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Supersymmetry and tunneling in an asymmetric double well
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The techniques of supersymmetric quantum mechanics are applied to the calculation of the energy
difference between the ground state and the first excited state of an asymmetric double well. This split-
ting, originating from the tunneling effect, is computed via a systematic, rapidly converging perturbation
expansion. Perturbative calculations to any order can be easily carried out using a logarithmic perturba-
tion theory. Our approach yields substantially better results than alternative widely used semiclassical
analyses.

PACS number(s): 03.65.Ge

I. INTRODUCTION

In a double-well potential, a classical particle can
remain indefinitely in the neighborhood of a higher local
minimum that is separated by a barrier from a lower
minimum, provided the kinetic energy of the particle is
less than the height of the barrier. However, a quantum-
mechanical particle with its wave function initially local-
ized in the higher minimum has a finite probability of be-
ing found in the lower minimum due to tunneling
through the potential barrier. This purely quantum-
mechanical effect is of great relevance to many branches
of physics and chemistry [I—4]. Of particular interest in
this problem is the energy difference 5E:—E& —Eo, hav-
ing its origin in this tunneling phenomenon. Recently
Bernstein and Brown [4] and Boyanovsky, Willey, and
Holman [5] have computed oE using supersymmetric
quantum mechanics (SUSY-QM) and the path-integral
formalism, respectively. (Readers interested in the path-
integral approach to the tunneling can find details in
Coleman [6], Callan and Coleman [7], and references
therein. ) The relevance of SUSY-QM to this problem
stems from the following observation. Given any poten-
tial V (x), with the ground state adjusted to have zero
energy, SUSY-QM allows one to construct a partner po-
tential V+(x) with exactly the same energy eigenvalues
except for the ground state, which remains unpaired.
Often it is considerably easier to determine the ground
state of V+(x) rather than the first excited state of
V (x), as was the case in Ref. [4]. In such cases one can
profitably use V+(x) instead of V (x) to determine 5E.
In this paper, we carefully reanalyze the applicability of
the techniques of SUSY-QM. In particular, it is shown
that the calculation of 5E, which originates from a non-
perturbative tunneling eff'ect in the potential V (x), can
be converted to a fully quantum-mechanical, perturbative
problem in the partner potential V+(x). Furthermore,

for the nontrivial problem of deep wells, this perturbative
expansion is highly convergent and improves substantial-
ly upon the semiclassical methods. This has to be con-
trasted with the variational approach of Ref. [4], where
the perturbation correction to the leading term was sub-
stantial.

In Sec. II, we briefly review the formalism of supersym-
metric quantum mechanics; for a more detailed descrip-
tion the reader is referred to Ref. [8]. In Sec. III, we cal-
culate the energy splitting via SUSY-QM. One way to
determine this splitting of the energy levels is to solve the
Schrodinger differential equation numerically. However,
that becomes increasingly difficult and less reliable as the
barrier gets higher and the splitting gets smaller. The
SUSY-QM based approach described in this paper gives
an extremely reliable and accurate determination of the
energy splitting. In fact, the reliability increases for
smaller splitting. We compare our SUSY-QM results
with numerically computed values, and with those com-
ing from a recent semiclassical analysis [5].

II. SUPERSYMMETRIC QUANTUM MECHANICS

For a quantum-mechanical problem with a potential
V (x), supersymmetry allows one to construct a partner
potential V+ (x) whose energy eigenvalues E„+ are in one
to one correspondence with the excited states of V (x),
i.e., E„+,=E„,where E„are eigenvalues of V (x) and
n is a positive integer (i.e., n EZ+). In the arena of
SUSY-QM, it is customary to describe V (x) in terms of
its ground-state wave function. Hence, let us assume that
the wave function $0(

' =—$0 of V (x) is known, and the
corresponding ground-state energy Eo has been adjusted
to be zero. The relevant Schrodinger equation is given by

H Po(x) —= — + V (x) $0=0,
dx
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and we are using units with %=2m =1. The above Ham-
iltonian can also be written in terms of the ground-state
wave function go(x) as

d' 4o'

dx' 0o

where go represents the second spatial derivative of the
wave function. We now define two operators

and thus for positive integral values of n, Ag(„) is an
eigenfunction of H+, and we shall call it the supersym-
metric partner state of P'„). Since the ground state of
V (x) does not have a SUSY partner (Ago( '=0), one
finds E„+,=E„,where n H Z+. Thus, if the eigenvalues
and the eigenfunctions of H were known, one automati-
cally learns the eigenvalues and the eigenfunctions of,
what in general is, a completely different Hamiltonian
H+.

4o

0o

0o III. CALCULATION OF THE ENERGY DIFFERENCE

In terms of A and A, the Hamiltonian H is simply
given by A A. However, one can define another opera-
tor H+ ——A A = —d Idx + V+ (x), where

V+(x)= V (x)—2
d 4o

dx o

= —V (x)+2

By construction, H+ is a Hermitian and positive
semidefinite operator. The potentials V (x) and V+(x)
are known as supersymmetric partners. We shall show
shortly that they have the same eigenvalues except for
the ground-state energy Eo . The superpotential W(x) is
related to go by W(x) = fo/tPo —or equivalently
1to(x)=exP[ —f W(x')dx']. 'OPerators A and A can
now be written as

+ W(x), A = — + W(x)d d
dx dx

and the potentials V (x) and V+ (x) are given by

V+ = W (x)+W'(x), W'(x)= d8
dx

The commutator [ A, A ] is equal to 2 W'(x).
Now we shall explicitly show the correspondence be-

tween E„and E„+ &. Let us denote the eigenfunctions of
H+ that correspond to eigenvalues E„—,by 1t)(„—'. One dis-
covers that for n WO,

H+ ( A g(„')= A A ( A it)'„') = A ( A A Q'„')
= AH (P(„))=E„(A g„'),

In a potential with a symmetric double-well structure,
eigenstates with energy substantially below the peak of
the barrier, necessarily occur in pairs with small energy
splitting. This splitting of energy levels gets smaller as
the barrier increases. The same is also true for asym-
metric double wells, provided the deviation from the
symmetry is small. In low-energy studies the splitting be-
tween lowest two states play a dominant role. in the rest
of this section, we will evaluate this energy splitting for
an asymmetric well using SUSY-QM and compare with
results obtained from the WKB formalism of Boyanov-
sky, Willey, and Holman [5] and with the numerical
values resulting from solving the Schrodinger equation
directly. We will extend the formalism developed by
Keung, Kovacs, and Sukhatme [9] for finding the energy
difference for symmetric double wells. The tunneling
probability in an asymmetric double well has also been
used to compute the rate of a chemical reaction in Ref.
[11].

In order to use the SUSY-QM method one needs to
know the ground-state wave function go( '. A specific ex-
ample of an asymmetric double well which we will con-
sider in detail corresponds to a ground-state wave func-
tion which is the sum of two Gaussians centered at +xo,

—(x+xo) —a(x —xo)2 2

=e +e
The positive parameter a is a measure of the asymmetry,
and a =1 corresponds to a symmetric wave function.
The corresponding superpotential and potential are given
by

y~(
—)(x)

W(x) =—
—a(x —x0) —(x+x0)—2a (x —xo)e +2(x +xo)e

0 +e 0
—(x+x ) —a(x —x )

and

qadi(
—

)( )
V (x)=

—a(x —x ) —(x+x )

[ —2a+4a (x —xo) ]e +[—2+4(x+xo) ]e

0 +e 0
—(x+x ) —a(x —x )

respectively.
In Fig. 1, we have plotted V (x) for various values of

the asymmetry parameter a. For a =1, they reduce to
the symmetric case treated in Ref. [9], i.e.,

and

W'(x) =2[x —x()tanh(2xx() ) ]

V (x)=4[x —xotanh(2xx())] —2[1—2xosech (2xxo)] .
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function of the singular Hamiltonian H0 given by

1 1H =H+ —[f(') '(0)] + 5(x),0 + 0
+

v (x), —

I 1 I I I I I I

0

a=0.4
a =0.7
a= 1.0

which allows eigenfunctions with discontinuous denva-
tive owing o e pt th resence of the 5-function term.
Equivalently, one can write

H+ =Ho+&H

=H()+[/(') '(0)] + 5(x),
+

FIG. 1. This set of graphs depicts the formrm of V (x) for
three difFerent values of the asymmetry parameter a. These po-
tentials correspon o e gd t th round-state wave functions given in
Eq. (7).

increases the height of the barrier, and alsoIncreasing x0 inc
increa
'

creases the distance between valleys.
To find 5E, since the ground-state energy of V (of V x)is

zero, we have to determine the energy of the first excited
state of V (x), and that, due to supersymmetry, happens

f the otentialto be the same as the ground-state energy o e po e
V x). Frequently, it is easier to determine numerically
the ground-state energy of V+(x) tha
V+ x . requen y, i

han the first excited
state of V (x [4].

n ' 'ofH weFrom the ground-state wave function 1((0 of H, we
can generate a function I /~(o that solves the
Schrodinger equation for H+ with an eigenvalue zero;
i.e., H+ (I/f() ') =0. However, I /)I(o(

' is not a normahz-
able function since I/$0 ~Do as

1' b.e functionthis function, one can construct a norma. iza .e
(t (x),

f [O' '(3»]'d3

2I+ g() '(x)

f [O( )(3 )]'d3

2I it)(') '(x )

with I+ given by

f [4o (3')] d3'

f [0o' '(3»]'d3

for x )0

for x &0,

1 1

I (10)

However ~~(x) can be viewed as the ground-state wave

respective y. e1 . The function ()I)(x) is well defined for all
us atvalues of x. It is easy to see that P(x) is continuous a

show H+ (t)(x) =0 for x %0. However, (t (x) is also not an
eigenfunction o +,f f H as its derivative has a discontinuity
at the origin; the discontinuity is given by

q(
—)(0)

y(x) [y' '(0) ]' +

f (t) (x)dx

5(x)(t (x)dx

1 1 1 1
(12)

4 I+ I— f P'(x )dx

H' h r-order corrections can be computed using the fa-
miliar Rayleigh-Schrodinger perturbation expansio,
h' '

1 summations over all intermediate unper-
wn. Aturbed eigenstates, which in general are not known.

much simpler alternative approach is to use logarit mic
perturbation theory [10], which only requires knowledge
of the unperturbed ground-state wave function. he
second-order correction to the energy is given by

0E"'=— dx

+ f "dx

E'"f 0'(3»d3

()))(x)

&"'f 0'(3 )d3

()I)(x )
(13)

E( i )+E(2)and the second-order corrected 6E is given by
Similar y, even ig e-1, h' h r-order corrections can be readily
computed.

anal tic a roachAs mentioned before, an alternative ana y ic app

and hence the ground-state eigenvalue and the eigenfunc-
tion of H+ can be determined perturbatively by consider-
in [~( '(0)] [1/I++1/I ]5(x) as a perturbation on
the unperturbed Hamiltonian H0. Here we should

'
like to

point out t ath if( '(0) plays the role of a small expansion
parame er ot f this problem. This is an especially good

barrier since the value of $0(0) is very small. For the
asymmetric case, there is nothing particularly special
aou eb t the origin and the discontinuity of ()((x described

E (10) can be chosen at another point, say x =x.in q. c
is chosen at the peak of the barrier (where $0 has a ya ver
small value); the perturbation expansion converges even
more rapidly. All the equations in this paper have been
written with the choice x =0, but a generalization to an
arbitrary value of x is straightforward.

The first-order correction to the energy is

f (r()(x)(5H)$(x)dx
E(I)—

f ()I) (x)dx
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for computing 5E is the WKB method. Reference [5] is
one of the most recent references on this formalism. It
gives the following expression for the energy difference
5E.

0.60

0.55

I I I

I

I I I

I

I I I I

I

I

Numerical Result

SUSY—QM

[ ( 5 IV )
2 + 2

]
I /2

Tl
(14)

QE 045

0.40

T, = f dx[E —V (x)]

IV2= f dx[V (x) E]'— 0 gp I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

0.4 0.5 0,6 0.7 0.8 0.9

and 58'is equal to 8'3 —8 &. 8'& and 8'3 are themselves
given by

Wf = f dx[E —V (x)]'i

W'3= f dx[E —V (x)]'i
0.050 Numerical Result

1.00
Numerical Result

0.50

0.05

I I I I I I I I I I I

1.4 1.6 1.8

Xp

FICx. 2. A plot of the energy splitting 6E vs xp for the asym-
metry parameter a =0.4.

The limits of integrations x„x2, x 3, and
x4(xf (x2 (x3 (x4) are roots of the equation
[E—V (x)]=0. In general, four classical turning points
are to be expected for double-we11 potentials.

To check the performance of the SUSY-QM and WKB
methods, we also computed 5E by solving Schrodinger
equation numerically using the fourth-order Runge-
Kutta method. This was done for the specific example of
Eq. (7). We call it the numerical result of Fig. 2. We also
calculated 5E using WKB method, and in Fig. 2, plotted
all three values of 5E [obtained from Eqs. (13), (14), and
from the numerical solution], as functions of xff for
a =0.4. We find that, as x0 increases the barrier gets
higher, and the SUSY-QM generated result for 5E ap-
proaches extremely close to the numerical answer and it
is better than the WKB value for all values of x0. In Fig.
2, for xo) 1.5 the SUSY-QM generated result agrees so
well with the numerical result that their graphs practical-
ly fuse with each other. In Figs. 3(a) and 3(b), we plot 5E
calculated by different methods against the asymmetry

0.010

0.005

I

0.4 0.6
I

0.8

(b)

FIG. 3. A plot of 6E vs a for (a}xp = 1.2 and (b) xp =2.0.

parameter a, keeping x0 fixed at the values of 1.2 and 2.0,
respectively. It is worth mentioning that in Fig. 3(a) our
approximation is poorer for the asymmetric well as com-
pared with the symmetric one. This is to be expected as
the perturbation parameter [$0 '(0)] in Eq. (11) has a
smaller value in the first case (I+ and I are not very
sensitive to the values of xo). This is due to the fact that
as the asymmetry parameter a decreases from the sym-
metric value of a =1.0 (for a fixed xo), the barrier height
gets smaller and this increases the value of the wavefunc-
tion at the origin (see Fig. 1). Lastly, Figs. 3(a) and 3(b)
indicate that this method works better for larger x0. This
is also to be expected and can be easily understood by
looking at the simpler case of the symmetric well. The

2X02
perturbation parameter [Itjof '(0)] =4e ' is smaller for
larger values of x0 and explains the faster convergence.
We find that results based on the WKB method deviate
much faster from the numerical solution as the asym-
metry parameter is decreased (a = I is the symmetric
case) than SUSY-QM generated answer. Again we find
that, for almost symmetric situation the SUSY-QM gen-
erated output agrees extremely well with the numerical
result. We also note that, for very asymmetric cases
(a =0.4), the SUSY-QM approach provides results that
are again, in excellent agreement with the numerical solu-
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tion. However, as we have stated before, a supersym-
metry based approach is much easier than solving the
Schrodinger equation with an extremely small eigenvalue
lying very close to the ground state with vanishing ener-
gy.

even for exceedingly asymmetric double wells. The per-
turbation series converges especially rapidly when the po-
tential barrier is high.
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