¢ =2.0 a.u. is given in Tables XXIV

TABLE XXIV. Comparison of the exact (FCI) and MRCCSD-n (designated as M-n) amplitudes with respect to |®,) for the MBS
H4 model with @ =2.0 a.u. and three values of a, corresponding to the quasidegenerate region (0.05), the vicinity of the L-MRCCSD
singularity (0.155) and the nondegenerate region (0.5). See Appendix for the definition of cluster amplitudes ;.

a Method t t, t3 ty ts te ty
0.050 FCI —0.121 831 —0.145114 —0.034 102 —0.163 816 —0.008 764 0.042 327 —0.037 137
M-1 —0.120765 —0.144 048 —0.036 381 —0.164 410 —0.010326 0.047 962 —0.042370
M-2 —0.121012 —0.144 362 —0.034 283 —0.164 246 —0.010076 0.048 071 —0.042462
M-3 —0.121 547 —0.145029 —0.034 366 —0.163081 —0.008 799 0.042 456 —0.037995
0.155 FCI —0.111048 —0.147 155 —0.033219 —0.151 820 0.001915 0.113 826 —0.080208
M-1 —0.108 179 —0.142 369 —0.038553 —0.156 622 —0.004 872 0.126 984 —0.090421
M-2 —0.108 820 —0.143216 —0.031746 —0.155979 —0.004 268 0.127264 —0.090711
M-3 —0.111574 —0.148 592 —0.032037 —0.150224 0.002 993 0.114473 —0.081 863
0.500 FCI —0.088 544 —0.178 959 —0.028 746 —0.141 348 0.010731 0.201 743 —0.076 554
M-1 —0.086 895 —0.163 740 —0.034728 —0.150058 0.000 355 0.222 405 —0.086 908
M-2 —0.087 772 —0.165011 —0.022967 —0.148 690 0.001 064 0.222117 —0.087 249
M-3 —0.089987 —0.181905 —0.023 459 —0.138 994 0.012 568 0.199 892 —0.078 156
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TABLE XXV. Same as Table XXIV for cluster amplitudes associated with |®,).
a  Method Iy Iy tio i tp i3 Lig tis tis
0.050 FCI 0.018638 —0.128002 0.021676 —0.102618 —0.193571 —0.033752 —0.159577 —0.199092 0.007 366
M-1 0.018181 —0.128994 0.021217 —0.103408 —0.193707 —0.034919 —0.159665 —0.199505 0.007198
M-2 0.018217 —0.129074 0.021224 —0.103486 —0.193943 —0.033777 —0.159844 —0.199438 0.007386
M-3 0.018342 —0.128131 0.021293 —0.102826 —0.193865 —0.033794 —0.159782 —0.199454 0.007263
0.155 FCI 0.030634 —0.531405 0.053718 —0.359324 —0.306270 —0.027979 —0.223537 —0.212579 0.115177
M-1 0.032437 —0.536904 0.055057 —0.363935 —0.313716 —0.030971 —0.228814 —0.219988 0.114390
M-2 0.032538 —0.537186 0.055104 —0.364172 —0.314098 —0.029799 —0.229075 —0.219982 0.114 647
M-3 0.032866 —0.533921 0.055330 —0.362293 —0.313622 —0.029855 —0.228790 —0.220015 0.113940
0.500 FCI 0.007773 —1.058944 0.081087 —0.432528 —0.465717 —0.018659 —0.214244 —0.196510 0.222856
M-1 0.018979 —1.051412 0.086693 —0.439950 —0.485197 —0.026772 —0.226759 —0.216725 0.212840
M-2 0.019101 —1.051487 0.086754 —0.440111 —0.485604 —0.025670 —0.226968 —0.216766 0.212973
M-3 0.019501 —1.045909 0.087145 —0.438520 —0.484652 —0.025693 —0.226704 —0.216716 0.211880

and XXV. Cluster amplitudes resulting from the
MRCCSD-n, n=1,2,3, calculations are co:_.pared with
their exact counterparts for three characteristic values of
parameter a, namely, for a=0.05 (quasidegenerate re-
gion), a=0.155 (vicinity of the L-MRCCSD singularity),
and ¢=0.5 (nondegenerate region). In the quasidegen-
erate region all three MRCCSD-n methods provide an
excellent description of corresponding FCI wave func-
tions. The best results are usually provided by the fully
quadratic MRCCSD-3 approach, although the remaining
two MRCCSD-n methods give very good results as well.
Comparing MRCCSD-3 results with MRCCSD-1 and
MRCCSD-2 data indicates that the inclusion of bilinear
terms involving TP clusters definitely improves the
description of monoexcited components, both in the
quasidegenerate region (cf. values of (3[¢{"’|1) and
(4t{P]2) for @=0.05) and in the vicinity of the
L-MRCCSD singularity (a=0.155) as well as in the non-
degenerate region (a=0.5). In a few cases we observe a
spectacular improvement when going to the fully quadra-
tic approach. The best example is the amplitude
(34[¢5]12),. MRCCSD-1 and MRCCSD-2 methods
provide a rather poor description of this amplitude, espe-
cially in the nondegenerate region. For a=0.155 they
give the wrong sign, while for a=0.5 MRCCSD-1 and
MRCCSD-2 results are smaller in comparison with FCI
value by an order of magnitude. The fully quadratic
MRCCSD-3 method corrects these results substantially,
yielding the results that are very close to the FCI values.
The amplitudes associated with the second reference
|®,) are rather insensitive to the type of approximation
employed, independently of the value of a. As a result,
the energy of the second root, to which the second refer-
ence primarily contributes, is almost the same in all
MRCCSD-r formalisms (cf. Table VIII). There are, how-
ever, a few pair-cluster amplitudes associated with this
reference, namely (24[t52[11), and (44|t{?|11),, that
are very poorly represented by all three MRCCSD-n ap-
proximations in the nondegenerate (a=0.5) region. In
the case of (24[t[11),, the error of any of the
MRCCSD-n result amounts to about 150%, whereas the
error for (44[t$|11), is about 40%. The amplitude

(44[t$2]13), is also poorly represented by all three
MRCCSD-n methods in the nondegenerate region (the
error for a=0.5 is about 7%). For a few other
pair-cluster amplitudes associated with [|®,) (.e,
(44(t2133),, (22]e82[11),, (24[¢8[13),, i=0,1), the
differences between the MRCCSD-n and FCI results are
small and do not reduce when going from the simplest
MRCCSD-1 approach to the more sophisticated
MRCCSD-2 or MRCCSD-3 methods. This is consistent
with our earlier observation that the MRCCSD descrip-
tion of the first excited ' 4,(C,,) state for the MBS H4
model worsens with increasing a (cf. Sec. VA). For
a=0.5, the difference between the FCI and MRCCSD-#n
results is about 7 mhartree, compared to at most 5 phar-
tree for a=0 (Table VIII). As pointed out in Secs. VB
and V C, the situation gets even worse when we approach
the a— oo limit of the D4 and P4 models. Let us there-
fore examine how closely various cluster components are
approximated by the MRCCSD-n methods in this case.

Comparison of various cluster components for the
MBS D4 model with @ =2.0 a.u. is given in Tables XXVI
and XXVII, and for the P4 model with ¢ =2.0 a.u. in
Table XXVIII. For the D4 model, we do not report the
results covering the well-behaved quasidegenerate region
(a<a), where all three MRCCSD-n approaches provide
an excellent description of both states |¥,) and |¥,),
since we wish to concentrate on the difficulties encoun-
tered by the MRCCSD methods. We thus consider three
values of a belonging to the region a>a. For the P4
model, we consider four different values of a, including
the region of configurational degeneracy (¢=2 a.u.), the
region of orbital degeneracy (a=1.1428 a.u.), and two
values of a belonging to the nondegenerate a > a region
(¢=4 and 10 a.u.).

Let us first note that in the long-range limit of both
models, it is usually the simplest MRCCSD-1 approxima-
tion that yields the best results. This is particularly evi-
dent for cluster amplitudes associated with reference
|®,) and is slightly surprising in view of the fact that the
best energies are provided by the fully quadratic
MRCCSD-3 approach (cf. Secs. VB and VC). We must
not forget, however, that in this region all three
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TABLE XXVI. Same as Table XXIV for the MBS D4 model with ¢ =2.0 a.u. and a=3, 5, and 8 a.u. Comparison of FCI and
MRCCSD-~ (designated as M-n) results for amplitudes associated with |®,). See Appendix for the definition of cluster amplitudes
t;.

a Method t t, ty ts ts te t;
3.0 FCI —0.125198 —0.191 368 —0.030996 —0.170 650 0.048 181 0.153765 —0.064 653
M-1 —0.125763 —0.183975 —0.042 449 —0.176 278 0.043 082 0.158092 —0.073 699
M-2 —0.128 198 —0.186 772 —0.016 648 —0.172 658 0.045 087 0.155201 —0.073 152
M-3 —0.129 194 —0.194 085 —0.017078 —0.167 749 0.050 664 0.138056 —0.064 650
5.0 FCI —0.161576 —0.184015 —0.016 639 —0.180584 0.081 880 0.054 232 —0.023 137
M-1 —0.161 631 —0.182 695 —0.047 698 —0.183220 0.081223 0.036 852 —0.025 347
M-2 —0.166904 —0.188 006 0.010237 —0.174533 0.085032 0.033516 —0.023421
M-3 —0.167038 —0.188 344 0.010308 —0.174247 0.085430 0.030 680 —0.021369
8.0 FCI —0.179 800 —0.181436 —0.001 269 —0.181251 0.099 566 0.002 705 —0.002217
M-1 —0.177271 —0.178919 —0.046 266 —0.184771 0.097 982 0.000 850 —0.001035
M-2 —0.182974 —0.184 876 0.027 965 —0.172582 0.101 508 —0.000 065 —0.000152
M-3 —0.182974 —0.184 876 0.027 965 —0.172582 0.101 508 —0.000 064 —0.000 144

MRCCSD-n methods provide relatively poor energies
(especially for the first excited state) and rather poor
values of several cluster coefficients, particularly those
which are associated with the second reference |®,) (cf.
Tables IX, XI, XXVII, and XXVIII). Recall that the en-
ergies of the first excited state for D4 and P4 models are
almost identical in all MRCCSD-n approximations
(Tables IX and XI) and the ¢3* amplitudes are also prac-
tically independent of the method employed. In the
quasidegenerate region, the latter are practically identical
with the FCI amplitudes. For a— o, however, the er-
rors for most t5?) amplitudes are large. Inclusion of
(T¥)? terms in the coupling term or of nonlinear cluster
components involving T¥ and TY does not seem to
reduce these discrepancies. The ¢3*) amplitudes resulting
from various truncation schemes saturate rather than ap-
proach exact values. For example, when a—> o, the am-
plitude (44|22 |11), vanishes, whereas its absolute value
obtained with MRCCSD formalisms increases with a, so
that for the D4 model with a=8 a.u. or the P4 model

with a=10 a.u. all three MRCCSD-n approaches give
about (—0.06) to (—0.07) for this amplitude. The FCI
value of the amplitude (24|¢*|13), for the D4 model
with =8 a.u. or the P4 model with a=10 a.u. equals
about 0.57-0.58, whereas all three MRCCSD-n ap-
proaches give about 0.40. Similar discrepancies are ob-
served for the remaining ¢}*’ amplitudes for @ >a. It even
happens that all MRCCSD-n approaches give the wrong
sign (see (24[¢[11), for the D4 model with a=3 and 5
a.u. or (22[¢52[13), and {24|t¥ |33 ), for the same mod-
el with =28 a.u.) or give errors of a few orders of magni-
tude (e.g., (24t?[11), and (24(t$?’[33), for the D4
model with =8 a.u. or (44/z{?)|11), for the same model
with a=5 a.u.).

Large errors in t5? amplitudes that result when
MRCCSD-n methods are employed explain why the
two-reference CCSD method provides a rather poor
description of the first excited state in the a— o limit of
D4 and P4 models. We cannot obtain good results for
this state when the T cluster components are poorly

TABLE XXVII. Same as Table XXVI for cluster amplitudes relative to |®,).

a Method tg Ly Lo 311 t 13 Lis I1s tie
3.0 FCI —0.026335 —1.157454 0.084780 —0.484518 —0.672767 —0.006699 —0.398988 —0.452019 0.348497
M-1 0.005423 —1.018278 0.088590 —0.473159 —0.714515 —0.026913 —0.436891 —0.518664 0.306393
M-2 0.005652 —1.017357 0.088613 —0.473187 —0.715158 —0.025601 —0.437346 —0.518935 0.306560
M-3 0.006205 —1.014004 0.089052 —0.472155 —0.714983 —0.025608 —0.437302 —0.518936 0.306155
5.0 FCI —0.018618 —0.546514 0.040940 —0.229161 —0.914395 —0.000475 —0.760113 —0.828145 0.490187
M-1 0.021092 —0.280509 0.033475 —0.195710 —0.960162 —0.049124 —0.812926 —0.947206 0.376823
M-2 0.021375 —0.278411 0.033446 —0.195160 —0.961484 —0.046634 —0.814132 —0.948113 0.376976
M-3 0.021663 —0.277368 0.033696 —0.194694 —0.961539 —0.046636 —0.814185 —0.948172 0.376955
8.0 FCI 0.001141 —0.026715 0.001600 —0.024169 —0.995202 —0.000003 —0.981209 —0.988146 0.570557
M-1 0.008 458 0.007713 0.007 185 0.003368 —1.015767 —0.067087 —0.998168 —1.104432 0.396070
M-2 0.008 499 0.008 101 0.007210 0.003718 —1.017064 —0.063559 —0.999407 —1.105380 0.395917
M-3 0.008 501 0.008 101 0.007 209 0.003720 —1.017064 —0.063559 —0.999407 —1.105380 0.395917
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TABLE XXVIII. Same as Table XXIV for the MBS P4 model with @ =2.0 a.u. -Only nonvanishing amplitudes are given. Four representative
values of the parameter a are considered. They cover the region of orbital degeneracy (a=1.1428 a.u.), configurational degeneracy (a=2.0 a.u.), and
the nondegenerate region (@=4 and 10 a.u.).

a Method t t t3 ty ts 373 t3 ty s tie

1.1428 FCI  —0.106240 —0.169365 —0.021600 —0.164031 —0.035428 —0.074129 —0.021011 —0.054818 —0.081440 —0.018 648
M-1  —0.105905 —0.168837 —0.021690 —0.163550 —0.035326 —0.074044 —0.021693 —0.054758 —0.081487 —0.018 698
M-2,3 —0.105920 —0.168862 —0.021543 —0.163542 —0.035309 —0.074096 —0.021074 —0.054798 —0.081439 —0.018661

2.0 FCI  —0.124560 —0.151323 —0.031425 —0.169155 —0.013513 —0.151323 —0.031425 —0.124560 —0.169155 —0.013513
M-1  —0.124381 —0.151090 —0.032474 —0.169169 —0.013646 —0.151090 —0.032474 —0.124381 —0.169169 —0.013 646

M-2,3  —0.124509 —0.151257 —0.031427 —0.169092 —0.013512 —0.151257 —0.031427 —0.124509 —0.169092 —0.013512

4.0 FCI  —0.163216 —0.163569 —0.024418 —0.177830  0.058906 —0.636675 —0.013864 —0.596000 —0.637160  0.311420
M-1  —0.164514 —0.165242 —0.044215 —0.180636 0.059962 —0.685523 —0.033359 —0.638167 —0.707915 0.287 150

M-2,3 —0.168135 —0.169280 —0.009813 —0.176538 0.063318 —0.686616 —0.031741 —0.639109 —0.708529  0.287 658

10.0 FCI  —0.181264 —0.181180 —0.000082 —0.181263 0.102580 —0.998732  0.000000 —0.999055 —0.998894  0.576711
M-1  —0.178516 —0.178494 —0.046242 —0.184881 0.100943 —1.018545 —0.068953 —1.011339 —1.115930 0.397717

M-2,3 —0.184181 —0.184585 0.029380 —0.172407 0.104506 —1.019856 —0.065310 —1.012566 —1.116903  0.397 538

described, since |<I>2) substantially contributes to it.
Small discrepancies found for the T,-‘” components are of
much smaller importance, since |®,) is almost absent
from the first excited state of the D4 and P4 models when
a— « (see Secs. VB and V C). We must also remember
that we always neglect tetraexcited components. FCI re-
sults indicate that this is acceptable for the t§!’ ampli-
tude, which is never large, but not for ¢${»-(Tables X and
XII). It is simply impossible to obtain good results for
the first excited state by keeping the dimension of the
model space low and simultaneously assuming that
T'? =0. In particular, we cannot obtain good #5*’ ampli-

tudes with MRCCSD methods employing a two-
dimensional reference space.
Results for the P4 model with a=2 a.u. (Table

XXVIII) confirm our earlier observation that in the re-
gion of strong configurational quasidegeneracy involving
|®,) and |®,), all two-reference CCSD formalisms em-
ploying the latter as model states provide a very accurate
description of states |¥;) and |¥,). Interestingly
enough, the same may be achieved for rectangular
geometries with a <a, in spite of the fact that both for
a>a and a < a the model states |®,) and |®,) practical-
ly do not interact [cf. Fig. 9(c) and Table III]. We can-
not, however, use the ground-state RHF MO’s anymore.
An example of such a situation is the P4 model with
a=1.1428 a.u. To obtain the MRCCSD-r results in this
case (a <a in general) we employed MO’s associated with
configuration (¢,)*(¢,)?, although the ground-state RHF
configuration for a<a is (¢;)%(#;)* (cf. Sec. IV). For
a=1.1428 a.u., active orbitals associated with the
configuration (¢;)*(¢,)* become exactly degenerate (cf.
Fig. 2). As can be seen from Table XXVIII, this results
in a very accurate description of pair clusters by all
MRCCSD-n methods. The use of MO’s associated with
configuration (¢,)%(#5)*> would never lead to quasidegen-
eracy of active orbitals. This would result in large values
of T4 components for a <a and, consequently, in a poor
description of the first excited state in this region by all

MRCCSD-n methods. The use of MO’s associated with
configuration (¢,)*(#,)* yields small values of both T
and T4 (see Sec. V C), so that CCSD approximation per-
forms well.

Cluster analysis of the two lowest-lying states of
1Ag(Dz,,) symmetry for the MBS S4 model (see Table
XXIX) clearly indicates that the CCSD approximation is
adequate only in the region of small a’s. For a >4 a.u.,
pair-cluster amplitudes are poorly represented by
MRCCSD-rn methods (in practically all cases, the corre-
sponding errors relative to the FCI data exceed 15%; cf.
Table XXIX), and the errors increase with a. Conse-
quently, all MRCCSD-n methods fail for large a values.
In fact (Sec. V D) all three MRCCSD-n approaches are
plagued with singularities (most likely, algebraic branch
points) in this region. The MRCCSD-1 approach be-
comes singular at ¢ =6.4682 a.u., while the singularity
for the MRCCSD-2,3 method appears at a=4.9356 a.u.
Analytical continuation of the MRCCSD-n solutions
beyond these critical points along the real axis a is not
possible (see Fig. 7). This is related with the increasing
role of T clusters, since both T4 and T4 are large
when a— o (see Table XIV).

VIII. HIGHER EXCITED STATES

So far, our cluster analysis (see Appendix) was restrict-
ed to the lowest-energy states |¥,) and |W¥,), although it
applies to any pair of FCI eigenstates |\I/#) and |V,),
provided that we use the SU cluster Ansatz and two-
dimensional model space M,=span{|®,),|®,)}. The
resulting amplitudes may also be employed as a starting
approximation in MRCCSD calculations to obtain vari-
ous multiple solutions.

The question of whether or not the solutions obtained
in this way describe the excited states arises. We must
not forget that MRCCSD equations must possess a multi-
tude of various solutions, some of which may not
represent physically meaningful eigenstates (cf., Ref.
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TABLE XXIX. Same as Tables XXIV-XXVIII for the MBS S4 model. We employed the fact that
the pair-cluster coefficients for the MBS S4 model satisfy relations (111). See Appendix for the
definition of cluster amplitudes #;. For a=6 a.u., MRCCSD-2,3 results are not available due to the ap-

pearance of a singularity at a=4.9356 a.u.

a Method 1=t =1, =t t,=ts ts=ty
1.0 FCI —0.037961 —0.071492 —0.012 833 —0.064919 —0.028 822
M-1 —0.037 945 —0.071465 —0.012 883 —0.064 901 —0.028 815
M-2,3 —0.037947 —0.071469 —0.012 833 —0.064 898 —0.028 813
2.0 FCI —0.124 560 —0.151323 —0.031425 —0.169 155 —0.013513
M-1 —0.124 381 —0.151090 —0.032474 —0.169 169 —0.013 646
M-2,3 —0.124 509 —0.151257 —0.031427 —0.169 092 —0.013512
4.0 FCI —0.614498 —0.585117 —0.013932 —0.609 064 0.325 199
M-1 —0.712923 —0.690927 —0.059 193 —0.726 379 0.356756
M-2,3 —0.736 591 —0.716 346 —0.007 029 —0.736114 0.374718
6.0 FCI —0.907 132 —0.898419 —0.000262 —0.902 908 0.520 558
M-1 —1.397 826 —1.405 627 —0.202 815 —1.391948 0.748 160

[63]). The fact that MRCCSD equations possess multiple
solutions is a consequence of their nonlinear character
and in general it may be difficult to associate a given solu-
tion with one of the {|¥,),|¥,)} pairs. On the other
hand, we have already found MRCCSD solutions match-
ing the ground and the second excited states for H4 and
D4 models. Actually, even the simplest L-MRCCSD
method has the ability to approximate successively
higher excited states (cf. Sec. V, especially Figs. 4-6).
This suggests that nonlinear MRCCSD equations should
also possess this capacity.

Using exact cluster amplitudes obtained by cluster
analysis of FCI wave functions as an initial guess in
MRCCSD calculations is the best way to verify whether
a given pair of FCI eigenstates can be described by one of
the MRCCSD solutions. If such a solution is found, we
can employ our analytic continuation procedure to deter-
mine the region of its existence. Of course, the Newton-
Raphson scheme may converge to a nonphysical solution
or give a solution that matches some other pair of states
than the one initially considered. Should this occur, or
should no convergence be achieved, it is very likely that a
given pair of FCI eigenstates cannot be described with
reasonable accuracy by the two-reference MRCCSD for-
malism considered.

In the case of models considered in this study, and
perhaps in general, it is rather unlikely that the
MRCCSD formalism employing the two-dimensional
model space span{|®,),|®,)}, where |®;) or |®,)
represents the ground-state RHF wave function, is cap-
able of describing pairs of excited states, i.e., pairs other
than those involving the ground-state wave function
|W,). Participation of the model-space configurations
|®,) and |®,) in FCI expansions of highly excited states
is usually too small to assure the convergence of the
Newton-Raphson scheme. It may happen, however, that
a substantial participation of |®,) in the FCI expansion

of the ground state is accompanied by a large participa-
tion of |®,) in the FCI expansion of one of the highly ex-
cited states. This is illustrated in Table XXX for the
MBS D4 model with a =2 a.u. It is seen that for larger
distances a, the weight of |®,) in the FCI expansion of
the fifth excited state |W¢) is substantial. In this region,
the maximal value of the corresponding coefficient d ¢ is
almost 0.7 and for @ =5 a.u. the coefficient d ¢ is larger
than 0.5. Contribution of |<I>1) is much smaller, but we
must remember that |®,) is a dominant configuration in
the FCI expansion of the ground-state wave function
|W,). Cluster analysis of a pair |¥;) and |¥) indicates
a negligible role of T’ clusters (except for a=~1 a.u.). In
fact, T clusters are far more important (see Table
XXX), particularly the T'{® component. Notice, howev-
er, that for a~3-4 a.u. and a > 8 a.u. the weight of pair
clusters in the many-body expansion of T'? (as measured
by the sum of squares of cluster amplitudes
(pa|ti¥ |aB),) is visibly larger than that of T'? clusters,
even though the latter are not negligible. This suggests
that our two-reference CCSD formalism should provide a
reasonable description of the pair of states |¥;) and |¥)
for « >3 a.u. Slightly less reliable results may be expect-
ed for a=~5-8 a.u., where Tff) clusters become large, but
this should not lead to the total breakdown of the
MRCCSD formalism (cf. the results for the first excited
state of D4 and P4 models when a— o, where a similar
situation occurs). We can expect, however, that this
description cannot be continued into the a <2 a.u. re-
gion, where our model space is insufficient to describe a
pair {|W,),|¥¢)}. Indeed, the T’ and T’ components
become very large, so that the simple CCSD approxima-
tion must fail.

This is precisely what we find when we perform
MRCCSD-3 calculations using one- and two-body cluster
components obtained by cluster analysis of the pair of
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FCI functions {|¥,),|¥s)} for =8 a.u. The Newton-
Raphson procedure converges to a solution that almost
perfectly matches the ground and the fifth excited states.
Carefully continuing this solution towards smaller «a
values, we obtain energies shown in Fig. 10. As expected,
we are unable to proceed much beyond a=3 a.u. since at
a=2.4623 a.u. the Newton-Raphson procedure fails to
converge. Even the use of very small steps Aa does not
help, which indicates that the point a=2.4623 a.u.
represents a branch-point singularity, beyond which fur-
ther continuation along the real a axis is impossible.
Nonetheless, the MRCCSD-3 method provides us with a
very good description of the pair of states |¥,) and |¥).
The second root of H °f yields an excellent approximation
to the energy of the fifth excited state of 'S, symmetry
over a broad range of geometries. For a=3-4 a.u., the
error is less than 2 mhartree (for a=3.3 a.u. it equals
about 0.4 mhartree). For a=~5-8 a.u., the error is slight-
ly larger (up to 12 mhartree), but overall agreement with
FCI results is very good. Interestingly enough, the ener-
gy of the ground state is now better approximated by the
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FIG. 10. Multiple solutions of MRCCSD-3 equations for
MBS D4 model with a=2.0 a.u. Various MRCCSD-3 energies
(thick solid lines) are compared with FCI energies (dotted lines)
and results of L-MRCCSD calculations (long- and short-dashed
lines). All energies (in hartrees) are calculated relative to the
ground-state RHF energy. Five different solutions of the
MRCCSD-3 system are displayed. Each solution describes the
ground state and one of the excited states. Solution t,_¢(a)
describing |W;) and |W) is represented by open squares (O),
and t,_,(a) describing |W¥;) and |¥;) by solid circles (®). Solid
squares () and open triangles (V) represent two different solu-
tions [t;_q,(a) and t;_o,(a), respectively] describing the pair
{|1¥,),|¥y)}]. Two solutions describing |[¥,) and [¥,)
[t;—10a(@) and t,_;o5(a), respectively] are represented by open
circles (O) and open triangles (A).

excited state |W¢) and results of the cluster analysis (see Appendix) for a

.} and |®,) in the FCI expansion of the fifth

) and |W) for the MBS D4 model with @ =2.0 a.u. and v
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lowest root of H ¥ than in the case of a solution match-
ing |¥,) and |¥,) (see Table IX; for @>5 a.u. the error
does not exceed ~0.7 mhartree compared to 4.109 mhar-
tree for =35 a.u., 4.722 mhartree for =6 a.u., or 5.257
mhartree for =8 a.u. in the case of a solution matching
the {|W,),|¥,)} pair, see Sec. V B).

The possibility of obtaining the fifth excited state in
simple two-reference CCSD calculations for the D4 mod-
el suggests that other solutions of nonlinear MRCCSD
equations describe other pairs of FCI states. Because of
our choice of model space, all these pairs should involve
the ground state |¥,). The knowledge of the FCI wave
functions is certainly very helpful here, since we can sim-
ply employ the exact cluster amplitudes corresponding to
a given pair {|¥,),|¥,)}, ©>2, as an initial approxima-
tion in MRCCSD calculations. In the case of the D4
model, we were able to obtain five other solutions of
MRCCSD-3 equations, describing |¥,) and |¥,), |¥,)
and |¥,,) (see Fig. 10). In the case of the solution
t,_;(a) describing |¥;) and |¥,;), and two solutions
matching |¥,) and |W,), which we designate as t,_,(a)
and t,_q,(a), we started from a=8 a.u. Then, we em-
ployed an analytic continuation procedure toward small-
er values of a. In case of two solutions describing |¥,)
and |V ,), labeled as t;_ o, () and t;_, (), we started
from a=2 and 4 a.u., respectively, and then employed an
analytic continuation towards both a->0 and a¢— o lim-
its. All five solutions exist over a broad range of
geometries. Solutions t;_,(a), t;_g,(a), and t,_g,(a)
seem to have branch-point singularities only in the
short-range region (at a=2.2697, 2.1763, and 2.3148 a.u.,
respectively). Solutions t,_;g,(a) and t;_;p,(cx) have
branch-point singularities in short- and long-range re-
gions. Solution t;_;q,(a) is nonsingular for 1.3006
a.u.<a <6.2835 a.u., whereas the solution t,_q,(a) is
nonsingular for 2.1312 a.u. <a =<5.4715 a.u.

Description of the sixth excited state by the solution
t,_,(a) and description of the ninth excited state by the
solution t; o, () is so good that it is hard to distinguish
between the corresponding MRCCSD-3 and FCI energy
curves in Fig. 10 [for > 1.6 a.u,, i.e., over almost the en-
tire range of existence t;_o,(a), the error in the energy
of |W,,) is smaller than 12 mhartree; for 4.3 a.u.<a <5.9
a.u. it is smaller than 2 mhartree]. The same holds for
the solution t;_g,(a), which almost perfectly describes
the eighth excited state (for a> 3.5 a.u., the error does
not exceed 10 mhartree). Only solutions t,_g,(a) and
t,_ 105 (@) provide poorer results.

Existence of solutions describing |¥,), |¥,), and |¥ )
(particularly |W,) and |¥,,)), and good MRCCSD ener-
gies obtained for these states, are rather surprising. The
weights of reference configurations |®;) and |®,) in the
FCI expansions of these states are rather small, so that
normally we would expect poor results or serious conver-
gence problems. The corresponding solutions are, how-
ever, nonsingular over large regions of a values, indicat-
ing that the MRCCSD formalism has a much larger po-
tential than one might expect solely on the basis of stan-
dard solutions.

We can thus conclude that, in principle, the nonlinear
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MRCCSD formalism may yield information about a
significant part of the electronic energy spectrum even
when a small reference space is employed. In case of the
MBS D4 model, we were able to find as many as eight
different solutions of the MRCCSD equations that de-
scribe seven different eigenstates of 12; symmetry. Two
solutions discussed in Sec. V B provided us with informa-
tion about three lowest eigenstates |¥, ), |¥,), and |¥;),
whereas the six solutions discussed in this section yielded
the ground state |¥,) and very good approximations for
[We), |¥,), |Wy), and |¥,,). Multiple solutions were
also found for the H4 and P4 models. As in the case of
the D4 model, each solution describes the ground and
one of the excited states.

IX. SUMMARY AND DISCUSSION

In this paper we applied four different variants of the
MRCCSD formalism to simple model systems consisting
of four interacting hydrogen atoms in various geometri-
cal arrangements. We focused our attention on four pla-
nar models in which the extent of quasidegeneracy of the
ground state could be continuously varied from exact de-
generacy to nondegenerate cases or cases of heavy mixing
of orbital and configurational degeneracies. For all
quasidegenerate systems that we examined, the ground-
state electronic wave function is dominated by two
closed-shell-type configurations involving two active or-
bitals of different spatial symmetry. We were thus able to
exploit our orthogonally-spin-adapted formulation of the
Hilbert-space  MRCC theory that employs a two-
dimensional model space spanned by closed-shell-type
references [23,26,29].

One of the aims of the present study was to assess the
importance of various nonlinear terms. We were particu-
larly interested in the effect of the bilinear terms involv-
ing singly excited clusters and the role played by bilinear
coupling terms. Thus, together with the linear approxi-
mation, in which all nonlinear terms are neglected, we ex-
amined three nonlinear MRCCSD theories, which
represent different approximations to the fully quadratic
MRCCSD-3 approach. Linear approximation was shown
to be reliable only in quasidegenerate situations. In non-
degenerate cases or cases of heavy mixing of orbital and
configurational degeneracies, the linear MRCCSD for-
malism suffers from singular behavior. We showed that
these singularities will appear whenever the energies of
the low-lying excited configurations become close to ener-
gies of the reference configurations. Proximity of these
energies results in a strong interaction of model states
with states outside /1, and this leads to singular behavior
of the L-MRCCSD coefficient matrix. We showed simple
diagnostics for the occurrence of singularities based on
the behavior of diagonal CI matrix elements. We also
showed that in the region of singular behavior, the
effective Hamiltonian matrix becomes strongly non-
Hermitian, so that L-MRCCSD theory may even fail to
yield real energies. This distinguishes the linear MR for-
malism from the SR one, which may become singular,
but never yields complex energies.

As in the SR case, inclusion of nonlinear terms elimi-
nates singular behavior of the L-MRCCSD approxima-
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tion. Remarkably enough, it is sufficient to include the
coupled-pair clusters (T‘ZP) )? in the direct term to obtain a
nonsingular and highly accurate formalism. Inclusion of
these clusters in the coupling term, as well as inclusion of
bilinear components involving singly excited clusters,
usually further improves the results. In quasidegenerate
situations, all nonlinear MRCCSD methods provide a
very accurate description for both energies and wave
functions. Surprisingly enough, the two-reference CCSD
approach is capable of providing quite a realistic descrip-
tion of potential-energy surfaces even when dissociation
of two chemical bonds is involved. As the nondegenerate
limit is approached, nonlinear MRCCSD results
deteriorate, but description of the ground-state electronic
wave function remains satisfactory. Description of the
first excited state is often quantitatively poor, but can still
provide valuable information about the approximate
shape of the corresponding potential-energy surface. In
nondegenerate cases, or cases of heavy mixing of orbital
and configurational degeneracies, the two-dimensional
model space is too small to describe the low-lying states.
When the model space is adequate for the ground state,
but not rich enough to approximate the first excited state,
only results for the latter become poor. This happens in
nondegenerate cases, where the ground state is well de-
scribed by the SRCC theory.

When a simultaneous breaking of several chemical
bonds is examined, neither the ground nor the first excit-
ed state are adequately represented by the two-
dimensional reference space. Consequently, the two-
reference CCSD formalism yields equally poor results for
the ground and the first excited states. We also found
that despite its nonlinear and multireference character, it
may suffer from singular behavior, which is similar in na-
ture to the behavior of the SRCCD or SRCCSDT
methods in highly degenerate situations [60-63]. Thus
when the model space used cannot adequately describe
the simultaneous breaking of several chemical bonds,
algebraic branch points will occur beyond which the
MRCCSD equations cease to possess real, physically
meaningful, solutions. In all these cases, orbital and
configurational degeneracies are heavily mixed and
numerous configurations interact very strongly, so that
we must either increase the dimension of the model space
(an impractical solution) or go beyond the CCSD approx-
imation. Cluster analysis of FCI wave functions indicates
a rapid increase in the importance of the connected
tetraexcited clusters. Thus if we wish to preserve a small
dimension for the reference space, we have to include
connected quadruply excited clusters in the MRCC equa-
tions. This seems to be the only method to obtain a high-
ly accurate and nonsingular formalism in all regions of
nuclear coordinate space. Inclusion of connected qua-
druply excited clusters (particularly those associated with
the second reference) should essentially improve the
MRCC results in nondegenerate situations. In particular,
we should obtain a much better description of the
potential-energy surface for the first excited state (other
excited states should also be better represented). It is
thus worthwhile to examine the possibility of extending
the well-known approximate methods of accounting for
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connected quadruply excited clusters [ACPQ [77], ACP-
D45 (approximate coupled pair method considering in-
teraction diagrams that are separable over the hole lines,
i.e., the fourth and fifth Brandow diagrams of Refs.
[37,67,68,77)), also referred to as ACCD (approximate
CCD [78])], or similar methods that proved to be useful
in SR situations [e.g., ACP-D14 (ACP considering the
first and fourth Brandow diagrams, see Ref. [71])], to the
MR case. We also hope to address the role of semi-
internal triexcited and tetraexcited configurations that
are singly or doubly excited with respect to the other
reference [23]. It would be instructive to account for
them at least at the linear level of approximation [23].
Some of these studies are already in progress and the re-
sults will be presented elsewhere [80].

Another possibility is to employ different types of MO
bases. We have seen that the use of the MO’s associated
with configuration (¢,)%(¢,)? for the MBS P4 model with
a<a, where the ground-state RHF configuration is
(¢,)%(¢,)%, leads to excellent results even when the
ground-state electronic wave function possesses an evi-
dently nondegenerate (single-reference) character. This is
a consequence of the fact that this particular choice of
the MO basis leads to quasidegeneracy of active orbitals
and to very small values of the connected tetraexcited
clusters in the nondegenerate region. This example
shows that with appropriate orbital choice, the two-
reference CCSD formalism may give a highly accurate re-
sult even in the region where it should give a poor
description (at least for the first excited state). It would
thus be instructive to examine other types of MO bases.
This would correspond to the exploitation of various
shifting techniques of one-electron levels in MR many-
body perturbation-theory (MBPT) calculations, which ex-
tends the range of the applicability of the MR MBPT for-
malism for nondegenerate situations [42].

Finally, we have found that multiple solutions of non-
linear MRCCSD equations are capable of describing vari-
ous pairs of states, as long as they contain a significant
contribution from reference configurations. Actually, the
weight of reference configurations in the FCI wave func-
tion of one of the two states can be relatively small and
we can still obtain a convergent MRCC solution. This
means that we can recover a large part of the electronic
energy spectrum of a given molecular system without
changing the model space. All the necessary information
can be extracted from a single system of equations.
Clearly, a great deal of numerical experience is needed to
turn this observation into a practical method. The prob-
lem of a choice of an initial approximation, when highly
accurate CI results are not available, is just an example of
the potential difficulties.

Other problems, like examples of the Hamiltonian
symmetry breaking by MRCC formalisms due to a wrong
choice of the model space will be described in future
work [36], where we shall examine three-dimensional
models of the H; molecular cluster.
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APPENDIX: EXPLICIT EXPRESSIONS
FOR CLUSTER ANALYSIS

Using the relations (126)-(131) together with Egs.
(121) and (122), we find the following explicit expressions
for the monoexcited and biexcited cluster amplitudes

t,=(44[ti"(22)o=d; , —1d3, , (A1)
t,=(33[tS"[11)g=d, , —1d}, , (A2)
1, =(44[tV|11)o=d;, , (A3)
t,=(34[t5[12)=d  —1dg ds, , (A4)
v
t55(34ft‘2”|12)1=d7,1—T3d8,1d9,1 , (A5)
te=(3t{V[1)=d,, , (A6)
t;=(4t{"|2)=d,, , (A7)
t85<24it(22)111>0:d11,2 ) (AS)
tg=(22[t?[13)o=—ds, , (A9)
tio=(44[tP[13)g=—d g, , (A10)
t;,=(24|t$(33)y=d,, , (A11)
t,=(22[tP11)o=d,, , (A12)
1y =441t [11)=d,, , (A13)
1, =44t (33),=d;, , (A14)
e
z155<24|t<22>|13)0=—gar(,,z—73ar7,2 , (A15)
e
t165<24|t(22)|l3)1=——2-3-d6’2+%d7’2 : (A16)

Here we employed the labeling of states given in Table IV
[so that, for example, d;, is the coefficient at
|®;)=""G33(0)|®,) in the FCI expansion of |¥,), Eq.
(120)], and the labeling of monoexcited and biexcited
clusters introduced in Table V.

As explained in Sec. V B, the twofold symmetry, com-
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mon to all our H, models, reduces the number of in-
dependent triexcited and tetraexcited cluster coefficients
to four orthogonally-spin-adapted amplitudes

(443[15V1221) 0.1 =)y,

(334[£501112) g 0.1, =25 ), ,

(3344[1V[1122 ) 5,0.00= (25" ) ,
and

(2244[12[1133) 5, 0.00= 1) .

After straightforward but lengthy manipulations, we find
the following explicit expressions for these amplitudes in
terms of the transformed FCI coefficients d; ;:

— (DY —
1 =30 ) =d o —t te— St4t,— ——

V3
(DY — _ _ _ 142
tig=(15"),=d,; —tyt,— L1yt ) tste—Ftety »

(A18)
— (Y= o 1(s2 42y _
to =ty ) =dy  —tit, =i e3) —tgty,— 1oty
—1eti—Le,ti— 1,4ty
V73
Tt5t6t7—%t%t% , (A19)

tzoE(tf)>:d5,2“t12114—%(t%5‘H‘%s)'*'tstn‘*"gtlo )
(A20)

where t;, I =1-16, are given by Egs. (A1)-(A16). Gen-
eral equations (A1)-(A20) simplify when we study the P4
and S4 models. In this case (cf. Tables IV and V),

dg,=dy,=dy,=dy,=0, (A21)
so that
te=t,=ty=to=t, =1, =t,;,=t3=0 . (A22)

For the highly symmetric S4 model, pair and tetraex-
cited cluster amplitudes satisfy additional relations (111)
and (112), which reduce the number of independent clus-
ter coefficients to six (cf. Sec. V D for details).
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