PHYSICAL REVIEW A

VOLUME 47, NUMBER 4

APRIL 1993

Correlation energies of Be-like atoms:
A multimodel space many-body perturbation calculation
with finite basis sets

Jinhua Xi
Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics,
The Chinese Academy of Sciences, P.O. Box 71010, Wuhan 430071, People’s Republic of China

Lijin Wu and Baiwen Li
Chinese Center of Advanced Science and Technology (World Laboratory), P.O. Box 8730, Beijing 100080, People’s Republic of China
and Wuhan Institute of Physics, The Chinese Academy of Sciences, P.O. Box 71010, Wuhan 430071, People’s Republic of China
(Received 10 August 1992)

With finite basis sets constructed from B splines, a systematical many-body perturbation calculation of
the Be-like atoms with Z from 3 to 36 is performed. A two-configuration model space (2s +2p)?* is
adopted in the calculation in order to speed the perturbation convergence. With perturbations up to the
second order, we obtain 93-99.8 % of the total correlation energies given by Davidson et al. [Phys. Rev.
A 44, 7071 (1991)] for Z from 4 to 20. The discrepancies between experimental and theoretical values
approach a constant of 0.0005 while atomic number Z increases.

PACS number(s): 31.20.Tz, 31.20.Di

I. INTRODUCTION

Many-body perturbation theory (MBPT) has been used
extensively in the calculations of atomic problems, such
as electron correlations, hyperfine interactions, photoion-
izations, etc. Two approaches are mainly used for nu-
merical treatment. The first one, employed originally by
Kelly [1] and Chang, Pu, and Das [2], is the order-by-
order expansion of the perturbation Hamiltonian with
the aid of basis sets. In this method, the expansion for
higher orders will leads to large numbers of Goldstone di-
agrams, and the calculation becomes very complicated
and time consuming. The continuum-orbital basis also
complicates the procedure. The other approach is the
coupled-cluster method, which is widely used by the
group at Chalmers Unversity of Technology (see, for ex-
ample, Lindgren [3] and references therein). In this ap-
proach, one must solve a set of coupled differential equa-
tions, which may endure the problem of numerical stabil-
ity. Solving two-body equations also requires a large
amount of computer memory. Practical methods are
available to eliminate the complexity of the basis expan-
sion calculations. For example, recurrence relations of
Goldstone diagrams can be used to include higher-order
perturbation effects. In our treatment of the hyperfine in-
teractions of the 3d-shell atoms, the polarization dia-
grams were included to all orders [4,5] by using a re-
currence formula. Finite basis sets can be adopted to re-
place the traditionally used complete bound-continuum
ones [6,7]. In recent years, the attempt to construct finite
basis sets with B splines has achieved great success. The
B-spline technique was originally employed by Johnson
and co-workers [8,9] and Fischer and co-workers
[10-12], and later by Chang [13] and Chang and Tang
[14]. We developed programs to investigate the hyperfine
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interaction [15], electron correlation [16], and the behav-
ior of the hydrogen atom is superstrong magnetic fields
[17,18] by using B splines, and have obtained very good
results. Another practical way of avoiding complexity is
to perform the MBPT calculations to the lower orders
under multimodel space.

The correlation energies of the ground state of Be-like
atomic ions have been analyzed by various methods
[19-21]. Recently, Davidson et al. analyzed the
ground-state experimental energies of some atomic ions
and obtained improved correlation energies [22], includ-
ing those of the Be-isoelectric sequence with Z from 4 to
20. The purpose of the present paper is to check the
efficiency of the multimodel space MBPT calculations,
provide further illustration of the application of B-spline
finite basis sets, and give a systematical study of the
correlation energies of the Be-like ions by presenting the
results of the second-order MBPT calculations under the
(2s +2p)? two-dimensional model space with finite basis
sets constructed from B splines.

II. THEORETICAL METHODS

Detailed descriptions of the properties of B splines can
be found in the book of deBoor [23]. Methods of con-
structing finite bases with B splines were given in the pa-
pers referred to above. Here we give a brief illustration
of the construction of the nonrelativistic finite basis sets.

Under the central-field approximation, the single-
particle radial Hartree-Fock (HF) equation is

2
—d~+£[Z—Ya(r)]—-ﬁ-l(l_;1)

2
dar? r ’ Pa(r) 7Xa(r)

=g, P,(r), (1)
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where Y,(r) and X, (r) are the direct and the exchange
potential, respectively. In the following calculation, the
potentials are taken to be the 1s? core Hartree-Fock po-
tentials for the convenience of the MBPT calculations.

With a set of N B splines defined on a suitably chosen
knot sequence in the region » €[0,R ., ], and by incor-
porating the boundary conditions of the orbital functions,
we can expand P, (r) as

N-—1
P,(r)= 3 C;B;(r), (2)
j=2
where the first and the last B splines are eliminated by us-
ing the boundary conditions.
The exchange potential X,(r) contains the orbital func-
tion P,(r) and thus should also be expanded

N—1 _
X, (=3 C;Xj(r). (3)
j=2
Substituting Eqs. (2) and (3) into Eq. (1), multiplying

B;(r) to each side, and integrating from O to R_,, with
respect to r, we get the following matrix equation:
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Diagonalizing Eq. (4), we get a set of orbitals {P(r)}
for a given angular momentum /. These orbitals function
only in the region r €[0,R ], and form an orthogonal
and nearly complete basis set. In our calculation, the
cutoff radius R ,, is taken to be the radius of the valence
2p orbital.

MBPT calculations can be performed with the above
basis sets. For the case of ground states of Be-like atoms,
the orbital energies of 2s and 2p are nearly degenerate,
and MBPT calculations with single-model space will re-
sult in slow convergence. It will be much more preferable
to carry out the calculation under multimodel space, in-
cluding the 252 'S and 2p2 'S configurations. In this case,
the total energy of the system is obtained by diagonaliz-
ing the following 2 X2 matrix:

(2521S|H 4[25%1S) (2s2'S|H 42p%'S)
= (2p21S|Hcﬂ‘|2SZIS> (2p21S|Heﬁ‘|2p2lS> ’
(5)

FH

TABLE 1. Orbital energies and Slater integrals of core and valence orbitals contributed to the zero- and first-order energies (in

a.u.).

z €1 €5 €3, FO1s,1s) F°(2s,2s) F°2p,2p)  F¥2p,2p)  G'(2s,2p)
3 —2.792364 4 —0.1963043 —0.1286367 1.6516864 0.2339752 0.1895114 0.0901992 0.1320065
4 —5.6671156 —0.666064 7 —0.519408 5 22770683 0.3964249 0.3835225 0.1823136 0.2490863
5 —9.5419785 —1.3897005 —1.1671502 29022776 0.5519165 0.5735084 0.2733082 0.3503889
6 —14.4168917 —2.3647905 —2.068 1889 3.5274096 0.7051364 0.760687 1 0.3633443 0.4456379
7 —20.2918316 —3.5905908 —3.2209755 4.1525006 0.8573282 0.9461979 0.4527691 0.5381171
8 —27.166787 8 —5.0667927 —4.6247896 47775671 1.008 966 7 1.130677 1 0.5418016 0.6291265
9 —35.0417543 —6.793244 1 —6.2792559 5.4026177 1.160273 3 1.3144823 0.6305719 0.7192693

10 —43.9167279 —8.769 8613 —8.1841617 6.027 65717 1.311 3649 1.4978258 0.7191596 0.808 8603

11 —53.7917062 —10.996 593 6 —10.3393764 6.652 6905 1.462 309 8 1.6808043 0.8076157 0.8980790

12 —64.666 688 3 —13.4734103 —12.744 817 8 7.2777174 1.6131493 1.8636118 0.8959739 0.9870352

13 —76.5416730 —16.2002899 —15.400429 3 7.9027403 1.7639112 2.0461997 0.9842574 1.075799 3

14 —89.416 6604 —19.1772184 —18.3061731 8.5277593 19146134 2.2286444 1.0724828 1.1644189

15 —103.291649 6 —22.404 1850 —21.4620203 9.1527757 2.0652696 2.4109763 1.160 6619 1.2529270

16 —118.166 6402 —25.8811820 —24.8679507 9.7777899 2.2158892 2.5932177 1.248 803 8 1.3413473

17 —134.0416318 —29.608203 8 —28.5239484 10.4028024 2.3664794 2.7753850 1.3369151 1.429 6972

18 —150.916 6245 —33.5852459 —32.4300020 11.0278135 25170454 29574913 1.4520012 1.517989 8

19 —168.7916179 —37.8123049 —36.5861019 11.6528234 2.6675914 3.1395465 1.5130660 1.6062353

20 —187.666612 1 —42.2893783 —40.9922411 12.2778322 2.8181207 3.3215586 1.6011129 1.694 4414

21 —207.541 606 8 —47.016463 8 —45.6484136 12.9028402 29686357 3.5035339 1.689 144 5 1.782 614 4

22 —228.4166020 —51.9935598 —50.5546147 13.5278474 3.1191387 3.6854777 1.7771630 1.8707591

23 —250.2915976 —57.220664 6 —55.7108404 14.1528540 3.2696312 3.8673941 1.8651700 1.9588797

24 —273.166593 6 —62.6977773 —61.1170877 147778600 3.4201147 4.0492869 1.9531671 2.0469793

25 —297.0415900 —68.424 896 8 —66.7733538 154028656 3.5705903 4.2311587 2.0411555 2.1350609

26 —321.916586 6 —74.402022 4 —72.6796365 16.0278707 3.7210589 4.4130123 2.1291362 2.2231265

27 —347.7915835 —80.629 1533 —78.8359338 16.6528754  3.8715215 4.5948496 22171100 2.3111781

28 —374.666 5805 —87.1062889 —85.2422442 17.2778798 4.0219786 4.7766724 2.3050778 2.3992173

29 —402.5415779 —93.8334287 —91.8985661 17.9028838 4.1724309 4.9584823 2.3930402 2.4872455

30 —431.4165754 —100.8105724 —98.804 898 6 18.5278876 4.3228789 5.1402806 2.4809976 2.5752639

31 —461.2915731 —108.0377194 —105.9612405 19.1528912 4.4733230 5.3220684 2.5689507 2.6632735

32 —492.166 5709 —115.514869 5 —113.3675408 19.7778945 4.6237636 5.5038468 2.6568998 2.7512751

33 —524.041568 8 —123.2420224 —121.0239488 20.4028976 4.7742010 5.6856167 2.7448453 2.8392696

34 —556.916 565 5 —131.2191759 —128.9303117 21.0279021 4.924 6371 5.8673803 2.8327874 29272576

35 —590.7915637 —139.4463337 —137.0866832 21.6529048 5.075069 1 6.0491353 29207266 3.0152397

36 —625.666 562 0 —147.923493 5 —145.4930605 22.2779074 52254986 6.2308837 3.0086631 3.1032164
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where H . is the effective Hamiltonian of the system.

The wave function of the ground state is approximated
by the mixing of the wave functions of the two
configurations; that is,

W, =Cy[25s2'S)+C,,[2p*'S) . (6)

The coefficients C,; and C,, are the weight factors of the
two configurations.

Each value of the four matrix elements in Eq. (5) can
be obtained order by order by using the Rayleigh-
Schrodinger perturbation theory and the Goldstone di-
agrammatic method. The procedure is the same as that
of the single-model space calculation, except that the 2s
and 2p orbitals are both treated as valence orbitals and
the 1s orbital serves as the only core orbital. Detailed il-
lustrations of this method were given by Lindgren and
Morrison [24].

III. RESULTS AND DISCUSSIONS

With the 1s? core HF potential as the central-field po-
tential, we get a set of finite bases containing all orbitals
with angular momentum / =0,1,2,...,7. The B splines
are of number N =30 and order K =7. Perturbations up
to second order are obtained for the Be-isoelectric se-
quence with atomic number Z from 3 to 36. The zero-
and first-order results are determined by the characteris-
tic of the core and valence orbitals. Values of orbital en-
ergies and Slater integrals that contribute to the zero-
and first-order energies are listed in Table 1. The second-
order energies are presented by the Goldstone diagrams,
as illustrated in Fig. 1, where (a) and (b) represent the
zero-body part, (c)-(f) are the one-body diagrams, and
(g)-(1) give the contribution of the two-body excitation.
Results for each diagram are listed in Table II. The ener-
gies converge very quickly with angular momentum I,
and contributions for / >7 are extrapolated by using the
17" rule, with the value of n lying between 3.6 and 4.2.

From Table II, we can see that the values of the Gold-
stone diagrams exhibit different Z-dependent features for
small and middle Z values, but all approach relatively
stable values for large Z. Among these diagrams, the
largest contribution comes from the zero-body diagrams
Figs. 1(a) and 1(b), whose values are quite stable in the
whole region of Z, and the two-body diagram Fig. 1(g),
whose energy dependence on Z is quite flat for diagonal
matrix elements but is strong for off-diagonal elements in
the low-Z region. The contribution of the one-body dia-
grams, Figs. 1(c) and 1(d), is small for small Z, increases
rapidly with the increasing of Z, and becomes stable for
large Z.

Summarizing Tables I and II, we obtain the total re-
sults for each of the four matrix elements in Eq. (5). Di-
agonalizing the matrix, we list in Table III the ground-
state energies for the isoelectric sequence of Be. The cor-
responding HF values are listed in the second column. In
the third and fourth columns we list, respectively, the
ground-state energies of the present MBPT calculations
and the weight factors C,, for the 25%!S configuration.
The factors for the 2p? 'S configuration can be derived by
using the normalization requirement. The correlation en-
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FIG. 1. Second-order correlation diagrams, where (a) and (b)
represent the zero-body contributions, (c)—(f) are the one-body
diagrams, and (g)—(l) give two-body excitations.

ergies are derived from the total and HF energies, and
the results, together with the experimental ones of Sims
et al. [25] and Davidson et al. [22], are included in the
fifth and sixth columns, respectively. We can see that the
second-order two-configuration MBPT results are very
close to the corresponding experimental values. Com-
pared with the single-model space MBPT calculation, the
two-configuration model space formalism truly ac-
celerates the perturbation convergency. For the Be atom,
for example, the present calculation obtained 93% of the
correlation energy, whereas the corresponding single-
model space calculation only gains about 80% of the
correlation. The agreement is even better for atoms with
higher Z, and 99% of the total correlation energy has
been produced for Z >5. The complete agreement with
the coupled-cluster calculation of Salomonson, Lindgren,
and Martensson [26] for Be and C2" also indicates the
accuracy of the finite basis sets constructed from B
splines.

It is shown from Table III that the weight factors C,;
decrease with the increasing of Z. The reason is that the
Coulomb attraction between the nucleus and the elec-
trons becomes larger when Z increases, and thus the
valence electrons are more likely to stay at the inner
shell. Compared with other atoms, the negative ion Li™
exhibits some kind of different characteristics. Unlike the
situation for Be or other positive ions, where an electron
at a position far from the nucleus will suffer an average
Coulomb attraction, the additional electron in Li~ en-
dures no attraction of this kind; therefore, the valence
electrons will have a greater possibility of staying at the
outer shells. We can see that C,; is only 0.906, much
smaller than the values for other ions. This evidence sug-
gests that the present two-configuration model space may
be insufficient to describe the behavior of the ground
state of Li~ because its valence electrons will have con-
siderable possibilities to appear in outer orbitals.

As has been discussed according to the Z ! expansion
theory [27], the correlation energies of Be-like atoms
have the following Z dependence:

E.=ZE\+E,+Z 'E;+ - -, (7)

where E|,E,,E;,... are constants independent of Z. The
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TABLE II. Contributions of the second-order diagrams (in 10> a.u.).
Diagram Z=3 Z =4 Z =5 Z=6 zZ=1 Z =8
(2521S|H 4]25%'S)
(a),(b) —3976.1 —4163.7 —4170.2 —4325.6 —4355.5 —4390.8
(c),(d) —436.0 —780.7 —989.8 —1151.1 —1257.8 —1340.2
(e),(H 108.1 199.1 257.0 296.2 324.4 345.6
(g) —5490.6 —4353.3 —4014.0 —3890.5 —3831.2 —3801.6
(h),(i) —2.7 —10.0 —17.3 —23.5 —28.7 —32.9
G 6.8 233 38.9 51.8 62.2 70.6
(k) 5.1 17.7 29.9 40.0 ) 48.1 54.8
()] —3.8 —12.1 —19.4 —25.3 —29.9 —33.6
Sum —9789.2 —9079.7 —8884.9 —9028.0 —9068.4 —9128.1
(2521S|H 4]2p%'S)
(g 5534.0 7361.7 5836.5 5114.3 4676.1 4385.3
(h),(i) 65.4 155.0 209.6 243.7 266.5 282.7
(W) 1.1 5.7 10.5 14.5 17.2 20.3
(k) 9.8 39.1 65.8 86.4 102.2 114.5
()] 1.4 8.5 17.3 25.1 31.7 37.2
Sum 5611.7 7570.0 6139.7 5484.0 5093.7 4840.0
(2p?'S|H |25%'S)
(g) 3869.3 4168.7 4025.8 3884.3 3761.4 3664.9
(h),(i) 79.9 212.8 308.2 374.8 423.2 459.7
G) 1.0 5.3 9.8 13.6 16.6 19.1
(k) —1.3 —26.9 —439 —56.9 —66.8 —74.5
o)) 1.3 8.3 16.8 24.5 31.0 36.5
Sum 3944.2 4368.2 4316.7 4240.3 41654 4105.7
(2p2'S|H |2p?'S)
(a),(b) —3976.1 —4163.7 —4170.2 —4325.6 —4355.5 —4390.8
(c),(d) —287.7 —842.4 —1256.0 —1565.8 —1784.3 —1951.7
(e),(H) 13.1 50.7 85.3 112.4 133.4 150.0
(g) —11397.2 —123544 —12271.6 —12209.8 —12138.7 —12080.7
(h),(i) —2.5 —15.8 —33.8 —50.9 —65.7 —78.3
g 8.0 55.3 111.0 158.2 195.8 2259
(k) 3.1 10.0 18.4 25.1 30.3 344
0V —0.5 —6.0 —15.0 —24.4 —32.9 —40.3
Sum —15639.8  —17266.3  —17531.9  —17880.8  —18017.6  —18131.5
Diagram Z=9 Z=10 Z=11 Z=12 Z=13 Z=14
(25%'S|H 4|25%'S)
(a),(b) —4414.3 —4451.7 —4478.3 —4491.9 —4504.4 —4516.4
(c),(d) —1404.0 —1458.3 —1502.1 —1537.4 —1567.5 —1593.5
(e),(f) 362.2 375.2 386.0 395.0 402.6 409.1
(g) —3785.8 —3778.0 —3773.2 —3771.5 —3770.6 —3770.5
(h),(1) —36.4 —39.4 —41.9 —44.1 —45.9 —47.6
G 77.5 83.3 88.2 92.3 95.9 99.1
(k) 60.3 64.9 68.8 72.1 75.0 77.5
) —36.6 —39.1 —41.2 —42.9 —445 —45.8
Sum —9177.1 —9243.1 —9293.7 —9328.4 —9359.4 —9388.1
(2s%1S|H 4|2p*'S)
(g) 4178.3 4025.0 3905.4 3810.9 3733.4 3669.0
(h),() 294.9 304.2 311.7 317.7 322.7 327.0
)} 22.3 24.0 25.4 26.6 27.7 28.5
(k) 1243 132.3 138.9 144.4 149.1 153.2
()] 41.7 45.5 48.8 51.6 54.0 56.1
Sum 4661.5 4531.0 4430.2 4351.2 4286.9 4233.8
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TABLE III. (Continued).

Diagram Z=9 Z=10 zZ=11 Z=12 Z=13 Z=14
(2p?'S|H g|25%'S)
(® 3588.1 3527.4 3476.3 3434.6 3398.9 3368.3
(h), () 488.1 511.0 529.7 545.3 558.5 569.8
G 21.1 22.8 24.3 25.5 26.5 27.5
(k) —80.7 —85.7 —89.9 —93.4 —96.4 —99.0
M 41.0 44.8 48.0 50.8 53.3 55.4
Sum 4057.6 4020.3 3988.4 3962.8 3940.8 3922.0
(2p?'S|H 4|2p%'S)
(a),(b) —4414.3 —4451.7 —4478.3 —4491.9 —4504.4 —4516.4
(©),(d) —2081.2 —2187.0 —2273.6 —2344.6 —2404.7 —2456.4
(e),(H 163.3 174.2 183.3 190.9 197.5 203.1
(g —12033.0 —11996.7 —11964.6 —11938.4 —11915.5 —11895.5
(h),(i) —89.0 —98.0 —105.7 —112.4 —118.2 —123.3
G 250.1 270.1 286.7 300.7 312.6 323.0
(k) 37.7 40.4 42.6 44.4 46.1 47.4
i) —46.7 —52.2 —56.9 —61.0 —64.7 —67.8
Sum —18213.1 —18300.9 —18366.5 —18412.3 —18451.3 —18485.9
Diagram Z=15 Z=16 Z=17 Z=18 Z=19 Z =20
(252 'S|H 4|25%'S)
(a),(b) —4525.7 —4534.0 —4542.7 —4549.1 —4554.9 —4560.0
(c),(d) —1615.9 —1635.6 —1653.2 —1668.6 —1682.4 —1694.9
(e),(H 414.8 419.7 424.1 427.9 431.4 434.5
(® —3770.9 —3771.7 —3772.5 —3773.5 —3774.6 —3775.6
(h), (i) —49.0 —50.3 —51.5 —52.5 —53.4 —54.3
G 101.8 104.3 106.4 108.4 110.2 111.8
(k) 79.7 81.6 83.4 85.0 86.4 87.6
1) —46.9 —48.0 —48.9 —49.7 —50.4 —51.1
Sum —9412.1 —9434.0 —9454.9 —9472.1 —9487.7 —9502.0
(2s%1S|H 4|2p%'S)
(g 3614.6 3568.2 3528.1 3493.0 3462.1 3434.8
(h),() 330.6 333.7 336.4 338.8 340.9 342.8
G 29.3 30.0 30.6 31.1 31.6 32.1
(k) 156.7 159.8 162.6 165.0 167.2 169.2
) 57.9 59.7 61.0 62.3 63.5 64.6
Sum 4189.1 4151.4 4118.7 4090.2 4065.3 4043.5
(2p?'S|H g|25%'S)
(2 3341.6 3318.6 3298.1 3279.9 3263.7 3249.0
(h), () 579.6 588.2 595.8 602.5 608.6 614.0
0] 28.3 29.0 29.6 30.2 30.7 31.2
(k) —101.3 —103.2 —105.0 —106.6 —108.0 —109.3
o 57.3 58.9 60.4 61.7 62.9 64.0
Sum 3905.5 3891.5 3878.9 3867.7 3857.9 3849.0
(2p?'S|H ¢|2p2'S)
(a),(b) —4525.7 —4534.0 4542.7 —4549.1 —4554.9 —4560.0
(c),(d) —2501.0 —2540.1 —2574.6 —2605.1 —2632.5 —2657.0
(e),(D 208.1 212.4 216.3 219.7 222.8 225.6
) —11878.1 —11863.1 —11849.6 —11837.7 —11826.9 —11817.4
(h),(k) —127.9 —131.9 —135.4 —138.6 —141.6 —144.2
G 332.1 340.1 347.1 353.4 359.0 364.1
(k) 48.6 49.7 50.6 51.4 52.2 52.8
M —70.8 —73.2 —75.5 —715 —79.4 —81.0
Sum —18514.7 —18540.1 —18563.8 —18583.5 —18601.3 —18617.1
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TABLE II1. (Continued).

Diagram Z =21 zZ =22 Z =23 Z =24 Z =25 Z =26
(252'S|H 4]25%'S)
(a),(b) —4564.7 —4569.0 —4574.4 —4578.0 —4581.6 —4584.5
(c),(d) —1706.0 —1716.5 —1726.1 —1734.7 —1742.5 —1749.9
(e),( 437.7 4399 442.2 444.4 446.3 448.2
(8) —3776.6 —3777.6 —3778.5 —3779.5 —3780.5 —3781.4
(h),(i) —55.1 —55.8 —56.4 —57.0 —57.6 —58.1
G 113.2 114.6 115.8 116.9 117.9 118.9
(k) 88.8 89.9 90.9 91.8 92.6 93.4
0} —51.7 —52.2 —52.7 —53.2 —53.6 —54.0
Sum —9514.4 —9526.7 —9539.2 —9549.3 —9559.0 —9567.4
(252'S|H 4]2p%'S)
(g) 3410.2 3388.1 3368.2 3350.2 3333.9 3318.8
(h),(i) 344.5 346.0 3474 348.7 349.8 350.9
G) 32.5 32.8 33.2 335 33.8 34.0
(k) 171.0 172.6 174.1 175.5 176.7 177.9
()] 65.6 66.5 67.3 68.1 68.8 69.4
Sum 4023.8 4006.0 3990.2 3976.0 3963.0 3951.0
(2p?'S|H 4]25%'S)
(g) 3236.0 3223.8 32129 3203.0 3193.9 31854
(h),(i) 618.9 623.4 627.5 631.2 634.6 637.8
G) 31.6 32.0 323 32.7 33.0 333
(k) —110.4 —111.5 —112.4 —1133 —114.2 —1149
(1)) 65.0 66.0 66.8 67.6 68.3 69.0
Sum 3841.1 3833.7 3827.1 3821.2 3815.6 3810.6
(2p*'S|H 4|2p*'S)
(a),(b) —4564.7 —4569.0 —4574.4 —4578.0 —4581.6 —4584.5
(c),(d) —2679.2 —2699.9 —2718.4 —2735.3 —2751.3 —2765.1
(e),(f) 228.2 230.5 232.6 234.5 236.3 238.0
(g) —11808.7 —11800.6 —11793.4 —11786.7 —11780.6 —11775.1
(h),(i) —146.6 —148.8 —150.9 —152.8 —154.5 —156.2
G) 368.7 3729 376.7 380.3 3835 386.5
9k) 53.4 54.0 54.5 54.9 55.4 55.8
1)) —82.6 —84.0 —85.3 —86.5 —87.6 —88.8
Sum —18631.5 — 18 644.9 — 18 658.6 — 18 669.6 — 18 680.4 —18689.4
Diagram Z =27 Z =28 Z=29 Z =30 Z =31 Z=32
(252 'S|H 4]25%'S)
(a),(b) —4587.3 —4590.0 —4592.4 —4594.8 —4596.9 —4598.9
(c),(d) —1756.6 —1762.9 —1768.7 —1774.0 —1779.3 —1784.1
(e),(H 449.8 451.4 452.9 454.2 455.5 456.7
(g) —3782.3 —3783.1 —3783.9 —3784.7 —3785.4 —3786.1
(h),() —58.6 —59.0 —59.4 —59.8 —60.2 —60.5
G 119.8 120.6 121.4 122.1 122.8 123.5
(k) 94.1 94.8 95.4 96.0 96.5 97.0
() —54.4 —54.7 —55.0 —55.3 —55.6 —55.9
Sum —9575.5 —9582.9 —9589.7 —9596.3 —9602.6 —9608.3
(2s2'S|H |2p2'S)
(g) 3305.0 3292.3 3280.5 3269.5 3259.4 3249.9
(h),(i) 351.9 352.8 353.6 354.4 355.1 355.8
G) 343 345 34.7 349 35.1 35.2
(k) 179.0 180.0 180.9 181.8 182.6 183.3
(0)) 70.0 70.6 71.1 71.6 72.1 72.5
Sum 3940.2 3930.2 3920.8 3912.2 3904.3 3896.7
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TABLE III. (Continued).

Diagram Z =27 Z =28 Z =29 Z =30 Z =31 Z =32
(2p21S|H 4]25%'S)
(g) 3177.6 3170.4 3163.7 31574 3151.6 3146.1
(h),@) 640.7 643.5 646.0 648.4 650.6 652.7
(W) 335 33.8 34.0 34.2 34.4 34.6
(k) —115.6 —116.3 —116.9 —117.4 —118.0 —118.5
(4)) 69.6 70.1 70.7 71.2 71.7 72.1
Sum 3805.8 3801.5 3797.5 3793.8 3790.3 3787.0
(2p?'S|H ¢|2p%'S)
(a),(b) —4587.3 —4590.0 —4592.4 —4594.8 —4596.9 —4598.9
(c),(d) —2778.3 —2790.6 —2802.0 —2812.4 —2822.6 —2831.9
(e),(f) 239.5 241.0 2423 243.7 244.7 245.8
(g) —11770.0 —11764.5 —11760.6 —11756.6 —11752.6 —11748.9
(h),@) —157.7 —159.1 —160.3 —161.6 —162.7 —163.9
G) 389.3 391.9 394.4 396.6 398.7 400.6
(k) 56.2 56.5 56.8 57.1 57.4 57.7
()] —89.7 —90.6 —91.5 —92.2 —92.9 —93.6
Sum —18698.0 —18705.4 —18713.3 —18720.2 —18726.9 —18733.1
Diagram Z =33 Z =34 Z =35 Z =36
(252 1S]Heﬁ|2s2 1s)
(a),(b) —4600.7 —4602.8 —4604.5 —4606.0
(c),(d) —1788.5 —1792.8 —1796.8 —1800.6
(e),(H 457.8 458.9 459.8 460.8
(g) —3786.8 —3787.6 —3788.2 —3788.8
(h),() —60.9 —61.2 —61.5 —61.7
G) 124.1 124.6 125.2 125.7
(k) 97.5 98.0 98.4 98.8
0} —56.1 —56.3 —56.6 —56.8
Sum —9613.6 —9619.2 —9624.2 —9628.6
(2s%'S|H ¢|2p*'S)
(g) 3241.1 32329 3225.2 3217.8
(h),(i) 356.5 357.1 357.6 358.1
g 35.4 35.6 35.7 35.8
(k) 184.1 184.7 185.4 186.0
(0)] 72.9 73.3 73.6 74.0
Sum 3890.0 3883.6 3877.5 3871.7
<2p2 1S]Heﬂr|2s2 1s)
(g) 3141.0 3136.3 3131.8 3127.4
(h),(i) 654.6 656.5 658.2 659.9
G) 34.8 349 35.1 35.2
(k) —118.9 —119.4 —119.8 —120.2
M 72.5 72.9 73.3 73.6
Sum 3784.0 3781.2 3778.6 3775.9
(2p?'S|Hq|2p?'S)
(a),(b) —4600.7 —4602.8 —4604.5 —4606.0
(©),(d) —2840.7 —2849.0 —2856.7 —2864.1
(e),(f) 246.9 247.8 248.7 249.6
(g) —11745.5 —11742.5 —11739.5 —11736.7
(h),() —164.9 —165.8 —166.7 —167.7
G) 402.5 404.3 405.9 407.5
(k) 57.9 58.1 58.4 58.6
M —94.3 —94.8 —95.5 —96.0
Sum —18738.8 —18744.7 —18749.9 —18754.7

2707



2708

JINHUA XI, LIJIN WU, AND BAIWEN LI 47

TABLE III. Comparison of the second-order MBPT results of correlation energies and the experi-

mental values (in a.u.).

Z Eyr E o Cy Eher Egee AE, Efreor JES
3 —7.42823 —7.50242 0.906 0.074 19 0.0722° —0.0020 102.8%
4 —14.57302 —14.660 94 0.942 0.087 92 0.094 34 0.0064 93.2%
5 —24.23758 —24.34473 0.958 0.1072 0.1114 0.0042 96.1%
6 —36.408 50 —36.53297 0.959 0.1245 0.1264 0.0019 98.5%
7 —51.08232 —51.22126 0.965 0.1389 0.1405 0.0016 98.9%
8 —68.25771 —68.41046 0.967 0.1528 0.1540 0.0012 99.2%
9 —87.93405 —88.100 04 0.969 0.1660 0.1671 0.0011 99.3%

10 —110.11101 —110.290 11 0.969 0.1791 0.1799 0.0008 99.6%

11 —134.788 40 —134.98027 0.969 0.1919 0.1925 0.0006 99.7%

12 —161.966 08 —162.17047 0.970 0.2044 0.2050 0.0006 99.7%

13 —191.64400 —191.86075 0.971 0.2168 0.2174 0.0006 99.7%

14 —223.82208 —224.05114 0.971 0.2291 0.2296 0.0005 99.8%

15 —258.500 30 —258.741 56 0.971 0.2413 0.2418 0.0005 99.8%

16 —295.678 63 —295.93203 0.971 0.2534 0.2540 0.0006 99.8%

17 —335.35704 —335.622 54 0.971 0.2655 0.2660 0.0005 99.8%

18 —377.53552 —377.81307 0.972 0.2776 0.2781 0.0005 99.8%

19 —422.21407 —422.503 63 0.972 0.2896 0.2901 0.0005 99.8%

20 —469.392 66 —469.694 19 0.972 0.3015 0.3021 0.0006 99.8%

21 —519.07129 —519.384 78 0.972 0.3135

22 —571.24996 —571.57539 0.972 0.3254

23 —625.928 65 —626.266 02 0.972 0.3374

24 —683.107 38 —683.456 64 0.972 0.3493

25 —742.786 13 —743.147 28 0.972 0.3612

26 —804.964 90 —805.33792 0.972 0.3730

27 —869.643 68 —870.028 56 0.973 0.3849

28 —936.822 48 —937.21921 0.973 0.3967

29 —1006.501 30 —1006.909 87 0.973 0.4086

30 —1078.680 13 —1079.100 53 0.973 0.4204

31 —1153.358 97 —1153.79121 0.973 0.4322

32 —1230.537 82 —1230.981 88 0.973 0.4441

33 —1310.216 68 —1310.672 55 0.973 0.4559

34 —1392.39555 —1392.86323 0.973 0.4677

35 —1477.07443 —1477.553 89 0.973 0.4795

36 —1564.253 31 —1564.744 60 0.973 0.4913

*Reference [22].

®Reference [25].

first term in Eq. (7) comes from the degeneracy of the 2s AE,=AE,+Z 'AE;+ --- . 9

and 2p orbitals in the zero-order Z ~! expansion. Thus
an approximation that incorporates the 2s and 2p
configuration into the zero-order wave function should be
able to produce this linear dependence of Z. In the
present calculation, the 2s and 2p orbitals are all included
in the model space; therefore, the first-order MBPT re-
sults have included the contribution of the first term of
Eq. (7). Higher-order perturbation corrections contribute
mainly to the latter terms in Eq. (7). The calculated
correlation energies can also be expanded in the Z !
series

E!=ZE,+E,+Z 'E{+ - . (8)

The discrepancy of the experimental values from the
present calculation satisfies the following relation

It is clear from Eq. (9) that AE, approaches a constant
while Z increases. In the seventh column in Table III, we
give the differences of the experimental values and the
second-order MBPT results, which give a constant value
of about 0.0005 for large Z values. Based on this fact, the
correlation energies for ions with Z > 20, whose accurate
experimental values are still not available, can be ob-
tained with high accuracy by adding this constant to our
MBPT results listed in Table III.

ACKNOWLEDGMENT

This work is supported by the National Natural Sci-
ence Foundation of China and Grant No. LWTZ-1298 of
Chinese Academy of Sciences.

[1] H. P. Kelly, Phys. Rev. 131, 684 (1963); 136, B896 (1964);
173, 142 (1968); 180, 55 (1969).

[2] E. S. Chang, R. T. Pu, and T. D. Das, Phys. Rev. 174, 1
(1968).

[3] I. Lindgren, Phys. Rev. A 31, 1273 (1985).

[4] Jinhua Xi, Lijin Wu, Baiwen Li, and Jiangyong Wang,
Phys. Lett. A 152, 401 (1991).

[5] Jinhua Xi and Lijin Wu, Acta Phys. Sin. 41, 370 (1992) (in



47 CORRELATION ENERGIES OF Be-LIKE ATOMS: A ... 2709

Chinese).
[6] S. Wilson and D. M. Silver, Phys. Rev. A 14, 1949 (1976).
[7]1 S. Salomonson and P. Oster, Phys. Rev. A 40, 5548 (1989);
A 40, 5559 (1989).
[8] W. R. Johnson and J. Sapirstein, Phys. Rev. Lett. 57, 1126
(1986).
[91 W. R. Johnson, S. A. Blundell, and J. Sapirstein, Phys.
Rev. A 37, 307 (1988); 42, 1087 (1990).
[10] C. F. Fischer and W. Guo, J. Comp. Phys. 90, 486 (1990).
[11]C. F. Fischer, in Proceedings of the 12th International
Conference on Atomic Physics, Post Abstracts, VII-I, edit-
ed by W. E. Baylis, G. W. F. Drake, and J. W. McConkey
(University of Michigan, Ann Arbor, 1990).
[12] C. F. Fischer and M. Idrees, Comp. Phys. 3, 53 (1989); J.
Phys. B 23, 679 (1990).
[13] T. N. Chang, Phys. Rev. A 39, 4946 (1989).
[14] T. N. Chang and X. Tang, Phys. Rev. A 44, 232 (1991).
[15] Jinhua Xi and Lijin Wu, Acta Phys. Sin. 41, 1759 (1992)
(in Chinese).
[16] Jinhua Xi, Lijin Wu, and Baiewn Li, Acta Phys. Sin. (to be
published) (in Chinese).

[17] Jinhua Xi, Lijin Wu, Xinghong He, and Baiwen Li, Phys.
Rev. A 46, 5806 (1992).

[18] Wenyu Liu, Jinhua Xi, Xinghong He, Lijin Wu, and
Baiwen Li, Phys. Rev. A (to be published).

[19] G. A. Petersson and Stuart L. Licht, J. Chem. Phys. 75,
4556 (1981).

[20] S. Shankar and P. T. Narasimhan, Phys. Rev. A 29, 58
(1984).

[21] Baiwen Li, R. Goldflam, E. Henley, and L. Wilets, J. Phys.
B 17, 1445 (1984).
[22] E. R. Davidson, S. A. Hagstrom, S. J. Chakravorty, V. M.
Umar, and C. F. Fischer, Phys. Rev. A 44, 7071 (1991).
[23] C. deBoor, A Practical Guide to Splines (Springer, New
York, 1978).

[24] I. Lindgren and J. Morrison, Atomic Many-Body Theory
(Springer-Verlag, Berlin, 1982).

[25]J. S. Sims, S. A. Hagstrom, D. Munch, and C. F. Bunge,
Phys. Rev. A 13, 560 (1976).

[26] S. Salomonson, I. Lindgren, and A-M. Martensson, Phys.
Scr. 21, 351 (1980).

[27] A. Hibbert, Rep. Prog. Phys. 38, 1217 (1975).



